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Institute of Technical Thermodynamics, RWTH Aachen University, Aachen, Germany

Two-stage synthesis problems simultaneously consider here-and-now decisions (e.g.,
optimal investment) and wait-and-see decisions (e.g., optimal operation). The optimal
synthesis of energy systems reveals such a two-stage character. The synthesis of energy
systems involves multiple large time series such as energy demands and energy prices.
Since problem size increases with the size of the time series, synthesis of energy systems
leads to complex optimization problems. To reduce the problem size without loosing
solution quality, we propose a method for time-series aggregation to identify typical
periods. Typical periods retain the chronology of time steps, which enables modeling
of energy systems, e.g., with storage units or start-up cost. The aim of the proposed
method is to obtain few typical periods with few time steps per period, while accurately
representing the objective function of the full time series, e.g., cost. Thus, we determine
the error of time-series aggregation as the cost difference between operating the optimal
design for the aggregated time series and for the full time series. Thereby, we rigorously
bound the maximum performance loss of the optimal energy system design. In an initial
step, the proposed method identifies the best length of typical periods by autocorrelation
analysis. Subsequently, an adaptive procedure determines aggregated typical periods
employing the clustering algorithm k-medoids, which groups similar periods into clusters
and selects one representative period per cluster. Moreover, the number of time steps
per period is aggregated by a novel clustering algorithm maintaining chronology of the
time steps in the periods. The method is iteratively repeated until the error falls below
a threshold value. A case study based on a real-world synthesis problem of an energy
system shows that time-series aggregation from 8,760 time steps to 2 typical periods
with each 2 time steps results in an error smaller than the optimality gap of the synthesis
problem (2%). This corresponds to a reduction of the number time steps and thus
a reduction of the size of the synthesis problem by a factor of 1,000 with excellent
accuracy in cost estimation. Thus, the proposedmethod enables an efficient and accurate
synthesis of energy systems.

Keywords: time-series aggregation, typical periods, typical days, optimization, design, energy systems

1. INTRODUCTION

The European Union Strategy for 2030 (European Commission, 2014) aims at 27% energy sav-
ings compared with a business-as-usual scenario and identifies efficient energy supply as a main
contributor to reach this aim. The efficiency of energy supply is mainly fixed during the design
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phase of energy systems (Biegler et al., 1997; Patel et al., 2009), the
so-called synthesis. To support the synthesis of energy systems,
mathematical optimization methods have been established. In
pioneering work, Papoulias andGrossmann (1983) performed the
optimal synthesis of an energy system for a single-operation state.
However, synthesis of energy systems is influenced by multiple
volatile time series, e.g., for demands or prices. This reveals the
two-stage character in the synthesis of energy systems: Here-and-
now decisions on investment in new components are simultane-
ously consideredwith thewait-and-see decisions for optimal oper-
ation at variable operation conditions. However, time-varying
operation conditions are also present in other fields of energy and
process systems engineering, e.g., the cyclic operation of batch
plants has a similar character to operation periods in energy
systems (e.g., Zhu and Majozi, 2001).

Consideration of multiple volatile time series results in large
and complex synthesis problems (Mancarella, 2014) that are often
not solvable today. To reduce computational complexity and allow
solution of a synthesis problem, commonly, time series are aggre-
gated and only a few time steps are considered. We distinguish the
following 2 classes of synthesis problems:

1. Chronology of time steps is not required, i.e., all time steps
are independent. In this case, time-series aggregation can be
performed by standard clustering methods leading to small
errors of aggregation (Bahl et al., 2017a).

2. Chronology of time steps is required to consider storage, ramp-
ups, etc. The resulting time-series aggregation is more complex
and is in the focus of this study.

Maintaining chronology of time steps during time-series aggre-
gation does not allow using individual time steps but requires time
periods as a repeating time horizon. Time-series aggregation to
typical periods leads to the following 3 questions:

1. Which length is appropriate for typical periods?
2. How many typical periods are required?
3. How many time steps per typical period are required?

The length of periods is often set to days in literature for synthe-
sis problems that require chronological time steps, e.g., the energy
demand of a single building (Lozano et al., 2009), the electricity
prices for power plants (Teichgraeber et al., 2017), the energy
demands of city districts (Weber and Shah, 2011) and whole
countries (Heuberger et al., 2017). However, aggregation to other
typical periods is also employed, e.g., Rieder et al. (2014) consider
1 year as one typical period. Also the number of typical periods
considered for synthesis differs in literature: Lozano et al. (2009)
use 24 typical periods and Weber and Shah (2011) use 3 typical
periods, while Rieder et al. (2014) consider a single period only.
Moreover, the number of time steps per typical period differs: 24
time steps with duration of 1 h each are used by Lozano et al.
(2009), 6 time steps with duration of 4 h each are used by Weber
and Shah (2011) and Rieder et al. (2014). Recently, the impact of
the number of time steps within a typical period was discussed:
Yokoyama et al. (2015) use 3 typical periods with a variation of
3, 6, and 12 time steps per typical period, which corresponds to
8, 4, and 2 h duration. Kools and Phillipson (2016) consider 4 days
as typical periods and compare the impact of a time-step duration

of 1 h, 15min, and 1min (corresponding to 24, 96, and 1,440 time
steps per typical period). Moreover, Bracco et al. (2016) show that
the number of aggregated time steps within a day as typical period
has a small impact on the accuracy. However, in literature, no
systematic method is available to answer the 3 main questions
required for time-series aggregation to typical periods.

The accuracy of aggregation methods is crucial to evaluate the
results of synthesis problems (Sisternes et al., 2013; Poncelet et al.,
2016). In addition, Pfenninger (2017) states that the selection of
the aggregationmethod for synthesis problems should be justified
within studies. Generally, this justification requires an accuracy
measure. The accuracy of time-series aggregation in synthesis
problems can be measured in different domains: time series,
solution space, and objective function (Bahl et al., 2017a).

If clustering methods are used for time-series aggregation in
energy systems (Marton et al., 2008), the accuracy of aggregation
is commonly measured in the domain of the time series. The
error load duration curve has been proposed by Domínguez-
Muñoz et al. (2011) tomeasure the aggregation accuracy of typical
periods as difference between the demand profile of the original
time series and the typical periods. Fazlollahi et al. (2014) and
Bungener et al. (2015) use a set of application-specific indicators
to assess the accuracy of typical periods. The indicators include,
e.g., the error load duration curve and a profile deviation metric.
Al-Wakeel et al. (2017) estimate future energy demands based
on historical data and assess the accuracy of the estimation by
error measures in the domain of the time series. A tailored two-
stage clustering algorithm is presented by Lythcke-Jøgensen et al.
(2016). The accuracy of typical periods is evaluated before opti-
mization in the domain of the time series, but further analysis of
the solution after the optimization is suggested, which relies on
the experience of the designer. Their results show that the method
is not feasible for application to energy systems with storage that
require chronology of time steps. Poncelet et al. (2017) propose
an optimization-based approach to identify representative days
as typical periods. Multiple accuracy metrics are used to evaluate
the aggregation performance compared with other aggregation
methods from literature.

An accuracy measure in the domain of the time series (used
in the works cited above) is easy to implement and visualize.
However, it does reflect the goal of optimization, which is to find
an optimal solution regarding an objective function. Recently, the
authors and other groups discussed the accuracy of aggregation
methods in the domain of the objective function: Green et al.
(2014) discuss the difference in resulting cost for an electrical sys-
tem with typical periods compared with the original time series.
Brodrick et al. (2015) generate typical periods using k-means,
evaluate the accuracy of aggregation as difference in the objective
function value, and analyze various numbers of typical periods.
For the optimal design of building energy systems, Schütz et al.
(2016) compare several clustering methods for typical periods by
both time-series representation and differences in annual costs.
Moreover, Fitiwi et al. (2015) use information from the objective
function domain to cluster operational states. Recently, Oluleye
et al. (2016) present an approach to obtain typical periods by
consideration of accuracymeasures in both the domain of the time
series and the objective function. However, the objective function
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value is not calculated but only estimated before the actual opti-
mization. The estimation assumes that a single combined heat
and power unit satisfies the total heating demand. Nahmmacher
et al. (2016) propose a hierarchical clustering method for typical
periods to integrate variable (renewable) energy sources into an
energy system.Accuracy of time-series aggregation ismeasured in
the time-series domain and the resulting total system cost. More-
over, the impact of the number of typical periods is discussed. Our
previous work highlights the benefits of an accuracy measure in
the domain of the objective function (Bahl et al., 2017a): only few
time steps are required in synthesis problems of energy systems
to obtain good solutions with a bounded error in the objective
function. However, the approach has been limited to synthesis
problems that do not require chronology of time steps.

In this article, we propose a method for time-series aggrega-
tion for synthesis of energy systems requiring chronological time
steps. The method systematically identifies typical periods for
synthesis problems by addressing the 3 questions for time-series
aggregation with chronological time steps: we identify the period
length by autocorrelation and iteratively refine the aggregation to
determine the required number of typical periods and the number
of time steps per typical periods. The aggregation is based on a
data-clustering algorithm (Jain et al., 1999), and a novel segment-
clustering algorithm is proposed. The accuracy of the proposed
time-series aggregation methods is measured by the error in the
objective function. The error is bounded by the iterative refine-
ment of the time-series aggregation. The synthesis problem and
details of the time-series aggregation method are presented in
Section 2, followed by an application to a real-world case study
in Section 3. Conclusions are drawn in Section 4. A preliminary
version of this method was presented in a conference paper (Bahl
et al., 2017b). In this article, the time-series aggregation method
is significantly extended (especially Sections 2.2.2 and 2.4).

2. TIME-SERIES AGGREGATION TO
TYPICAL PERIODS WITH BOUNDED
ERROR

Decisions in synthesis problems of energy systems have typically
a two-stage character (Lin et al., 2016): investment decisions and
operation decisions. Only investment decisions are fixed by syn-
thesis, operational planning can be adapted later. The two-stage
character is represented in the objective function of the original
synthesis problem as the objective is the sum of capital expendi-
tureCAPEX and operational expenditureOPEX. In this article, we
consider total annualized cost (TAC) as objective function:

TAC = OPEX +
1

APVFCAPEX. (1)

The capital expenditure is annualized with the annuity present
value factorAPVF. Both, investment decisions andoperation deci-
sions involve binary variables and continuous variables, thus the
synthesis problem typically results in a mixed-integer non-linear
program, MINLP (Goderbauer et al., 2016) or a mixed-integer
linear program MILP (Voll et al., 2013). Here, we exemplarily
use an MILP problem which is most commonly employed in
practice. However, the proposed method can also be applied to

MINLPproblems.We refer to this problemas the original synthesis
problem:

min
V̇n,t,δn,t,V̇N

n ,γn,x

OPEX︷ ︸︸ ︷∑
t∈T

(
∆tt

∑
n∈C

con,t
V̇n,t

ηn

)
+

1
APVF

CAPEX︷ ︸︸ ︷∑
n∈C

cinV̇N
n ,

(2)

s.t.
∑
n∈C

V̇n,t = Ėt, ∀ t ∈ T , (3)

A1V̇n,t + Ã1δn,t ≤ b1, ∀ t ∈ T , ∀n ∈ C, (4)

A2V̇N
n + Ã2γn ≤ b2, ∀ n ∈ C, (5)

A3

(
V̇n,t, δn,t, V̇N

n , γn, x
)T

≤ b3. (6)

V̇n,t ∈ R+,V̇N
n ∈ R+,δn,t ∈ {0, 1},γn ∈ {0, 1}, x∈ Ra × {0, 1}ã.

In equation (2), the operational expenditure OPEX is the sum
of the output power V̇n,t of a component n in time step t divided
by the efficiency ηn andmultiplied with the specific operation cost
con,t and the duration∆tt of time step t.OPEX depends on the set of
components C and the set of time steps T . Thus, OPEX is directly
influenced by the size of T . By contrast, the capital expenditure
CAPEX is a one-time decision for the set of components C: the
nominal capacity V̇N

n is multiplied with the specific investment
cost cin.

The sum of the components’ output power V̇n,t has to meet the
energy demand Ėt at every time step t (equation (3)). The vector Ė
may represent different energy demands in the synthesis problem,
e.g., Ėheat, Ėcool, and Ėelectricity. The constraints for the on/off status
δn ,t and the output power V̇n,t as well as the existence γn and
the nominal capacity V̇N

n are given by (in)equalities with the
coefficient matrices A1, Ã1,A2, Ã2 and the vectors b1, b2 (equa-
tions (4) and (5)). Only the equations involving the operational
states V̇n,t, δn,t are stated for every time step t and thus depend
on the size of set of time steps T (equation (4)). All additional
variables of the original synthesis problem are represented by the
surrogate vector x, and additional constraints are summarized in
the surrogate equation (6).

The original synthesis problem (equations (2)–(6)) with the full
set of time steps T is often not solvable in reasonable solution time
(multiple days) or reaches available memory limits (>50GB). To
enable solution of complex synthesis problems, time-series aggre-
gation is commonly used in literature (c.f., Section 1). Thereby,
the complexity of the original synthesis problem is reduced and an
aggregated synthesis problem is generated. However, aggregation
always introduces an error. To bound the error of aggregation, we
propose a method for systematic time-series aggregation in this
section.

Figure 1 shows the proposed method for time-series aggrega-
tion. The method employs the accuracy measure in the domain
of the objective function introduced in our previous work (Bahl
et al., 2017a). In contrast to our previous work, here, we propose
time-series aggregation to typical periods to account for synthesis
problems requiring chronology of time steps. According to the
3 questions for time-series aggregation raised in Section 1, first,
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FIGURE 1 | Method for time-series aggregation to typical periods P′ while
bounding the error of aggregation ∆TAC in the domain of the objective
function (total annualized cost TAC) below a threshold value ε. Details on the
proposed steps can be found in the subsections (dotted circles).

we identify an appropriate period length (Section 2.1) and split
the time series into periods. In Section 2.2, we use data-clustering
methods to aggregate the time series to a given number of typical
periods and a given number of time steps per typical period.
In Section 2.3, we first solve the aggregated synthesis problem
and subsequently the corresponding operation problem with the
complete time series. To solve the operation problem, the optimal
structure is fixed to the solution of the aggregated synthesis prob-
lem. Fixing synthesis decisions reduces the number of coupling
variables in the operation problem and thus often allows for the
solution of the problem for all time steps t∈T . The feasibility
of the optimal structure is ensured for the full time series by so-
called feasibility time steps as proposed in Bahl et al. (2017a).

In Section 2.4, we measure the accuracy of the time-series aggre-
gation ∆TAC in the domain of the objective function. If the
threshold value ε is not met, we increase the resolution of the
typical periods (number of typical periods or number of time steps
per typical period) and restart the aggregation (Section 2.2). If the
threshold value ε is met, the method terminates.

2.1. Identification of Period Length
Periods in time series can correspond to shifts, days, weeks, or
years (Section 1). The length of periods in time series is usually
unknown. Thus, in the first step of the proposed method, we
identify the length of periods for the specific synthesis prob-
lem. The original synthesis problem (equations (2)–(6)) typi-
cally contains energy demands Ėt, specific operation costs con,t
(due to time-dependent energy prices) and other time-dependent
parameters like solar irradiation or wind speed, representing a
large set of time-dependent input parameters. We summarize
the NT S time-dependent input parameters in the time series
T S = {Ėt, con,t, . . . |t ∈ T } defined for the large set of time steps
|T | =Nt. If more than one time series is aggregated (NT S > 1),
each time series is normalized to allow a simultaneous aggregation
of all time series.Without normalization, the time series of heating
demand (in kW) would not be comparable to a time series of
absolute wind speed (in m s−1).

To identify the period length, we identify periodic patterns in
the time series T S . For this purpose, we apply autocorrelation
(Box et al., 2015) to each of the NT S time series. Autocorrelation
correlates each time series with itself at different time lags. The
result is a set of autocorrelation functions ACF. An oscillation
pattern in the autocorrelation indicates periodicity in the data
and splitting of the original time series to periods is meaningful.
The peaks of ACF correspond to the period length. A synthesis
problem usually includes several time series, but only one period
length can be used for time-series aggregation. Thus, we calculate
the normalized sum of autocorrelation functions sACF using all
autocorrelation functions ACF of the time series:

sACF =
∑NT S

i=1 ACFi
NT S

. (7)

The peak of the normalized sum of autocorrelation functions
sACF defines the period length Nj.

Now, we split the original time series T S into Nk =Nt/Nj
periods P withNj time steps in each period (Figure 2: left). In the
following, we refer to time steps within a period k as segments j. In
the next section, we aggregate the periods P to typical periods P ′.

2.2. Aggregation of Periods to Typical
Periods
Splitting of the time series T S (Section 2.1) does not change the
problem size (Figure 2: middle). The resulting Nk periods P with
Nj segments in each period still correspond toNj·Nk =Nt = |T S|
time steps of the original problem. In this section, we reduce
the problem size by time-series aggregation to typical periods
P ′ = {Ėt′ , con,t′ , . . . |t′ ∈ T ′} defined for a small set of time
steps |T ′| = Nt′ ≪ Nt (Figure 2: right). All periods consist of
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FIGURE 2 | All NT S original time series T S (left) with Nt time steps each are splitted into Nk periods P (middle) with a period length of Nj segments each. Each
period P still consists of Nk·Nj =Nt time steps. Time-series aggregation to Nk′ typical periods P′ (right) with Nj′ segments in each typical period, i.e., number of time
steps reduced to Nt′ = Nk′ · Nj′ ≪ Nt.

chronological time steps. The proposed method for time-series
aggregation maintains chronology within each period; however,
no chronology between periods is considered, and thus seasonal
storage cannot be represented. To account for seasonal storage, a
second time grid could be introduced as proposed by Renaldi and
Friedrich (2017). Quite recently, Gabrielli et al. (2017) and Kotzur
et al. (2017) considered seasonal storage in a synthesis problem
by introduction of a second time grid to describe the sequence
of typical periods, these authors further improved the approach
of Renaldi and Friedrich (2017) by assigning all continuous vari-
ables to the full time horizon, while only the binary variables are
considered for the sequence of aggregated typical periods.

In contrast to our previous work on non-chronological time
series (Bahl et al., 2017a), typical periods allow aggregation in
following two dimensions:

• Nk: the number of periods and
• Nj: the number of segments per period.

In the proposed method, first, the number of periods is aggre-
gated (Section 2.2.1); subsequently, we aggregate the number of
segments in each typical period (Section 2.2.2). This order was
also applied by Fazlollahi et al. (2014). In this way, we can identify
aggregated segments for each typical period individually, which is
not possible if segments are aggregated first. In a preliminary ver-
sion of the method (Bahl et al., 2017b), segments were aggregated
first.

The aggregation is performed for a given number of typical
periods Nk′ and aggregated segments Nj′ . The overall method
(Figure 1) then iteratively refines the number of typical periods
and aggregated segments, for details see Section 2.4.

2.2.1. Aggregation of Number of Periods
The aggregation of Nk periods to Nk′ typical periods is based on
clustering methods. Clustering aggregates the number of periods
Nk while the number of segments Nj is invariant.

Clustering methods group data points from a (large) set of data
into clusters. All data points in a cluster are represented by one
cluster center (Jain et al., 1999). Here, we employ k-medoids as
clusteringmethod (Kaufman andRousseeuw, 1987). The k-means
clustering method (Lloyd, 1982) was also tested, and the impact
of choice was small. This finding is in line with Schütz et al.
(2016), showing that k-medoids leads to slightly better results than
k-means.

For time-series aggregation to typical periods, one data point
corresponds to a period p∈P , and each period p consists of Nj
segments (Figure 3: top). In total, we have Nk periods p before

A

B

C

FIGURE 3 | Illustrative time-series aggregation of NT S = 1 time series of an
energy demand Ėt with Nt = 216 time steps: (A) time-series splitted in Nk = 8
periods P with Nj = 24 segments each. (B) Aggregation of periods P to
Nk′ = 3 typical periods P′. (C) Aggregation of Nj = 24 segments to Nj′ = 3
segments per typical period; segments do not start/end at 0 h. The line style
of the periods in (A) indicates the clustering assignment to the typical periods
p′
1, p

′
2, and p′

3 in panels (B,C).

the aggregation. By applying k-medoids clustering, we obtain Nk′

cluster centers representing the typical periods p′ ∈ P ′ (Figure 3:
middle). The share of the typical period p′ per year is determined
by the number of periods p assigned to each typical period p′

(Figure 3). For multiple time series NT S > 1, each period p (and
p′) corresponds to a vector of NT S · Nj

(
Nj′
)

elements, thus
the data of all time series are considered simultaneously in the
clustering algorithm.

Mathematically, the clustering of periods to typical periods
is an optimization problem minimizing the Euclidean distance
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dist(p, p′) between the cluster members and the cluster center:

min
p′
k,zi,k

Nk∑
i=1

Nk′∑
k=1

dist
(
pi, p′

k
)

· zi,k, (8)

s.t.
Nk′∑
k=1

zi,k = 1, ∀ i ∈ [1, . . . ,Nk] .

The assignment of a period pi to a typical period p′
k results in

the assignment matrix zi,k. Typical periods p′
k are selected among

existing periods pi, thus, p′
k represents a real period (in contrast to

the k-means clustering method, which would result in averaged,
artificial periods). We use the PAM algorithm (Kaufman and
Rousseeuw, 2008) with initialization of k-means++ (Arthur and
Vassilvitskii, 2007) for solving the k-medoids problem in equation
(8). By applying k-medoids, the yearly integral of the time series
parameters in P ′ and P is not the same. For correction, we
calculate a scaling factor for each time series separately (according
to Domínguez-Muñoz et al. (2011)). The scaling factor is the ratio
between the integral of all periods and the integral of all typical
periods. All values of the typical periods p′ ∈P ′ are multiplied
with the scaling factor for the corresponding time series to obtain
the same integral values as with the original periods.

2.2.2. Aggregation of Number of Segments per
Typical Period
The aggregated typical periods still contain the original number
Nj of time steps per period. To aggregate the Nj time steps to
Nj′ aggregated segments in a typical period (Figure 3C), a novel
segment-clustering algorithm is proposed. A segment represents a
group of consecutive time steps in a typical period. The segment-
clustering algorithm maintains chronology between the segments
in each typical period. Standard clustering algorithms like the
Lloyd algorithm for k-means (Lloyd, 1982) and the PAM algo-
rithm for k-medoids (Kaufman and Rousseeuw, 2008) used for
period aggregation in Section 2.2.1 are not applicable: Standard
clustering algorithms cannot consider a chronological coupling
between the data points. If we want to aggregate the time steps
in a period with 24 segments, a standard clustering algorithm
interprets the time steps as 24 independent data points. Thus,
the clustering algorithm results in, e.g., 4 clustered segments in
this period without any information on the link between the
segments—the chronology is lost.

The proposed segment-clustering algorithm minimizes the
Euclidean distance between the aggregated segments and the orig-
inal time steps in each typical period. Motivated by the Lloyd and
PAM algorithms, we propose the following iterative procedure to
minimize the Euclidean distance:

1. Initialize the clustering by splitting each typical period into a
randomized segmentation with Nj′ segments.

2. For each segment, calculate the average value of the assigned
time steps.

3. Assign the time steps at the end of a segment to the neighboring
segment, if the value of the time step is closer to the average
of the neighboring segment. Update the average value of the
segment.

4. Repeat the reassignment of the ends of all segments in all
typical periods until the assignment does not change or a
maximum number of iterations are reached.

5. Repeat the procedure for multiple initial segmentations. Ini-
tializations can be obtained by Latin-hypercube sampling
(McKay et al., 2000).

6. Considering the results from all initializations, use the aggre-
gated segments with the smallest Euclidean distance to the
original time steps.

The proposed segment-clustering algorithm is a heuristic, thus
identifies local optima only. In step 5, multiple initializations are
used to partly relieve this shortcoming. Different initializations
might result in different local optima. In step 6, the “best” local
optimum is selected among all identified local optima; however,
this is still not guaranteed to be a global optimum.

The proposed segment-clustering algorithm has the advantage
that any starting point can be used for a segment (c.f., Figure 3C).
Thus, e.g., for Nj′ = 2, a separation in a “day” segment and a
“night” segment is possible. Otherwise, if we split an annual time
series with a start time at 12:00 a.m. at first of January into typical
periods, 12:00 a.m. would be fixed as starting point of every first
segment in a period.With a fixed starting point of the first segment
at 12:00 a.m., we would need Nj′ = 3 segments to represent the
day-night change by a “midnight-to-morning,” a “daytime” and
an “evening-to-midnight” segment.

In this method, the time steps can be aggregated to any number
of segments Nj. In the preliminary version of this method (Bahl
et al., 2017b), segment-clustering was performed using equidis-
tant segments in each period. Thus, the number of aggregated
segments Nj′ had to be selected among the dividers of the period
lengthNj. Moreover, in the preliminary version, the starting point
of the first segment was fixed to 12:00 a.m. For comparison, results
of the case study in Section 3 using this preliminary version of
the segment-clustering algorithm are presented in Supplementary
Material.

The proposed segment-clustering algorithm belongs to the
class of partitional clustering algorithms (Jain, 2010). In contrast,
hierarchical clustering algorithms allocate the Nj′ segments suc-
cessively. For hierarchical clustering methods, the consideration
of any starting point for the first segment is not directly realizable,
as the segments are successively allocated (Jain, 2010).

Using the time-series aggregation (Sections 2.2.1 and 2.2.2),
we obtain typical periods with individual aggregated segments in
each typical period. The size of the typical periods P ′is signifi-
cantly smaller than the size of the original time series (Figure 2:
right):

Nk′ · Nj′ = Nt′ ≪ Nt. (9)

The resulting typical periodsP ′ are used for the synthesis prob-
lem in Section 2.3. After the solution of the synthesis problem, the
accuracy of the aggregation is evaluated as an error in the domain
of the objective function. If the time-series aggregation does not
satisfy a required accuracy, the resolution of the typical periods is
increased and the aggregation is restarted (Section 2.4).

In this article, the proposed time-series aggregation to typ-
ical periods is used for two-stage synthesis of energy sys-
tems. However, other applications of the time-series aggregation
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method are possible, e.g., simulation studies or scheduling of
batch plants.

2.3. Solution of Optimization Problems
Using the typical periods P ′ obtained from time-series aggre-
gation in Section 2.2, we reduce the original synthesis problem
(equations (2)–(6)) by solving the aggregated synthesis problem for
the small set of time steps T ′:

min
V̇n,t′ ,δn,t′ ,V̇N

n ,γn,x

∑
t′∈T ′

(
∆tt′

∑
n∈C

co
n,t′

V̇n,t′

ηn

)
+

1
APVF

∑
n∈C

ci
nV̇N

n ,

(10)

s.t.
∑
n∈C

V̇n,t′ = Ėt′ , ∀ t′ ∈ T ′, (11)

A′
1V̇n,t′ + Ã′

1δn,t′ ≤ b1, ∀ t′ ∈ T ′, ∀ n ∈ C, (12)

A2V̇N
n + Ã2γn ≤ b2, ∀n ∈ C, (13)

A′
3
(
V̇n,t′ , δn,t′ , V̇N

n , γn, x
)T ≤ b3. (14)

V̇n,t′ ∈ R+, V̇N
n ∈ R+, δn,t′ ∈ {0, 1}, γn ∈ {0, 1}, x ∈ Ra × {0, 1}ã.

This aggregated synthesis problem (equations (10)–(14)) is
identical to the original synthesis problem (equations (2)–(6)),
but stated for t′ ∈T ′. Thereby, time-series aggregation enables
an efficient solution as the large operation decision vector
(V̇n,t, δn,t) is aggregated to (V̇n,t′ , δn,t′) with |V̇n,t′ | ≪ |V̇n,t|
and |δn,t′ | ≪ |δn,t|. The optimization yields the optimal struc-
ture (V̇N∗

n , γ∗
n ) as solution of the aggregated synthesis prob-

lem with the objective function value total annualized cost
TAC∗(P ′) := TAC(V̇N∗

n , γ∗
n , V̇∗

n,t′ , δ
∗
n,t′). However, the solution

is only optimal for the aggregated typical periods P ′.
To evaluate the accuracy of the aggregation, the structure

(V̇N∗
n , γ∗

n ) is subsequently used to solve an operation problem for
the complete time series T S and the complete operation decision
vector (V̇n,t, δn,t):

min
V̇n,t,δn,t,x

∑
t∈T

(
∆tt

∑
n∈C

con,t
V̇n,t

ηn

)
+

1
APVF

∑
n∈C

cinV̇N∗
n ,

(15)

s.t.
∑
n∈C

V̇n,t = Ėt, ∀ t ∈ T , (16)

A1V̇n,t + Ã1δn,t ≤ b1, ∀ t ∈ T , ∀ n ∈ C,
(17)

A3

(
V̇n,t, δn,t, V̇N∗

n , γ∗
n , x
)T

≤ b3. (18)

V̇n,t ∈ R+, δn,t ∈ {0, 1}, x ∈ Ra × {0, 1}ã.

The feasibility of the structure (V̇N∗
n , γ∗

n ) in the operation
problem with the complete time series T S cannot be guaranteed.
Thus, we iteratively add so-called feasibility time steps (Bahl et al.,
2017a) to ensure feasibility of structure (V̇N∗

n , γ∗
n ). Aggregation

always involves averaging and thus neglects extreme conditions of
the full time series. To circumvent this shortcoming, additional
peak demands are commonly considered in aggregation methods
(Mavrotas et al., 2008; Domínguez-Muñoz et al., 2011; Ortiga
et al., 2011; Voll et al., 2013; Fazlollahi et al., 2014; Bungener et al.,

2015; Lythcke-Jøgensen et al., 2016). In contrast to typical periods,
these peak demands are single time steps with a duration ∆tt
of zero and without any chronological order to other time steps.
Thus, the energy system needs to supply these peak demands
without storage and consideration of time-coupling constraints.
Thus, besides the typical periods, we consider peak demands as
feasibility time steps in the aggregated synthesis problem (equa-
tions (10)–(14)). However, even when we consider peak demands
as feasibility time steps, operation can still be infeasible (Bahl
et al., 2017a). If the operation problem fails, we iteratively add
additional feasibility time steps. We add the infeasible time step
with maximum heating (odd iteration) or cooling demand (even
iteration) as new feasibility time step. If the structure (V̇N∗

n , γ∗
n )

is feasible for the operation problem with the full time series
T S (equations (15)–(18)), we obtain the solution (V̇∗

n,t, δ
∗
n,t) with

objective function valueTAC∗(T S) := TAC(V̇N∗
n , γ∗

n , V̇∗
n,t, δ

∗
n,t).

Using the results from the operation problem, the accuracy of
the time-series aggregation is calculated to evaluate the quality of
the solution obtained in the aggregated synthesis problem.

2.4. Evaluation of Accuracy and Increasing
Resolution of Typical Periods
After solving the operation problem, we measure the accuracy of
aggregation in the domain of the objective function (here: total
annualized cost TAC) as proposed by Bahl et al. (2017a) for syn-
thesis problems without chronological time steps. The accuracy
measure∆TAC is calculated as the difference of the optimal objec-
tive function values between the aggregated synthesis problem
TAC∗(P ′) and the operation problem with the complete time
series TAC∗(T S):

∆TAC =
∣∣TAC∗ (P ′)− TAC∗ (T S)

∣∣
=
∣∣OPEX∗ (P ′)− OPEX∗ (T S)

∣∣ . (19)

The structure (V̇N∗
n , γ∗

n )—and thus the investment cost
CAPEX—is fixed for the operation problem. Hence, the differ-
ence of TAC results in a difference of the operational expendi-
ture OPEX. The accuracy of time-series aggregation ∆TAC is
evaluated against a threshold value ε:

∆ TAC ≤ ε. (20)

This threshold value ε can be set, e.g., equal to the optimality
gap εSyn of the synthesis problem as the accuracy is measured in
the objective function domain. If a relative optimality gap is set in
the synthesis problem, the accuracy measure ∆TAC in equation
(20) needs to be normalized by TAC∗(P ′).

If the accuracy criterion equation (20) is notmet, the resolution
of the typical periods P ′ is increased. The resolution can be
increased by a higher number of typical periods Nk′ or a higher
number of segments Nj′ . These numbers span a grid

(
Nk′ × Nj′

)
of possible resolutions (Nk′ ,Nj′) for typical periods P ′. In this
grid, we select a higher resolution based on earlier improvements
for resolving either direction. More formally, we compare finite
backward differences ∇TACk and ∇TACj:

∇TACk = ∆TAC (GPk) − ∆TAC
(
Nk′ ,Nj′

)
, (21)

∇TACj = ∆TAC (GPj) − ∆TAC
(
Nk′ ,Nj′

)
. (22)
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Wecalculate the backward differences∇TACk,∇TACj between
the accuracy ∆TAC of the current grid point (Nk′ ,Nj′) and the
accuracy ∆TAC of previously calculated grid points,

GPk =
(
Nk′ − 1, Ñj′

)
, (23)

GPj =
(
Ñk′ ,Nj′ − 1

)
. (24)

The grid pointGPk is always atNk′ − 1 coordinate. The coordi-
nate Ñj′ corresponds to the last known grid point atNk′ − 1. Most
likely this isNj′ , but it can also beNj′ − 1,Nj′ − 2, ...—depending
on the history of the current run. The grid point GPj is formed
accordingly. The grid points (GPk,GPj) are stored during previous
iterations. Based on the backward differences ∇TACk, ∇TACj in
equations (21) and (22), the resolution is increased by increasing
either Nk′ or Nj′ :

• If the backward difference for the number of typical peri-
ods is larger (∇TACk ≥∇TACj), we store the grid point
GPk = (Nk′ ,Nj′) and refine the number of periods
Nk′ = Nk′ + 1.

• Otherwise, the backward difference for the number of seg-
ments is larger (∇TACk <∇TACj), and we store the grid point
GPj = (Nk′ ,Nj′) and refine the number of segments
Nj′ = Nj′ + 1.

The refined resolution (Nk′ ,Nj′) is used to restart the aggrega-
tion to new typical periods P ′. For the first iterations, no previous
grid points are available, and we initialize the method (Figure 1)
with:

1. Set: Nk′ = 1, Nj′ = 2, evaluate accuracy ∆TAC(1,2), store
GPk = (1,2),

2. Set: Nk′ = 2, Nj′ = 1, evaluate accuracy ∆TAC(2,1), store
GPj = (2,1).

After two initial calculations, we know the accuracy ∆TAC of
the grid pointsGPk = (1,2) andGPj = (2,1). For the third iteration(
Nk′ = 2,Nj′ = 2

)
and further iterations, we calculate backward

differences ∇TACk and ∇TACj (equations (21) and (22)). We
iteratively increase the resolution of the typical periods P ′ until
the accuracy criterion equation (20) is met and the solution
for synthesis decision (V̇N∗

n , γ∗
n ) satisfies the required accuracy

ε= εSyn. In the following, the method is applied to a real-world
case study.

3. REAL-WORLD CASE STUDY

The presented method is applied to a real-world case study based
on Voll et al. (2013). We extend the case study by introduction
of thermal storage and volatile electricity prices. In Section 3.1,
the synthesis problem is described, the time series are presented,
and benchmark periods are defined. The results of the proposed
time-series aggregation method are discussed in Section 3.2.

3.1. Problem Description
The superstructure of the considered energy supply system con-
sists of multiple units of boilers (B), combined heat and power
engines (CHP), absorption chillers (AC), and compression chillers
(CC) (Figure 4). We extend the superstructure by thermal storage

FIGURE 4 | Superstructure of real-world example based on Voll et al. (2013):
boiler (B), combined heat and power unit (CHP), compression chiller (CC), and
absorption chiller (AC) extended by thermal storage (ST) with variable capacity
for cooling and heating. Time series (Figure 5) of volatile energy prices ct and
energy demands Ėt are considered.

(ST) units for cooling and heating. The model allows continuous
sizing of all units. Constant part-load efficiency is assumed for
all units. Details of the mixed-integer linear model are presented
in the Supplementary Material. We consider an original time
series with a resolution of 1 h for heating, cooling, and electricity
demand (Figure 5A) as well as for volatile electricity purchase
and selling price (Figure 5B). The synthesis problem with this
original time series is referred to as original instance. For the
computational study, we generate 10 instances from the data of the
original instance using Latin-hypercube sampling (McKay et al.,
2000) with a variation of the time series of ±5%.

All calculations are performed using 4 Intel-Xeon CPUs with
3.0GHz and 64GB memory. All MILP problems are solved using
CPLEX 12.6.3.0 (IBM Corporation, 2015) with a time limit of 1 h,
which is not reached by the calculations. We set the optimiza-
tion gap of the synthesis problem to εSyn = 2% and accordingly
the threshold value of the time-series aggregation method to
ε= εSyn = 2%.

The proposed time-series aggregation to typical periods is
compared with benchmark periods. The benchmark periods are
based on an intuitive selection of existing days of the original
time series: for Nk′ = 1, we selected an arbitrary spring day,
for Nk′ = 2 we selected a arbitrary summer and winter day, for
Nk′ = 4 we selected one arbitrary day per season, for Nk′ = 6
we selected one arbitrary day in every second month, and for
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A

B

FIGURE 5 | Time series T S of the original instance for (A) heating, cooling, and electricity demands, and (B) electricity purchase and selling price over 1 year with a
resolution of 1 h.

Nk′ = 12 we selected one arbitrary day per month. Moreover,
for Nk′ = 6, we select typical days according to VDI 4655
standard of selection representative load profiles (The Association
of German Engineers, 2008). The calculation of the accuracy of
the benchmark periods is identical to the accuracy measure in the
proposed method.

3.2. Results
In this section, we present results of the proposed method for
the real-world case study. After the presolve by CPLEX, the orig-
inal synthesis problem (equations (2)–(6)) with the full time-
series data (Figure 5) has 1,428,000 constraints, 692,000 variables
(including 202,000 binary variables), and 3,566,000 non-zero ele-
ments. As benchmark, we solve the original synthesis problem
with CPLEX directly. The solution results in an optimality gap
of 12% after 96 h. The best feasible solution provided by the
benchmark with CPLEX has total annualized cost of 8.08 Mio. AC.
The proposed time-series aggregation method (Section 2) yields
a feasible solution for the original synthesis problem with total
annualized cost of 7.16 Mio. AC after 15min. In the following
sections, detailed results of the time-series aggregationmethod are
discussed.

First, we discuss results of the autocorrelation to identify the
period length in Section 3.2.1. In Section 3.2.2, the accuracy of the
time-series aggregation is evaluated depending on the resolution
of the typical periods P ′. Finally, in Section 3.2.3, the proposed
k-medoids-based aggregation is compared with typical periods
based on intuitive selection and VDI 4655.

3.2.1. Period Length
The period length is identified by analyzing the normalized sum
of autocorrelation functions calculated according to equation (7).
The peaks in Figure 6 indicate a period length of 24 and 168 h
corresponding to 1 day and 1week. By time-series aggregation,

we aim at reducing the problem size of the synthesis problem.
Thus, we favor short periods and select Nj = 24 h as period
length. If it is impossible to reach the threshold ε, we go back
to the period length selection and choose a week as period
length.

3.2.2. Accuracy of Aggregated Synthesis Problem
With the identified period length of 24 h, we start the iterative
aggregation of typical periods. The calculations are performed
for the original instance and the 10 generated instances. For the
original instance (Figure 7: circles), we identify that Nk′ = 2
typical periods and Nj′ = 2 segments are required to obtain
a solution with a smaller error than the threshold ∆TAC<ε,
equation (19). Thus, in total 6 time steps (4 time steps of the typical
periods plus 2 feasibility time steps) are required to represent
the cost of the full time series of 8,760 time steps with excellent
accuracy. All 10 generated instances of the computational study
(Figure 7: squares) show a similar behavior and 4–12 time steps
are sufficient to meet the required threshold ε= 2%. Thus, for
synthesis problems with the requirement of chronological time
steps, few typical periods with few segments per typical period
are sufficient to represent the complete time series with small
error in the objective function. Time-series aggregation reduces
the number of time steps and thus the size of the synthesis problem
by a factor of 1,000.

Infeasibility of the structure (V̇N∗
n , γ∗

n ) for the operation prob-
lem (Section 2.3) occurs less often than in a synthesis problem
without the consideration of storage (Bahl et al., 2017a). This
is expected because storage can compensate some infeasibili-
ties. However, feasibility of (V̇N∗

n , γ∗
n ) is still not guaranteed by

aggregated time series with additional peak demands, and adding
further feasibility time steps in the method is still required: con-
sidering all instances of the computational study, we find that
infeasibility of the operation problem occurs in 12 of all 305
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FIGURE 6 | Normalized sum of autocorrelation function (equation (7)) with a time lag of 0–240 h.

FIGURE 7 | Normalized accuracy measure ∆TAC divided by total annualized cost of the aggregated synthesis problem TAC*(P′) as function of number of time steps(
Nk′ · Nj′

)
for the original instance and 10 generated instances, threshold value of ε=2% as solid red line.

FIGURE 8 | Normalized accuracy measure ∆TAC divided by total annualized
cost of the aggregated synthesis problem TAC*(P′) in percent as numbers in
the cells and color code. The path of the iterative method is indicated with
bold numbers.

calculations (i.e., 4%), if only peak demands are considered as
feasibility time steps.

In the proposed method, we increase the number of typical
periods Nk′ or the number of segments Nj′ based on finite back-
ward differences (Section 2.4). To assess the efficiency of this
heuristic strategy, we calculate the complete grid of Nk′ × Nj′ for
the original instance (Figure 8). The proposed method identifies
the minimal number of 4 time steps to satisfy the threshold value:
∆TAC= 1%<ε= 2% (Figure 8: bold numbers). Moreover, we

TABLE 1 | Minimal number of time steps identified by the method and considering
the complete grid.

Instance Method Complete grid

Original 4 4
#1 16 8
#2 6 6
#3 9 9
#4 16 8
#5 4 4
#6 4 4
#7 24 8
#8 12 8
#9 6 6
#10 6 6

observe that generally few typical periods Nk′ with few segments
Nj′ satisfy the threshold value ε in a wide range of possible
combinations (Figure 8: dark green areas).

In general, the increased resolution of time-series aggregation
(Section 2.4) will propagate from the lower left corner (low accu-
racy) to the upper right corner (high accuracy). In the original
instance (Figure 8), the heuristic based on backward differences
identifies the global minimal number of time steps satisfying the
threshold value. In other instances of the computational study, the
heuristic selection cannot guarantee that the minimal number of
time steps is found. In Table 1, the minimal number of time steps
identified by the method is compared with the minimal number
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FIGURE 9 | Normalized accuracy measure ∆TAC divided by total annualized cost of the aggregated synthesis problem TAC*(P′) as function of number of typical
periods Nk′ with Nj =24 segments. Benchmark periods based on intuitive selection of typical periods (Nk =1: spring day, Nk =2: summer and winter day, Nk =4:
1 day per season, Nk =6: 1 day for every second month, and Nk =12: 1 day per month) and selection of Nk =6 typical days according to VDI 4655.

based on a calculation of the complete grid for all instances. In
64% of all instances, the number identified by the method is
equal to the minimal number possible considering the complete
grid. However, in one instance the minimal number of time
steps identified by the method is 3 times higher than the actual
minimum. Thus, the heuristic generally does not guarantee the
minimal number of time steps, but based on the finite backward
differences a small number of total time steps is identified and very
good solutions are found.

3.2.3. Comparison of Selected Typical Periods to
Benchmark Periods
The proposed time-series aggregation method is compared with
typical periods obtained by an intuitive selection introduced in
Section 3.1 and typical periods based on VDI 4655. For this
comparison, the number of segments per typical period is fixed
to Nj′ = 24 (rightmost column in Figure 8) since this is the
resolution employed by VDI 4655. The benchmark periods are
evaluated with the same accuracy criterion as proposed in the
time-series aggregation method (Section 2.4), only the clustering-
based aggregation is replaced (Section 2.2).

The proposed time-series aggregation method shows higher
accuracy than the benchmark typical periods (Figure 9). 12 typi-
cal benchmark periods have a similar accuracy as 1 typical period
obtained by the proposed time-series aggregation method. In this
example, for Nk′ = 6, the typical periods based on VDI 4655
show the lowest accuracy but are in the same range as the intuitive
days. In contrast, the proposed time-series aggregation method
quickly reduces the error of aggregation in the domain of the
objective function (Figure 9: circles) when the number of periods
is increased: only 2 typical periods obtained by the proposed time-
series aggregation method already satisfy the defined threshold,
while the intuitive selection (Figure 9: squares) does not satisfy
the defined threshold with the maximum considered number of
12 typical periods.

We want to point out that in our method (Section 2.2.2), we
additionally aggregate the time steps in each typical period and
find that Nj′ = 2 segments in the Nk′ = 2 typical periods are
sufficient to satisfy the threshold (Figures 7 and 8). Thus, our
aggregation method requires 4 time steps to satisfy the threshold
value, while 12 · 24 = 288 time steps of the benchmark typical
periods are not sufficient.

4. CONCLUSION

Two-stage synthesis problems of real-world energy systems are
often too complex to be solved in reasonable time or with available
computer memory. In these cases, time-series aggregation can
be employed to reduce the problem complexity. In many prob-
lems, time-series aggregation has to account for chronology, for
example, if storage is considered in the energy system. Time-series
aggregation to typical periods can account for chronological time
steps.

We present an aggregation method to typical periods with
aggregated segments for the synthesis of energy systems. The
method bounds the error of aggregation not in the time-series
domain, but in the domain of the objective function and thus
captures the purpose of the optimization problem. The method
is applied to an extended real-world case study based on Voll et al.
(2013) with a test set of 10 instances of the time series.

In a first step of the method, we use autocorrelation to identify
typical period lengths of 24 and 168 h proving an expected daily
and weekly periodicity of the data using autocorrelation. The
proposed method allows to reduce the problem size drastically:
For the original instance, a time-series aggregation to 2 typical
periods with 2 segments in each typical period plus 2 additional
peak demand time steps already leads to a better accuracy of the
cost of the energy system than required by the optimization gap
of the synthesis problem. This corresponds to a reduction of the
time steps in the synthesis problem (and thus the optimization
problem size) by a factor of 1,000. The results also show that our
time-series aggregation method based on clustering outperforms
the accuracy of intuitive benchmark periods as well as VDI 4655-
based results. We conclude that few typical periods with few
segments per period are sufficient to represent the full time series
accurately with small error in the (cost) objective function. The
proposed time-series aggregationmethod efficiently identifies the
few required typical periods to guarantee high quality energy
system designs.
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