AUTHOR=Reed Daniel G. , Dowson George R. M. , Styring Peter TITLE=Cellulose-Supported Ionic Liquids for Low-Cost Pressure Swing CO2 Capture JOURNAL=Frontiers in Energy Research VOLUME=Volume 5 - 2017 YEAR=2017 URL=https://www.frontiersin.org/journals/energy-research/articles/10.3389/fenrg.2017.00013 DOI=10.3389/fenrg.2017.00013 ISSN=2296-598X ABSTRACT=Reducing the cost of capturing CO2 from point source emitters is a major challenge facing Carbon Capture, Utilisation and Storage. While Solid Ionic Liquids (SoILs) have been shown to allow selective and rapid CO2 capture by pressure swing separation of flue gases, expectations of their high cost hinders their potential application. Cellulose is found to be a reliable, cheap and sustainable support for a range of SoILs, reducing the total sorbent cost by improving the efficiency of the ionic liquid through increased ionic surface area that results from coating. It was also found that cellulose support imparts surface characteristics, which increased total sorbent uptake. Combined, these effects allowed a 4 to 8-fold improvement in uptake per gram of ionic liquid for SoILs that have previously shown high uptake and a 9 to 39-fold improvement for those with previously poor uptake, offering the potential to drastically reduce the amount of ionic liquid required to separate a given gas volume. Furthermore, the fast kinetics are retained which means het rapid cycling can be achieved which results in high separation capacity relative to conventional temperature swing process. The projected reduction in plant size and operational costs represents a potentially ground-breaking step forward is carbon dioxide capture technologies.