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The evolutionary adaptation was approached on the thermotolerant yeast Kluyvero -
myces marxianus NIRE-K3 at 45°C on xylose as a sole source of carbon for enhance-
ment of xylose uptake. After 60 cycles, evolved strain K. marxianus NIRE-K3.1 showed 
comparatively 3.75- and 3.0-fold higher specific growth and xylose uptake rates, 
respectively, than that of native strain. Moreover, the short lag phase was also observed 
on adapted strain. During batch fermentation with xylose concentration of 30  g  l−1, 
K. marxianus NIRE-K3.1 could utilize about 96% of xylose in 72 h and produced 4.67 
and 15.7 g l−1 of ethanol and xylitol, respectively, which were 9.72- and 4.63-fold higher 
than that of native strain. Similarly, specific sugar consumption rate, xylitol, and eth-
anol yields were 5.07-, 1.15-, and 2.44-fold higher as compared to the native strain, 
respectively. The results obtained after evolutionary adaptation of K. marxianus NIRE-K3 
show the significant improvement in the xylose utilization, ethanol and xylitol yields, and 
productivities. By understanding the results obtained, the significance of evolutionary 
adaptation has been rationalized, since the adapted culture could be more stable and 
could enhance the productivity.
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inTrODUcTiOn

Several environmental issues including global warming, climate change, CO2, and CO emission 
are major concern nowadays, which are primarily caused by conventional transportation fuels and 
burning of the crop residues (Kumar et al., 2009). To cure these issues, a sustainable process should 
be developed to produce alternative transportation fuel along with utilization of crop residues. 
Lignocellulosic ethanol production could be a better solution to resolve these issues, which has 
already been proved as better alternative to conventional fuels including gasoline (Kumar et al., 
2009, 2010; Chandel et al., 2011). Lignocellulosic waste has also been found as a better source for 
economic bioethanol production due to its abundance and low cost (Kumar et al., 2010; Sharma 
et  al., 2016). It contains glucose, galactose, mannose, xylose, and arabinose in which glucose 
and xylose covers about 90% of total sugar present in biomass (Kumar et al., 2010; Sharma et al., 
2016). Therefore, both these sugars needed to be fermented for economical process development. 
Conventional yeast Saccharomyces cerevisiae can only ferment glucose, but unable to ferment xylose 
due to lack of xylose metabolic genes (Kumar et al., 2010; Chandel and Singh, 2011; Kuhad et al., 
2011; Sharma et al., 2016).
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Various attempts have also been made to establish xylose 
metabolic pathway into S. cerevisiae through genetic engineer-
ing by incorporating xylose reductase-xylitol dehydrogenase or 
xylose isomerase pathway for the coutilization of glucose and 
xylose (Kuyper et al., 2005; Liu and Hu, 2010; Zhou et al., 2012). 
However, there are various limitations including competitive 
inhibition due to presence of glucose and degradation of xylose 
transporter, which inhibits coutilization of xylose (Apel et  al., 
2016). On the other hand, numerous mesophilic xylose-utilizing 
yeast strains have been tested to ferment xylose, but out of them 
only few including Scheffersomyces stipitis, Candida shehatae, 
C. intermedia, and Debaryomyces hansenii showed significant 
ethanol fermentation ability on xylose (Kuhad et  al., 2011; 
Sharma et al., 2014). However, there were various hurdles includ-
ing low ethanol productivity, low sugar and ethanol tolerance, 
and slow xylose uptake rate (Kuhad et al., 2011; Sharma et al., 
2014). Furthermore, mesophiles also have limitations like low 
productivity in simultaneous saccharification and fermentation 
(SSF) at low temperatures, energy requirements for mixing and 
product recovery, which increases the process cost (Kumar et al., 
2010; Zhang et  al., 2013). Besides, a thermotolerant yeast have 
various advantages over mesophiles including higher rate of 
saccharification and fermentation, utilization of broad range of 
substrates and less energy requirement for mixing and product 
recovery, and lower cost of pumping and steering (Kumar et al., 
2010; Rodrussamee et  al., 2011; Zhang et  al., 2013; Sharma 
et al., 2016). Nowadays, Kluyveromyces marxianus getting more 
attention due to thermotolerance, broad substrate utilization, 
and higher growth rate (Wilkins et al., 2008; Zhang et al., 2013; 
Sharma et al., 2016). It can grow and produce ethanol up to 50°C 
(Kumar et  al., 2010). Furthermore, SSF is a major application 
using this strain, which takes place at higher temperature due 
to the maximum cellulases activity at 50°C (Arora et al., 2015). 
Moreover, requirements of heating and cooling process during 
saccharification and fermentation using mesophiles increases the 
cost of process (Kumar et al., 2009). K. marxianus shows great 
potential over mesophiles including no cooling requirement dur-
ing SSF, solvent tolerance, and minimum risk of contamination, 
which proves it to be a better alternative for sustainable process 
development (Kumar et al., 2009; Arora et al., 2017).

Evolutionary adaptation has been employed to enhance 
growth and fermentation ability of strains along with tolerance 
to various inhibitors including hydroxymethylfurfural (HMF), 
furfural, and acetic acid (Agbogbo et al., 2008; Zhu et al., 2009). 
Evolutionary adaptation together with genetic engineering can be 
a better approach to develop the sustainable and economic process 
(Behera et al., 2016; Kuyper et al., 2005; Liu and Hu, 2010; Zhou 
et al., 2012; Sharma et al., 2016). This strategy has already been 
implemented along with various conventional techniques includ-
ing protein engineering, intergeneric hybridization, and metabolic 
engineering (Kuhad et al., 2011; Zhang et al., 2015). Furthermore, 
evolutionary adaptation has been proven a useful approach for 
the development of sustainable technology (Kuyper et al., 2005; 
Liu and Hu, 2010; Zhou et al., 2012; Pereira et al., 2015).

In this study, evolutionary adaptation of K. marxianus 
NIRE-K3 was performed for xylose utilization and comparative 
assessment of native and adapted K. marxianus NIRE-K3 on the 

basis of growth, sugar uptake rate, product yield, and productivity 
on xylose as carbon source has been reported. The comparative 
kinetics study is also reported.

MaTerials anD MeThODs

Microorganism and growth conditions
Thermotolerant yeast K. marxianus NIRE-K3 (MTCC 5934) was 
used for evolutionary adaptation study. The yeast culture was 
grown at 45°C and maintained on yeast extract-peptone (YEPX) 
medium [(g l−1): yeast extract (Himedia, Mumbai, India), 10; pep-
tone (Himedia, Mumbai, India), 20; xylose (Himedia, Mumbai, 
India), 20; pH, 5.5]. Growth was performed for 24 h at 45°C and 
150 rpm on an orbital shaker incubator (New Brunswick Innova 
43/43R Shaker, Germany). The samples were collected at an 
interval of 2 h and analyzed for dry cell weight (DCW), xylose, 
glucose, and extracellular metabolites concentrations. Yeast cul-
tures were maintained at −80°C in stock with 30% glycerol (v/v). 
Similarly, evolved strain K. marxianus NIRE-K3.1 was also grown 
and maintained as same.

evolutionary adaptation
Evolutionary adaptation was performed in 100  ml of cotton 
plugged Erlenmeyer flask containing 20-ml YEPX medium with 
2% xylose as carbon source through sequential transfer of culture. 
The initial batch was performed by culturing loopful cells from 
phytagel plate in Erlenmeyer flask and incubated for 24 h at 45°C 
in an orbital shaker incubator (New Brunswick Innova 43/43R 
Shaker, Germany) at 150 rpm. Furthermore, 1% inoculum was 
used for continual batch for subsequent growth. One milliliter 
sample was withdrawn after every 24 h for analysis of residual 
xylose, DCW, and metabolites produced during the growth. The 
adaptation was performed until no further improvement was 
observed in xylose utilization.

Fermentation conditions
Fermentation was performed to check out the improvements in 
xylose utilization and fermentation capability of K. marxianus 
NIRE-K3.1 as compared to native strain. Inoculums for fer-
mentation using K. marxianus NIRE-K3 and NIRE-K3.1 were 
prepared using YEPX medium with similar composition as that 
of growth medium. Fermentation was performed in 1  l screw-
caped Erlenmeyer flask with working volume of 200 ml of YEPX 
medium containing 30 g l−1 xylose at a temperature of 45°C and 
pH 5.5 with agitation of 150 rpm in an orbital shaker incubator. 
The initial cell mass concentration was kept at 2 g l−1.

analytical Methods
Samples collected during growth and fermentation were centri-
fuged using Eppendorf centrifuge 5430R at 5,000 g for 10 min, 
followed by washing the pellet twice with deionized water and 
further drying in a vacuum oven at 80°C to a constant weight, 
followed by DCW analysis. The supernatant was used to analyze 
xylose, ethanol, xylitol, glycerol, and acetic acid using HPLC 
(Agilent Technologies) with HiPlex H column at 57°C with 
1 mM H2SO4 as the mobile phase at a flow rate of 0.7 ml min−1 
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FigUre 1 | Adaptation of Kluyveromyces marxianus NIRE-K3 in yeast 
extract-peptone media. (◊) xylose utilization; (Δ) dry cell weight (DCW); (—) 
linear xylose utilization; (– –) linear DCW.

FigUre 2 | Comparison of growth pattern between native Kluyveromyces 
marxianus NIRE-K3 (– –) and K. marxianus NIRE-K3.1 (adapted up to 60 
batches) (—) using xylose as a carbon source; (◊) xylose; (Δ) dry cell weight 
(DCW).
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and detected by refractive index detector at 50°C. All the experi-
ments were carried out in triplicate, and the given values are the 
mean values.

Kinetics
Fermentation kinetic parameters were calculated according to 
Sharma et al. (2016):

 

µ = Standardized value for specific 
         growth rate of KK. marxianus NIRE-K3  (1)

 
YX/S

Mass of biomass (yeast cell) formed
Mass of substrate 

=
((xylose) consumed  

(2)
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Mass of product formed
Mass of substrate (xylose) cons

=
uumed  

(3)

 QS Substrate (xylose) uptake (g) per liter per hour =  (4)

 Qp Product formed (g) per liter per hour=  (5)
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=
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Mass of product formed
Mass of biomass (yeast cell) form

=
eed
µ.
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resUlTs anD DiscUssiOn

Potential of adapted strain K. marxianus NIRE-K3.1 for xylose 
uptake during growth and fermentation was compared with 
native strain.

adaptation of K. marxianus nire-K3
Kluyveromyces marxianus NIRE-K3 was adapted for enhanced 
xylose utilization through sequential culturing in YEPX medium 
containing 20 g l−1 xylose. The reliability of strategy was evaluated 
by monitoring improvement in growth and sugar assimilation 
after each batch. There was a linear improvement in xylose 
utilization rate (Figure  1). After 45 batches of subculturing, 
82.28% xylose could be utilized in 24 h of initial sugar provided, 
i.e., 20 g l−1 and produced 5.8 g l−1 cell biomass as compared to 
17.43% for native strain under same conditions. Furthermore, 
the improvement in xylose utilization was slow, which might be 
due to reprogramming of internal metabolic pathway through 
increased xylose utilization (New et  al., 2014). Furthermore, 
subculturing was continued up to 60 batches to check the further 
improvement in xylose utilization. However, the improvement 
was not significant, and no further subculturing was done. There 
was 86.28% of xylose utilization after 60 batches with the forma-
tion of 5.9 g l−1 cell biomass, which was 4.9- and 4.21-fold higher 
than that of native strain, respectively (Figure 1). After 60 batches, 
the adapted strain was renamed as K. marxianus NIRE-K3.1. In 
another study, xylose assimilation could be enhanced 2.81-fold 
through evolutionary adaptation of K. marxianus NIRE-K1 
(Sharma et al., 2016). Qi et al. (2015) reported the evolutionary 
adaptation for reprogramming pre- and post-transcriptional 
pathway for less genetically explored microorganisms. Kahr et al. 
(2011) reported enhanced ethanol production using adapted 

S. stipitis on xylose, which could be increased up to 4.6% vol from 
3.4% vol. In another study, Garcia Sanchez et al. (2010) reported 
the enhanced xylose and arabinose utilization in recombinant S. 
cerevisiae TMB3130 through evolutionary adaptation by chemo-
stat aerobic adaptation of about 1800 hours.

comparative growth analysis of K. 
marxianus nire-K3 and nire-K3.1
To ensure the improvement in K. marxianus NIRE-K3.1, com-
parative growth profiling was carried out and compared with 
native K. marxianus NIRE-K3. Both the strains were cultivated 
in 500-ml cotton plugged Erlenmeyer flasks with working volume 
of 100 ml in YEP medium containing 20 g  l−1 xylose for 24 h. 
Figure 2 shows the growth pattern of K. marxianus NIRE-K3 and 
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FigUre 3 | Comparison of growth pattern between native Kluyveromyces 
marxianus NIRE-K3 (– –) and K. marxianus NIRE-K3.1 (adapted up to 60 
batches) (—); using glucose as a carbon source, (◊) glucose; (Δ) dry cell 
weight; (o) ethanol.

TaBle 1 | Growth kinetics of Kluyveromyces marxianus NIRE-K3 and NIRE-K3.1.

Kinetic parameters K. marxianus nire-K3 K. marxianus nire-K3.1

growth glucose Xylose glucose Xylose

Maximum specific growth rate (μmax, h−1) 0.29 ± 0.01 0.02 ± 0.003 0.31 ± 0.01 0.075 ± 0.01
Ethanol yield (Yp/s, g g−1) 0.35 ± 0.007 0.009 ± 0.001 0.41 ± 0.002 0.06 ± 0.001
Xylitol yield (Yp/s, g g−1) – 0.07 ± 0.009 – 0.17 ± 0.01
Cell yield (Yx/s, g g−1) 0.26 ± 0.005 0.43 ± 0.06 0.27 ± 0.002 0.22 ± 0.01
Specific sugar consumption rate (xylose) (qs, g g−1 h−1) 0.13 ± 0.01 0.38 ± 0.02
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NIRE-K3.1. About 5.35 ± 0.23 g l−1 xylose could be utilized by 
K. marxianus NIRE-K3 in 24 h of incubation, while K. marxianus 
NIRE-K3.1 could utilize 17.15 ± 0.36 g l−1 xylose. Shortened lag 
phase was also observed for K. marxianus NIRE-K3.1. Mihoub 
et al. (2003), Landaeta et al. (2013), and Jõers and Tenson (2016) 
also reported the shorter lag phase for adapted strains. Moreover, 
xylose utilization of K. marxianus NIRE-K3.1 was about 3.21-
fold higher as compare to K. marxianus NIRE-K3 (Figure 2). The 
maximum specific growth rate (μmax) of K. marxianus NIRE-K3.1 
was calculated as 0.075  ±  0.01  h−1 which was 3.75-fold higher 
than K. marxianus NIRE-K3 (0.02 ± 0.003 h−1) (Table 1). Liu and 
Hu (2010) developed a xylose-utilizing S. cerevisiae through com-
bination of genetic engineering and adaptation, which showed 
improved xylose utilization with higher specific growth rate 
(0.225 h−1) than native recombinant strain (0.055 h−1) by using 
xylose as carbon source under aerobic environment. Similarly, 
S. cerevisiae TMB3400 was adapted for 97 batches in presence of 
cocktail of 12 different inhibitors and reported increased maxi-
mum specific growth rate of 0.33 h−1 along with shorter lag phase 
(Koppram et al., 2012).

The xylose uptake rate (qs) for K. marxianus NIRE-K3.1 
was also calculated as 0.38 ± 0.02 g g−1 h−1, which was 3.0-fold 
higher than that of K. marxianus NIRE-K3 (0.13 ± 0.01 g g−1 h−1) 
(Table 1). Mohagheghi et al. (2014) reported the adaptation of 
Zymomonas mobilis 8b in the presence of 2-deoxyglucose for cou-
tilization of xylose and glucose present in pretreated corn strove. 
Evolved strain Z. mobilis #7 could utilize 86% of xylose present 
in neutralized liquor as compared to parent strain (Mohagheghi 
et  al., 2014). Similarly, Shen et  al. (2012) applied adaptive 
evolution on recombinant S. cerevisiae BSPC095 for more than 
1000 hours in xylose containing minimal media. Evolved strain 
S. cerevisiae BSPX013 showed 2.5- and 8.0-fold higher specific 
xylose consumption rate in glucose–xylose cofermentation and 
sole xylose fermentation, respectively (Shen et  al., 2012). The 
ethanol yield was also reported to be increased from 0.37 ± 0.02 
to 0.43 ± 0.00 g g−1 using S. cerevisiae BSPX013. In another study, 
Candida guilliermondii was adapted on rice straw hemicellulosic 
hydrolyzate and reported the increased xylose consumption up to 
83% in adapted strain (Silva and Roberto, 2001).

In this study, ethanol and xylitol yields (Yp/s, g g−1) of NIRE-K3.1 
were 6.67- and 2.42-fold higher than that of NIRE-K3, respectively. 
However, cell yield (Yx/s, g g−1) of NIRE-K3.1 was 0.22 ± 0.01 g g−1, 
whereas NIRE-K3 showed 0.43 ± 0.06 g g−1 cell yield on xylose 
as sole carbon source (Table 1). The possible reason behind less 
cell yield of K. marxianus NIRE-K3.1 may be due to the product 
formation during growth period (Arora et al., 2015).

The growth of K. marxianus NIRE-K3 and NIRE-K3.1 was 
also carried out in glucose containing medium (Figure  3). 
Both K. marxianus NIRE-K3 and NIRE-K3.1 showed the same 
lag phase and took 16  h to finish the glucose concentration of 
20 g l−1. Maximum specific growth rate (μmax) and cell yield (Yx/s) 
were also almost similar for both adaptive and native strains 
as shown in Table  1. However, the ethanol yield (Yp/s) using 
K. marxianus NIRE-K3.1 was 1.17-fold higher than that of K. 
marxianus NIRE-K3 (Table  1). This study shows no effect of 
evolutionary adaptation on the growth of K. marxianus NIRE-K3 
and NIRE-K3.1, when grown on glucose as carbon source.

Fermentation Profile of K. marxianus 
nire-K3 and nire-K3.1
Fermentation was carried out in YEPX medium containing 
xylose concentration of 30  g  l−1 using K. marxianus NIRE-K3 
and NIRE-K3.1 separately and drawn the xylose utilization 
and production of ethanol and xylitol pattern with time 
(Figure  4). During initial 12  h of fermentation, K. marxianus 
NIRE-K3.1 produced negligible amount of xylitol and ethanol, 
i.e., 0.014  ±  0.002 and 0.004  ±  0.001  g  l−1, respectively, while 
there was no ethanol/xylitol was observed using K. marxianus 
NIRE-K3. After 24 h of fermentation, K. marxianus NIRE-K3.1 
utilized 5.50  ±  0.22 and produced 1.008  ±  0.108  g  l−1 xylitol, 
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FigUre 4 | Fermentation profile using optimized medium concentration in 
bench-scale bioreactor, native Kluyveromyces marxianus NIRE-K3 (– – –) and 
K. marxianus NIRE-K3.1 (adapted up to 60 batches) (—) using xylose as a 
carbon source; (◊) xylose; (Δ) dry cell weight; (o) ethanol; (□) xylitol.

TaBle 2 | Fermentation kinetics of native and adapted Kluyveromyces 
marxianus NIRE-K3 and NIRE-K3.1.

Kinetic parameters K. marxianus 
nire-K3

K. marxianus 
nire-K3.1

Ethanol (Pethanol, g l−1) 0.42 ± 0.02 4.67 ± 0.33
Xylitol (Pxylitol, g l−1) 3.39 ± 0.15 15.7 ± 0.4
Cell yield (Yx/s, g g−1) 0.10 ± 0.015 0.047 ± 0.0019
Ethanol yield (Yp/s, g g−1) 0.066 ± 0.0042 0.16 ± 0.01
Xylitol yield (Yp/s, g g−1) 0.46 ± 0.035 0.54 ± 0.015
Volumetric substrate uptake (Qs, g l−1 h−1) 0.10 ± 0.003 0.40 ± 0.002
Volumetric product productivity (ethanol) 
(Qp, g l−1h−1)

0.007 ± 0.0003 0.065 ± 0.004

Volumetric product productivity (xylitol)  
(Qp, g l−1h−1)

0.047 ± 0.002 0.22 ± 0.005

Specific sugar consumption rate (xylose) 
(qs, g g−1 h−1)

0.012 ± 0.001 0.061 ± 0.0014

Specific product formation rate (ethanol)  
(qp, g g−1 h−1)

0.0016 ± 0.0003 0.025 ± 0.001

Specific product formation rate (xylitol)  
(qp, g g−1 h−1)

0.011 ± 0.001 0.08 ± 0.0016

Conversion rate (%) into ethanol 13.23 ± 0.83 32.35 ± 2.47
Conversion rate (%) into xylitol 46.40 ± 3.49 53.75 ± 1.51
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whereas K. marxianus NIRE-K3 utilized 1.24 ± 0.28 g l−1 xylose 
and produced 0.067  ±  0.021  g  l−1 xylitol with little amount of 
ethanol in both the cases. The reason behind low production may 
be due to the utilization of substrate for the growth and main-
tenance (Arora et  al., 2015; Sharma et  al., 2016). After 36 h of 
fermentation, K. marxianus NIRE-K3.1 produced 3.24 ± 0.16 and 
0.43 ± 0.04 g l−1 xylitol and ethanol, respectively, with utilization 
of 9.52 ± 0.30 g l−1 xylose. With the same duration, K. marxianus 
NIRE-K3 produced only 0.64 ± 0.11 and 0.11 ± 0.02 g l−1 xylitol 
and ethanol, respectively, with utilization of 2.85  ±  0.49  g  l−1 
xylose. After 72 h of fermentation, about 96.4% xylose could be 
utilized by K. marxianus NIRE-K3.1, i.e., the residual xylose in 
the broth was 1.07  ±  0.19  g  l−1, while K. marxianus NIRE-K3 
utilized only 24.2% xylose, i.e., the residual xylose in the broth 
was 22.75 ± 0.22 g l−1 in 72 h of fermentation (Figure 4). Similarly, 
the xylitol and ethanol concentrations in the broth were found to 
be 15.7 ± 0.4 and 4.67 ± 0.33 g l−1, respectively, for K. marxianus 
NIRE-K3.1 and 3.39 ± 0.16 and 0.48 ± 0.02 g l−1, respectively, for 
K. marxianus NIRE-K3 xylitol and ethanol concentration under 
the same conditions were 4.63- and 9.72-fold, respectively, higher 
for K. marxianus NIRE-K3.1 than that of K. marxianus NIRE-K3. 
The final cell mass concentration was also 1.21-fold higher for 
K. marxianus NIRE-K3.1 (3.34 ± 0.07 g  l−1) as compared to K. 
marxianus NIRE-K3 (2.77  ±  0.15  g  l−1). Previously mentioned 
results depict the improved fermentation profile of K. marxianus 
NIRE-K3.1 in the context of xylose assimilation and production 
of xylitol and ethanol because of evolutionary adaptation.

Fermentation kinetic parameters were calculated for K. 
marxianus NIRE-K3 and NIRE-K3.1 as shown in Table 2. The 
xylitol and ethanol yields (Yp/s) for K. marxianus NIRE-K3.1 
were calculated as 0.54 ± 0.015 and 0.16 ± 0.01 g g−1, respec-
tively, which were 1.17- and 2.42-fold higher than that of K. 
marxianus NIRE-K3 (0.46 ± 0.035 and 0.066 ± 0.0042 g g−1), 
respectively. A number of researchers acquired adaptation strat-
egy on ethanologens to enhance xylitol and ethanol yield from 

lignocellulosic biomass (Liu and Hu, 2010; Kahr et  al., 2011; 
Kuhad et al., 2011; Choudhary et al., 2017). Silva and Roberto 
(2001) adapted cells of C. guilliermondii for the fermentation on 
rice straw hemicellulosic hydrolyzate with and without nutrients 
and reported about 3.0-, 2.0-, and 1.9-fold increase in xylose uti-
lization, xylitol yield, and productivity, respectively, as compared 
to unadapted cells after 120 hours. On another study, Shen et al. 
(2012) reported the enhanced ethanol yield of adapted strain 
of S. cerevisiae BSPX013, which increased up to 0.43 ± 00 g g−1 
from 0.37  ±  0.02 on xylose as a sole source of carbon, while 
xylitol and cell yield decreased.

Similarly, the cell yield of K. marxianus NIRE-K3.1 also 
decreased by 53% as compared to K. marxianus NIRE-K3 
(Table 2). Decrease in cell yield of K. marxianus NIRE-K3.1 was 
due to conversion of maximum fraction of xylose into product 
formation rather than growth (Shen et al., 2012; Arora et al., 2015). 
Conversion rate of xylose into ethanol and xylitol in K. marxianus 
NIRE-K3.1 was 32.35  ±  2.47 and 53.75  ±  1.51%, which was 
2.44- and 1.15-fold higher than that of K. marxianus NIRE-K3 
(13.23  ±  0.83 and 46.40  ±  3.49%), respectively. Moreover, the 
specific product formation rate (qp, g  g−1  h−1) in K. marxianus 
NIRE-K3.1 was also found to be higher than that of unadapted 
culture (Table 2). The volumetric substrate uptake (Qs) and prod-
uct formation rates [Qp(xylitol), Qp(ethanol)] were also calculated to be 
4.0-, 4.62-, and 9.74-fold higher in adapted culture (Table 2).

The above results indicate the significant improvement in 
xylose utilization, ethanol and xylitol yields, and productivities 
using evolved strain of K. marxianus NIRE-K3. Furthermore, 
adaptation strategy also stabilizes heterologous gene expression 
in mutant strains (Diao et al., 2013; Lee et al., 2014). In the similar 
way, ethanol yield has also been augmented about twofold in 
recombinant S. cerevisiae after adaptation in bagasse hydrolyz-
ate containing inhibitors including furaldehydes, phenolic 
compounds, and aliphatic acids (Martin et al., 2007). Moreover, 
several inhibiters tolerance including acetic acid, furfural, HMF, 
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decreased through the production of value-added products. On 
the other hand, tolerance to some inhibitors including HMF and 
furfural produced during pretreatment of biomass should also be 
developed. As reported in this study, the evolutionary adaptation 
has been proven very useful strategy to develop an industrial 
important strain. The developed strain K. marxianus NIRE-K3.1 
showed significant improvement including shorter in lag phase, 
improved xylitol and ethanol yields, and enhanced xylose uptake 
rate, which may contribute in the economical production of 
ethanol and value-added products from lignocellulosic residues.
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TaBle 3 | Comparison of xylose utilization and ethanol production between Kluyveromyces marxianus NIRE-K3.1 and reported yeast strains.

strain Xylose utilization (g l−1) Xylitol conc. (g l−1) ethanol conc. (g l−1) reference

K. marxianus NIRE-K3.1 28.91 ± 0.2 15.7 ± 0.4 4.67 ± 0.33 This study
K. marxianus NIRE-K1.1 27.43 ± 2.20 18.75 ± 0.9 2.88 ± 0.21 Sharma et al. (2016)
Saccharomyces cerevisiae YSX3-TAL1M 19.86 6.15 – Jin et al. (2005)
S. cerevisiae TMB3130 17.9 5.54 5.19 Garcia Sanchez et al. (2010)
S. cerevisiae H131-A3-ALCS 30 – 12.3 Zhou et al. (2012)
S. cerevisiae SR8u 40 – 15.6 Li et al. (2016)
S. cerevisiae SR7e3 80 – 29.6 Kim et al. (2013)
Spathaspora passalidarum UFMG-CM-Y469 40–50 1.1 ± 0.0 20.2 ± 0.1 Cadete et al. (2016)
Sp. passalidarum CBS 10155T 40–50 0.6 ± 0.0 20.3 ± 0.2 Cadete et al. (2016)
Sp. roraimanensis UFMG-CM-Y477T 40–50 22.7 ± 0.3 5.8 ± 0.3 Cadete et al. (2016)
S. cerevisiae SXA-R2P-E 40 – 18 Lee et al. (2014)
S. cerevisiae H131-A3-CS 40 – 17.2 Zhou et al. (2012)
S. cerevisiae SR8 40 – 15.6 Wei et al. (2013)
S. cerevisiae CEN.PK2-1C-TMB 3424 60 – 21.06 Runquist et al. (2010)
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