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Two process designs for the separation section of a flexible dimethyl ether and methanol

polygeneration plant are presented, as well as an optimization method which can

determine the optimal design under market uncertainty quickly and to global optimality

without loss of model fidelity. The polygeneration plant produces a product mixture that

is either mostly dimethyl ether or mostly methanol depending on market conditions by

using a classic two-stage dimethyl ether production catalytic reaction route in which the

second stage is bypassed when the market demand is such that methanol production

is more favorable than dimethyl ether. The downstream distillation sequence is designed

to purify the products to desired specifications despite the wide variability in feed

condition that corresponds to the upstream reaction system operating either in DME-rich

or methanol-rich mode. Because the optimal design depends on uncertain market

conditions (realized as the percentage of the time in which the plant operates in either

DME-rich or methanol-rich mode), this uncertainty is considered in the formulation of

the optimal design problem. The results show that using one set of flexible distillation

columns for two different objectives is superior to the “traditional” approach of using

two different sets of distillation columns which are each optimized for one specific

operating condition. Different approaches to design under uncertainty were considered,

with a scenario-based two-stage stochastic formulation with a uniform distribution of the

uncertain parameter recommended as the preferred formulation.

Keywords: flexible polygeneration, dimethyl ether, methanol, process design under uncertainty, distillation

INTRODUCTION

Flexible Polygeneration
Colloquially, the term polygeneration refers to chemical plants that generate more than one kind
of product. However, a recent review of polygeneration concluded that, in practice, the term in
the taxonomical sense refers to chemical plants that produce electricity and at least one kind of
chemical product, and also do not fall into other taxonomies such as biorefinery, co-generation,
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tri-generation, or petrochemical refinery (Adams and Ghouse,
2015). The reason for this is in large part because of the nature
of chemical processing and its relationship to economics. If
the goal of a company is to produce both chemicals A and B
continuously and in particular amounts, a company could choose
to create two chemical plants independent from each other,
one that always produces A and one that always produces B.
However, if A and B have some common upstream processing
steps, for example, sharing the same intermediate reaction steps
or reagents, then there is significant benefit to integrating
the two into a polygeneration process with one common
upstream step to produce those intermediate components and
two separate downstream processing steps that produce the
different chemicals A and B. A common example might be where
A and B are chemicals that are made via the syngas route (syngas
being the common intermediate), such as methanol, dimethyl
ether, synthetic transportation fuels, olefins, aromatics, ethanol,
etc. (Chen et al., 2011b). This is usually what is meant colloquially
by polygeneration. The primary benefit here is usually economy
of scale of the shared upstream portion. It is usually much less
expensive to have one process train at a large capacity than to
have two process trains of half the capacity in parallel.

However, when the goal of the company is not to make
certain amounts of A and B, but to make whichever combination
is the most profitable or the best investment, the resulting
design is very different. A review of studies of this optimal
polygeneration problem found that overwhelmingly, the optimal
chemical process was the one that produced only A or B, but not
both, with the choice determined by expected market conditions
(Adams and Ghouse, 2015). In most studies, there simply just
was not enough synergy to exploit between the two downstream

Abbreviations: AOC, annual operating cost; DME, dimethyl ether; NPV, net

present value; TAC, total annualized cost; TDC, total direct costs; af , annuity

factor; AH,c, heat exchanger area of the reboiler of column c; AC,c, heat exchanger

area of the condenser of column c; AOEc,Exp, expected annual operating cost for

column c; c, subset variable, index for column number; Dc, diameter of column

c; f, a function in the model, implemented either as set of equations or a lookup

table; h, number of hours per year the plant operates on-spec; i, interest rate;

NA,c,number of stages above the feed for column c (does not change with mode);

NA,c,DME , number of stages above the feed for column c when in Maximize DME

Mode;NA,c,MeOH , number of stages above the feed for column c when in Maximize

Methanol Mode; NB,c,number of stages below the feed for column c (does not

change with mode); NB,c,DME , number of stages below the feed for column c when

in Maximize DMEMode; NB,c,MeOH , number of stages below the feed for column c

when in Maximize Methanol Mode; P, a probability function or distribution; QH,c,

heating duty for column c (does not change with mode); QH,c,DME, heating duty

for column c when operating in Maximize DME Mode; QH,c,MeOH , heating duty

for column c when operating in Maximize Methanol Mode; QC,c, cooling duty

for column c (does not change with mode); QC,c,DME, cooling duty for column c

when operating in Maximize DME Mode; QC,c,MeOH , cooling duty for column c

when operating in Maximize Methanol Mode; S, number of scenarios considered;

t, total plant lifetime (years); TACc,Exp, expected total annualized cost for column c;

TACCaseB,Act , the actual TAC of the system of Case B over the plant’s lifetime; TDCc,

total direct cost of column c; UH,c, utility price for heating for column c ($/GJ);

UC,c, utility price for cooling for column c ($/GJ); x, vector of continuous variables

in the model; Zc , minimum TAC of column c; δc, switching parameter (binary)

indicating that column c operates in a particular mode; σ , standard deviation of a

normal probability distribution; φExp,D, the percentage of the plant’s lifetime that

we expect to operate in Maximize DME Mode; φExp,D,i, φExp,D, but specifically for

scenario i; φExp,D, the mean expected value in a normal probability distribution

P(φExp,D); φAct,D, the percentage of the plant’s lifetime that actually operated in

Maximize DMEMode.

process trains for A and B such that there was any financial reason
to produce both A and B when only one would do. Usually,
there happened to be sufficient waste gases produced from the
production of the chemical to be used for electricity production
in meaningful quantities. These results were so common across
researchers that the term polygeneration in the taxonomical sense
was defined to be the co-production of electricity and only a
minimum of one chemical or fuel product, not two.

However, because market conditions can change frequently
and significantly over the many decades a large-scale chemical
plant is expected to operate, there is a substantial incentive for
flexible polygeneration. This is the idea that a chemical plant is
designed with the capability of producing both A and B, but
then the amounts of A or B produced are changed at various
times in the lifetime of the plant depending on the market
conditions at the time. This essentially amounts to overdesigning
the system, creating extra capacity which will never be fully
used at any given time but having it ready for when the time is
right. Despite the very high capital cost this approach, the net
financial benefits of this can be very significant, with one study
putting the upper bound for a plant of industrially relevant size
at a 63% boost in net present value (NPV) compared to a static
polygeneration plant, worth up to $1 billion in extra net value
(Chen et al., 2011a).

Even so, flexible polygeneration optimization research results
usually show that, in the general case, it is still better to produce
either entirely A or entirely B at any one time, and then switch
completely between them when market conditions shift between
certain critical points (Chen et al., 2012). The only exceptions
are usually when there are limits to the turndown ratio (the
amount that a process train can be turned down before it becomes
too hard to turn it back up again without major expense), or
when the problem is otherwise somewhat arbitrarily imposed
with constraints that require a certain minimum amount of
each product to be made at any given time, or when there is a
fixed upper limit on capital expenditure. These constraints are
commonly imposed in academic studies precisely to arrive at
solutions that do not completely eliminate one of the chemicals in
order to make the results more interesting. Even so, the optimal
flexible solution is to maximize the production of one chemical
and minimize the other at any one time depending on current
market condition.

In all of the above cases, these optimization results are a direct
result of the inherent nature of the design itself, in which each
chemical train is decoupled from the others in the downstream
portion due to a lack of meaningful process synergies between
them. All of the advantages of flexible polygeneration arise
from a combination of the shared upstream components and
the ability to profit from market volatility, rather than any
synergy exploitation between process trains. However, in this
work, we examine how there are synergies that can be exploited
between process trains in some cases by looking at the level
of the individual equipment. For example, if the trains for
chemical A and chemical B both use distillation columns,
and since we know from the survey of the literature that
the optimum flexible polygeneration process tends to operate
with only one kind of product at a time, we can then design
flexible distillation columns which could be used for different
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purposes depending whether we were currently producing A
or B. The principle here is that instead of constructing two
separate column sequences for train A and train B that are
each used only a portion of their lifetime, we construct just
one distillation sequence and use it at all times, albeit for
different purposes. This may of course mean that it is optimal
or inefficient at any one time, but on the whole, the savings from
constructing only half as many columns might be a sufficient cost
incentive.

This work examines this idea and quantifies the benefit of this
flexible design for an illustrative case study. One key challenge
is that in order to do this, there must be a sufficiently rigorous
model in place, which can make optimization difficult. Note that
most flexible polygeneration optimization studies use reduced or
lumped models for process units or sections, which is reasonable
in those cases when process trains are uncoupled. In addition,
the optimal design of this flexible distillation system is now
dependent on expected market conditions. For example, if one
expected to make chemical A for the majority of the process
lifetime and spend only a small amount of time making chemical
B, one might design the columns to be very efficient at making
chemical A knowing full well that although it was inefficient at
making B, this will happen infrequently. On the other hand, if
you expect to make about as much A as B over the lifetime of the
plant, then perhaps a more balanced design is more economical.
Thus, the problem of designing this flexible distillation system
is coupled with the consideration of market expectation and
therefore market uncertainty in order to be meaningful.

This work presents an optimization framework and method
which can be used to tackle this problem quickly and quantifies
the benefits of this integration. To the authors’ knowledge, it is
the first work concerning optimal flexible polygeneration that
examines integration at the individual equipment level with
rigorous unit operation models and no shortcut approximations
when considering integer variables. It achieves this by reducing
all uncertainty related to future markets and business behavior to
one uncertainty variable and by decomposing the problem into
small, tractable pieces. It is also the first such work for DME and
Methanol.

Flexible Design Under Uncertainty
Process plants typically operate in an environment of change
(such as feed type and rate, and market conditions), often
coupled with uncertainty. A design that is optimal under nominal
conditions may be grossly suboptimal, or even infeasible, as
process conditions change. This has led to the development of
design formulations in which change and uncertainty are directly
taken into account.

Grossmann and coworkers (Halemane and Grossmann, 1983;
Swaney and Grossmann, 1985) define flexibility in design as
the ability to maintain feasible operation over a range of
uncertain parameter realizations, and proposed a mathematical
formulation and solution strategies for flexibility assessment.
An important feature of their formulation is its allowance for
adjustment of operating conditions through control variables
for a given uncertain parameter realization. Extensions of the
method include alternative solution strategies (Grossmann and

Floudas, 1987), application to dynamic systems (Dimitriadis
and Pistikopoulos, 1995) and consideration of joint confidence
regions of uncertain parameters (Rooney and Biegler, 1999).
Several applications have been reported, including flexibility
analysis of air separation systems (Sirdeshpande et al., 2005),
plant waste management policies (Chakraborty and Linninger,
2003), and process supply chain networks (Wang et al., 2016).
A recent review of the flexibility analysis framework is given in
Grossmann et al. (2014).

The above described flexibility analysis framework has
parallels with two-stage stochastic optimization (Birge and
Louveau, 1997) that has been quite widely applied to design
under uncertainty. Here, decision variables are partitioned into
first-stage decision variables that are made prior to the uncertain
event taking place, and second-stage or recourse decisions that
are made in response to uncertainty realizations. A widely used
implementation strategy is to discretize the uncertainty region to
yield a multiscenario optimization formulation. Within a plant
design context, first-stage decisions are typically associated with
design variables that are fixed throughout the horizon under
consideration, and second-stage decisions with operating or
control variables than can be changed in response to varying
conditions. Zhu et al. (2010) apply a two-stage stochastic
formulation to the design of a cryogenic air separation unit
in which uncertainty in demand and a physical property
parameter is considered. Five first-stage design variables are
considered, and five control variables are selected to compensate
for variation in product demand. Liu et al. (2010) present
a two-stage stochastic formulation for polygeneration energy
systems, and apply a decomposition strategy to solve the resulting
multiperiod optimization problem. Chen et al. (2011a) formulate
the design of a flexible polygeneration system under market
uncertainty as a two-stage stochastic programming problem, and
demonstrate superior net present values of flexible designs over
static designs. In Chen et al. (2012) a decomposition strategy
is proposed for global solution of the flexible design problem,
which yields significantly faster solutions than a commercial
global optimization solver. Two-stage stochastic programming
has also been quite widely applied to supply chain operation
and design. This includes contributions in supply chain planning
under uncertainty (Gupta and Maranas, 2003), multi-echelon
supply chain network design under uncertainty (Tsiakis et al.,
2001), and dynamic operability analysis of process supply chain
systems (Mastragostino and Swartz, 2014). An overview of two-
stage stochastic programming formulations, solution approaches,
and process systems applications is given in Grossmann et al.
(2016).

In this work, we explore flexible distillation design
configurations for two feed conditions (parameter realizations),
and thereafter investigate a scenario-based two-stage stochastic
formulation for consideration of uncertainty in the total length of
time that the distillation systems process the specific feed types.
This uncertainty parameter is used to describe all unknown
factors that would impact the operating decision to produce
one product versus another at any given time, including market
conditions and other external factors. This work does not explore
uncertainty in the model parameters. Although uncertainty
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in parameters such as thermodynamic properties (Whiting,
1996), phase equilibria (Burger and Schwarz, 2018), or process
model-mismatch play a role in any process design problem,
the focus in this work is on uncertainty in operational decision
factors.

CASE STUDY

Flexible Base Case Design
In this work, we consider the production of DME from syngas
through the two-step route, as shown in Figure 1. Synthesis gas
(or “syngas”) is produced from the gasification of coal, biomass,
or petcoke, or via methane reforming (or some combination
thereof) such that after certain cleaning steps (such as the
removal of water, CO2, H2S, and various pollutants), the syngas
is composed of a mixture of H2 and COwith a molar H2:CO ratio
of about 2:1. Although it is possible to produce DME directly
in a single reactor (Ogawa et al., 2003) or through catalytic
distillation (An et al., 2004; Kiss and Suszwalak, 2012), for the
purposes of this example, we have chosen the two-step route
in which methanol is first produced from the syngas and then
DME is dehydrated from the methanol (Xu et al., 1997). For
the flexible polygeneration base case, the product stream from
the first reactor can optionally be either sent in total to the
DME synthesis reactor when in “Maximize DME Mode,” or,
to a distillation sequence for purification when in “Maximize
Methanol Mode.” Everything upstream of this decision point is
always operating at the same condition. During the DME Mode
theDME reactor output is sent to a different distillation sequence.

Both reactor outputs are first degassed with a flash drum to
remove unreacted syngas for recycle/electricity production, and
then any gases remaining in the liquid product (mostly CO2) is
removed in a cryogenic distillation column. The bottoms product
from the CO2 removal columns, for both trains, consists of DME,
methanol, and water to be separated. The key difference is in
content. In this work, we have chosen to use the conditions
suggested by Zhang et al. (2010). Under these conditions, the
stream leaving the methanol synthesis train (stream 1) contains
84.2 mol% methanol, 15.3 mol% water, and 0.5 mol% DME
at 388K and 10 bar with a total rate of 22,880 kg/h. The
corresponding stream leaving the DME synthesis train (stream
284.2) contains 24 mol% methanol, 38% DME, and 38% water at
393K and 10 bar at the same rate of 22,880 kg/h.

In this study, either the reactor product stream is sent
to a conventional distillation sequence (also known as the
“direct sequence”) in which DME is recovered in the distillate
of the first column and in which the bottoms product is
sent to a second column where methanol is removed at
the top and water is removed at the bottom1. Although
there are process intensification techniques to perform this
three component separation in only one column (such as
semicontinuous distillation Pascall and Adams, 2013 or dividing
wall distillation Kiss, 2013), we have chosen the classic approach
for illustrative purposes. In both trains, the columns are designed

1It is likely in practice that inMaximize DMEmode, themethanol recovered would

be recycled to the DME synthesis reactor, but this is not considered in this study.

to meet the following specifications: the DME product must be
chemical grade purity (99.95 mol% Müller and Hübsch, 2000),
themethanol productmust be chemical grade purity (99.85mol%
Ott et al., 2011), the water product should be 99.99mol% pure. By
mass balance, this means that the bottoms product of the DME
removal column should have no more than 0.06 mol% DME in
it depending on the mode. The first distillation column in each
sequence (C1 and C3) operates at 10 bar while the second column
in each sequence (C2 andC4) operates at 1 bar. All columns in the
simulation use sieve trays with a tray spacing of 2.0 ft (0.610m).

Flexible Design A
The alternative flexible polygeneration design is shown in
Figure 2. The upstream portions are essentially the same as the
Flexible Base Case. The primary difference is that the methanol
product and DME product streams (depending on whether the
plant is operating in Maximize Methanol Mode or Maximize
DME Mode, respectively) are both sent to the same set of
distillation columns. The columns must then be designed such
that the purity requirements stated in the previous paragraph are
met in both Methanol Mode and DME mode. This means that
the number of stages above and below the feed, the size of the
condenser and reboiler, and the diameter of the column must
be chosen such that it is possible to obtain the product purities
in either mode only by changing the reflux and reboil ratios in
the mode. Essentially, the column must be large enough to both
provide the necessary heat duties and prevent flooding in both
modes.

Process Simulations
In this study, only the final two distillation columns of each
product train are considered for comparison because the
upstream unit operations do not differ significantly (or at all)
between the Base Case and Flexible Design A. All of the process
simulations in this work use the RADFRAC block in Aspen
Plus v9.0 in equilibrium mode. Murphree tray efficiencies are
set to 85%, which has been shown in other works to be a
reasonable number for estimation of sub-equilibrium conditions
in similar systems (Tock et al., 2010). The UNIQ-RK method
using UNIFAC predicted coefficients for Water + DME binary
vapor-liquid equilibria and Aspen Plus default parameters for
Water + Methanol and Methanol + DME was used. This
method was chosen as the physical property package because
we found it to match very well with the ternary experimental
vapor-liquid phase equilibria at 9.74 bar and 353K (Song et al.,
2006; close to the feed conditions), with an R2 above 0.993. It
should be noted that the PRWS method is also an appropriate
choice (Pascall and Adams, 2013). For a given number of stages
above and below the feed, the Design Spec tool is used to
ensure that the product purity specifications are met for each
column by varying the reflux and boilup ratios. Of course,
when the number of stages above and/or below the feed were
too low, product purity constraints could not be met, resulting
in an infeasible design. No solution multiplicity was observed.
The DISTWU block, which uses shortcut methods for column
design, was used to estimate the lower bounds on the total
number of column stages and the reflux ratio, as well as generate
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FIGURE 1 | Process overview for the base case design. In this system, syngas is converted to methanol (as well as DME, Water, and gaseous by-products) at steady

state and uses a total of four distillation columns. During operation, the system can either be switched into Maximize DME Mode or Maximize Methanol Mode.

FIGURE 2 | Process overview for Flexible Design A design. In this system, syngas produces methanol (as well as DME, Water, and gaseous by-products) at steady

state. During operation, the system can either be switched into Maximize DME Mode or Maximize Methanol Mode, but the same two distillation columns are used in

either mode.
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initial guesses for column parameters and conditions. RADFRAC
convergence was aided by a combination of good initial guesses
for the internal tray variables (composition, temperature, and
flow rates) and occasional manipulation of the convergence
algorithm parameters.

Cost Computations
The total annualized cost (TAC) of the DME-Methanol-Water
separation section is used in this study as the quality metric for
comparison between design choices. Utility costs are computed
using $3.36/GJ for refrigeration (needed for the DME product
condensers), $0.21/GJ for cooling water (for the methanol
product condensers), $2.20/GJ for medium pressure steam (for
all reboilers), which were the default values suggested by the
Utilities feature in Aspen Plus. It is also assumed that the process
operates on-spec for 8,400 h per year. The total direct costs of
the distillation columns and heat exchangers are estimated by
using fresh-on-board equipment purchase cost curves provided
in Turton et al. (2003) multiplied by an installation factor of 2.96.
The fresh-on-board cost estimates for the equipment considers
factors such as equipment size and dimensions, tray counts,
steel thickness, welding efficiency, andmaximum allowable stress
according to the procedures outlined in that text. The installation
factor considers the costs of installation, labor, paint, electrical
work, etc., and was determined using an average of various
sample cases predicted in Aspen Capital Cost Estimator, noting
that it is very close to the corresponding value of the Lang factor
suggested in Seider et al. (2008). The Fair method was used
in Aspen Plus to compute the column diameters that prevent
flooding within a safety factor of 80%, rounded up to the nearest
six inch increment. To compute the total surface area of the heat
exchangers, an overall heat transfer coefficient of 788W/(m2-◦C)
was used, which was the default provided by Aspen Capital Cost
Estimator and compares well against values for similar situations
in the open literature (Edwards, 2005). All costs in this study are
in 2015 US Dollars.

The TAC is computed as a function of the Total Direct Costs
(TDC) in dollars and the Annual Operating Cost (AOC) in
dollars per year as follows (Smith, 2014):

TAC = afTDC + AOC

Where af is the annuity factor given by:

af =
i (1+ i)t

(1+ i)t − 1

Where i is the interest rate per year and t is the total number
of years in the lifetime of the plant. For example, for an interest
rate of 10% and a lifetime of 15 years, the annuity factor is
0.1314 year−1, which was used in this study. This is roughly equal
to using an 8 year lifetime with no interest rate. The annuity
rate ultimately determines the weighting between capital and
operating costs. For brevity, we only show the results for one
annuity factor in this study. A sensitivity analysis was conducted
showing that extreme changes in annuity factor affects the design
of some columns more than others, but ultimately the same
methodology applies for each.

It is assumed that the time required to transition between
operating modes (and subsequent off-spec product) is small
compared to time spent in on-spec operation since the number
of transitions is expected to be relatively small. As such all costs
of transitions between operating modes are ignored for this
study. Were this information to be included, this would add
the additional complexity of needing to estimate the number
of transitions expected per year, which would be somewhat
arbitrary, and ultimately change the methodology and results
very little.

FLEXIBLE POLYGENERATION
OPTIMIZATION FORMULATION AND
SOLUTION

Production Expectations
Because of flexible nature of the design, the optimal design for
either the Base Case or Case A will depend on howmuch time the
process spends in either Methanol Mode or DME Mode during
the lifetime of the facility. For this study, we define two important
parameters. First, we define φExp,D ∈ [0, 1] to be percentage
of the plant’s lifetime spent in Maximize DME Mode that we
expect during the design phase, prior to the construction of the
plant. This number would typically be chosen based on long term
predictions of the market, business plans, and other factors. This
contrasts with φAct,D ∈ [0, 1], which is the actual percentage of
the time spent in Maximize DME Mode over the course of the
plant’s entire lifetime. This an uncertain parameter that can only
be known at the end of the plant’s lifetime because the decision
to operate in either mode will change in real time depending on
a large number of factors. These factors include market forces
such as sale prices, contracts, utility costs, consumer demand, and
contracts. However, it also includes other factors such as disaster,
plant failures, business goals, and regulations.

Other studies which consider flexible polygeneration under
uncertainty use primarily a market-based approach (Chen et al.,
2011a; Cheali et al., 2014; Li and Barton, 2015), where the
uncertainty in the market prices is considered directly and
represented by a probability distribution. This approach is
often characterized by having many uncertain market-based
parameters which are sampled in some fashion (e.g., through a
Monte Carlo method or a scenario-based approach) in order to
make design decisions for a process that is intended to last for
many decades. Although this formulation can be complex and
require novel and advanced techniques to solve, it can result in
good designs, and is often a good way to consider factors such as
uncertainties in the parameters of the model or process units.

Here, we employ an alternative approach that does not require
multiple probability distributions, for which characterization
is difficult for typical design horizons of 20–30 years. For
example, operating decisions may not in practice be based
on optimization of an anticipated performance criterion such
as a predefined economic objective, but a reaction to an
unanticipated business opportunity or threat. Uncertain factors
are consequently combined into the single parameter, φAct,D, that
greatly simplifies the uncertainty characterization and problem
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formulation, with arguably little or no loss in the adequacy of
the design under uncertainty. If desired, the engineer can still
use stochastic models, market predictions, price histories, and
other such methods to try to predict φAct,D by determining
either a single guess for φExp,D (see section Naïve Designs)
or a probability distribution function P(φExp,D) (see section
Formulations for Designs Considering Uncertainty). Other
factors such as uncertainty in the model parameters, especially
any parameter which is immediately measurable or computed
scientifically without forecasting such that distribution functions
can be made with high confidence, should still be considered
using existing methods such as the one presented by Cheali et al.
(2014).

Problem 1 Formulation for Flexible Base
Case
Problem Formulation 1 is constructed by assuming that one
should find the design with the minimum TAC for a given φExp,D

without any consideration of uncertainty in the value of φAct,D. It
is a reasonable starting point, because if we had perfect foresight
such that φExp,D turns out to be exactly equal to φAct,D, then we
will have chosen the absolute best possible design for that plant’s
lifetime. The minimum TAC for the total system of interest (the
four columns C1-C4) is actually the sum total of the minimum
TACs for each of the columns independently. This is because each
column can be designed completely independently of the others,
since feed conditions are fixed to the same conditions for each
mode in all cases and the target product specifications are also
fixed in all cases. For each individual column, there are only two
degrees of freedom: the number of stages above the feed (NA)
and the number of stages below the feed (NB). For example, in
column C1, the feed conditions will always be the same when it
is running (in Maximize Methanol Mode), otherwise, it will not
be running at all because the system is in DMEMode. Therefore,
for any given NA and NB for C1, there is only one meaningful set
of reflux ratio and boilup ratio pairs that will satisfy the product
purity constraints (otherwise, such a column is too short and it is
physically impossible to use). However, as long as C1 is feasible,
the actual choice of NA and NB for C1 has no impact on C2,
because reflux and boilup ratio of C1 will always be chosen such
that the bottoms product stream will be essentially identical in all
cases (except for trivially small differences in DME content). As
such, the optimization problem can be formulated as follows:

TACBaseCase,Exp =

∑

c=C1..C4
Zc (1)

Zc = min
NA,c , NB,c

TACc,Exp (2)

s.t. TACc,Exp = afTDCc + AOCc, Exp (3)

AOCc,Exp = h
(

QH,cUH,c + QC,cUC,c

)

(

1− φExp,D

)

(1− δc)

+ h
(

QH,cUH,c + QC,c,UC,c

) (

φExp,D

)

δc (4)

δc =

{

0 for c = C1,C2 (MeOH Mode)
1 for c = C3,C4 (DME mode)

TDCc = f1
(

AC,c

)

+ f2
(

AH,c

)

+ f3(NA,c + NB,c,Dc) (5)

h
(

x, NA,c,NB,c

)

= 0

x =
[

AC,c,AH,c,Dc,QH,c,QC,c, . . .
]

(6)

Where c is the column (C1 through C4); Zc is the minimum
TAC of column c; NA,c and NB,c are the number of stages above
and below the feed for column c, respectively; TDCc is the total
direct cost of column c; TACc,Exp and AOEc,Exp are the expected
TAC and AOC of column c respectively; h is the number of
hours per year the plant operates on-spec (as defined in section
Cost Computations); QH,c and QC,c are the hourly heat duties
of the reboiler and condenser of column c respectively; UH,c

and UC,cis the cost of utility (per energy basis) of the reboiler
and condenser of column c, respectively as given in section Cost
Computations; δc is a switching parameter that indicates that
columns only operate during particular modes; f1, f2, and f3
are polynomial functions for total direct costs of the condenser,
reboiler, and column (including trays) for column c, respectively,
as described in section Cost Computations; AC,c and AH,c are the
heat exchanger areas of the condenser and reboiler of column c,
respectively; Dc is the diameter of column c; and x is the vector
of continuous variables which includes all tray compositions,
pressures, temperatures, molar flow rates, reflux and reboil ratio,
in addition to the most important variables listed above.

In Problem 1, Equations (3) through (5) are used to compute
the total direct costs. Equations (6) are the nonlinear rigorous
model equations for distillation column c in RadFrac, including
the condenser and reboiler, and also including the constraint
equations for the distillate and bottoms purity specifications
for column c. These specifications were implemented as design
specification within RadFrac. Equation (6) also include the
Fair correlation for computing the minimum column diameter
necessary to prevent flooding, which is rounded up to nearest
six-inch increments to meet typical size standards. As such,
(6) is non-smooth. Also, the heat exchanger design equations
are included in (6) which relates heat exchanger surface area
to the column conditions. There are no explicit inequality
equations except for bounds on the continuous variables implicit
in the model (for example, mole fractions are between 0 and
1, flow rates are nonnegative, etc.). NA,c and NB,c are positive
integers, but again, feasible lower bounds can be estimated
using shortcut methods such as the DistWU model as a
guide.

The above formulation is a non-smooth MINLP, which in
general can be difficult to solve. However, for a given instance
of NA,c and NB,c, Equations (3) through (6) form a square system
of equations with respect to the continuous variables which are
independent of φExp,D. If a feasible solution exists, it can be solved
directly (in our case, by converging the Aspen Plus simulation for
column c). As such, the problem can be reformulated as follows:
Problem 1

TACBaseCase,Exp =

∑

c=C1..C4
Zc (7)

Zc = min
NA,c , NB,c

TACc,Exp (8)

s.t. TACc,Exp = afTDCc + AOCc,Exp (9)

AOCc,Exp = h
(

QH,cUH,c + QC,cUC,c

)

(

1− φExp,D

)

(1− δc)
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FIGURE 3 | A plot of the expected TAC of each of the four columns (TACExp,C1 . . . TACExp,C4) for the Base Case as a function of NA,c,NB,c for φExp,D = 0.5. The

red square indicates the optimal NA,c,NB,c found after solving Problem 1.

+ h
(

QH,cUH,c + QC,c,UC,c

) (

φExp,D

)

δc (10)

δc =

{

0 for c = C1,C2 (MeOH Mode)

1 for c = C3,C4 (DME mode)

TDCc = f1
(

AC,c

)

+ f2
(

AH,c

)

+ f3(NA,c + NB,c,Dc) (11)

AC,c = f4,c(NA,c,NB,c) (12)

AH,c = f5,c(NA,c,NB,c) (13)

Dc = f6,c(NA,c,NB,c) (14)

QH,c = f7,c(NA,c,NB,c) (15)

QC,c = f8,c(NA,c,NB,c) (16)

In Problem 1, the key continuous variables can all be written
in explicit form in Equations (12) through (16). The functions
f4,c through f8,c are dependent on NA,c and NB,c only, and are
found through exhaustive tabulation for all combinations of
NA,c and NB,c within the domain of interest. Because there are
only two parameters, this can be found relatively quickly by
automating a process in which the Aspen Plus simulations are
converged for each parameter combination and the pertinent
resulting continuous values recorded. For four columns, the total

amount of time required to generate this database (approximately
8,000 simulations) is approximately 1 cpu-h, but only needs to
be generated one time in total. Once the database has been
generated, Problem 1 can be solved in less than a second for
any given φExp,D by exhaustive search and direct computation
of Equations (9) through (11) using a simple MATLAB script,
thereby guaranteeing the global optimal solution.

An example result for φExp,D =0.5 is shown in Figure 3. This
figure shows expected TAC of each of the four columns as a
function of the number of stages above and below the feed of
each column. The red square indicates the location of the global
optimum. The infeasible region is shown, indicating that the
column had too few column sections in order to achieve the
product purity constraints—it is a well-known phenomena that
any ordinary distillation column requires a certain minimum
number of stages to achieve particular purity constraints given
certain feed conditions and chemical properties. The area to
the upper right of the hypotenuse of the triangle is feasible,
but was not explored. In general, for fixed product purity
constraints, adding more stages to a distillation column increases
capital costs with each stage but yields diminishing returns
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on condenser and reboiler duty reduction (directly correlated
with reflux and boilup ratio). Conversely, as the number
of stages decreases, the energy requirement increases, and
asymptotically approaches infinity as the number of stages
approaches the theoretical minimum. As such, the optimization
has only one local minimum within the entire feasible space
of NA,c and NB,c, and so this local minimum is also the global
minimum.

Problem 1 was solved on the range of 0 ≤ φExp,D ≤ 1
in steps of 0.01, with the results of key parameters shown in
Figure 4 as a function of φExp,D. Figure 4A shows the optimal
expected TAC (shown as the sum total of the TAC of the
Methanol Mode and DME Mode sections) is not quite linear
as a function of φExp,D, but generally monotonically decreasing
as the expected percentage of time spent in Maximize DME
mode increases. Note that in these plots, there is a sudden
drop in the TAC for the φExp,D = 0 and φExp,D = 1 cases.
These are special cases such that if we expect to never actually
operate in maximize DME mode (φExp,D = 0), we should
simply not bother to build the DME Mode section (columns
C3 and C4) because it would never be used, and vice versa for
φExp,D = 1.

Figure 4B shows the total direct costs, which exhibits a small
amount of non-smoothness with respect to φExp,D. This non-
smoothness is not due to the contribution of the heat exchanger
capital costs (Figure 4D), but rather the distillation column
costs (Figure 4E) which show a distinct non-smoothness with
respect to φExp,D. This non-smoothness is not due to numerical
error (since convergence tolerances are sufficiently tight such
that numerical inaccuracy would not appear on the plot) or
the finding of a sub-optimal result (since global optimality is
guaranteed). Rather, this is due to the discrete nature of the
optimization variables NA,c and NB,c. For example, as φExp,D

increases (spending more time in maximize DME mode), it
becomes optimal to invest more into the Maximize DME Mode
section distillation columns (C3 and C4) by using a greater
number of trays in order to save on energy costs, with the
opposite effect on theMaximizeMethanolMode section columns
(C1 and C2). As shown in (Figure 4E), the costs of C3 + C4
(the DME Mode Section) increases monotonically with φExp,D

but in a stepwise fashion as trays are added in discrete steps
to either C3 or C4, while the costs of C1 + C2 (the Methanol
Mode section) decreases monotonically in a similar stepwise
fashion. In addition, some of these steps are due to increases
in column diameter, which also occurs in discrete six-inch
increments. Because the steps are uncorrelated, their sum, the
total distillation column cost, either increases or decreases in
small steps with respect to φExp,D, which results in the “noisy”
appearance.

This can be seen more clearly in Figure 5, which shows the
individual number of stages in each column independently in
Figure 5A, the discrete changes in diameter in Figure 5B, as
well as the condenser and reboiler areas. The heat exchanger
areas and column diameters change rapidly near φExp,D = 0
for the DME Mode columns (C3 and C4) and change rapidly
near φExp,D = 1 for the Methanol Mode columns (C1 and C2).
For example, the condenser area, reboiler area, and minimum

diameter necessary to prevent flooding of C2 increases rapidly
from 0.9 ≤ φExp,D ≤ 1. This is because the number of stages
of C2 is relatively small in that region, and so to achieve the
same specified product purities with a smaller column, the reflux
and reboil ratios must be greatly increased, requiring larger
heat exchangers and a wider column to accommodate the larger
extra internal column flow rates that results from large reflux
ratios.

Problem 2 Formulation for Flexible Case
A—The Integrated Case
For Case A, in which only 2 columns are used, but within
different modes of operation, the problem formulation is
somewhat different:
Problem 2

TACCaseA,Exp =

∑

c=A1,A2
Zc (17)

Zc = min
NA,c , NB,c

TACc,Exp (18)

s.t. TACc,Exp = afTDCc + AOCc,Exp (19)

AOCc,Exp = h
(

QH,c,MeOHUH,c + QC,c,MeOHUC,c

)

(

1− φExp,D

)

(20)

+ h
(

QH,c,DMEUH,c + QC,c,DME,UC,c

) (

φExp,D

)

TDCc = f1
(

AC,c

)

+ f2
(

AH,c

)

+ f3(NA,c + NB,c,Dc) (21)

AC,c =

{

max
[

f4,C1
(

NA,c,NB,c

)

, f4,C3
(

NA,c,NB,c

)]

for c = A1

max
[

f4,C2
(

NA,c,NB,c

)

, f4,C4
(

NA,c,NB,c

)]

for c = A2

(22)

AH,c =

{

max
[

f5,C1
(

NA,c,NB,c

)

, f5,C3
(

NA,c,NB,c

)]

for c = A1

max
[

f5,C2
(

NA,c,NB,c

)

, f5,C4
(

NA,c,NB,c

)]

for c = A2

(23)

Dc =

{

max
[

f6,C1
(

NA,c,NB,c

)

, f6,C3
(

NA,c,NB,c

)]

for c = A1

max
[

f6,C2
(

NA,c,NB,c

)

, f6,C4
(

NA,c,NB,c

)]

for c = A2

(24)

QH,c,MeOH =

{

f7,C1
(

NA,c,NB,c

)

for c = A1

f7,C2
(

NA,c,NB,c

)

for c = A2
(25)

QH,c,DME =

{

f7,C3
(

NA,c,NB,c

)

for c = A1

f7,C4
(

NA,c,NB,c

)

for c = A2
(26)

QC,c,MeOH =

{

f8,C1
(

NA,c,NB,c

)

for c = A1

f8,C2
(

NA,c,NB,c

)

for c = A2
(27)

QC,c,DME =

{

f8,C3
(

NA,c,NB,c

)

for c = A1

f8,C4
(

NA,c,NB,c

)

for c = A2
(28)

Where QH,c,MeOH is the reboiler heat duty of column c when
in Maximize Methanol Mode and QH,c,DME is the reboiler heat
duty of column c when in Maximize DME Mode, with similar
definitions for QC,c,MeOH and QC,c,DME for the condenser. The
key differences are that there are now only two columns in
Equation (17), so that Equation (20) now reflects that both
columns are always on, but in different modes of operation at
different times of the year. Equation (22) indicates that during
the two different modes of operation, the amount of condenser
heat exchanger area actually needed will be different depending
on the circumstances, such as the temperature driving force.
Therefore, the larger of the two sizes is purchased to ensure
that enough heat exchanger area will be available to provide
the necessary duty in either case. This is true for both the first
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FIGURE 4 | The optimization results of Problem 1 for the Base Case as a function of φExp,D). (A) The expected TAC for the Base Case (TACBaseCase,Exp), the

Methanol Mode section (TACC1,Exp + TACC2,Exp) and the DME Mode section (TACC3,Exp + TACC4,Exp). (B) The total direct costs for the Methanol Mode section

(TDCC1 + TDCC2), the DME Mode section (TDCC3 + TDCC4) and their combined total. (C) The expected annual utility costs for the Methanol Mode section

(AOCC1,Exp + AOCC2,Exp), the DME Mode section (AOCC3,Exp + AOCC4,Exp), and their combined total. (D) The heat exchanger capital costs (reboilers and

condensers) of the Methanol Mode section
(

f1
(

AC,C1
)

+ f1
(

AC,C2
)

+ f2
(

AH,C1
)

+ f2
(

AH,C2
))

, the DME Mode section
(

f1
(

AC,C3
)

+ f1
(

AC,C4
)

+f2
(

AH,C3
)

+f2
(

AH,C4
))

, and their combined total. (E) The distillation column costs (shell and trays) of the optimal designs of the Methanol Mode section
(

f3
(

NA,C1,NB,C1,DC1
)

+ f3
(

NA,C2,NB,C2,DC2
))

, the DME Mode section
(

f3
(

NA,C3,NB,C3,DC3
)

+ f3
(

NA,C3,NB,C3,DC3
))

, and their combined total. (F) A

comparison of the utility, total annualized, and total direct costs of the optimal designs.

(A1) and second (A2) columns. Note that in this equation, f4,C1
represents the heat exchanger area of the condenser of the first
column running in MeOH mode, and f4,C3 represents the heat
exchanger area of the condenser of the first column running in
DME mode. In the evaluation of AC,c, we are able to utilize the
tabulated data from the 4-column case considered in Problem
1. Equation (23) indicates a similar concept for the reboiler.
Similarly, Equation (24) indicates that the minimum column
diameter to prevent flooding may be different in each mode
of operation, so that the column should be sized to the larger
of the two to ensure that flooding is prevented in each mode.
The key advantage of the above formulation is that Equations
(22) through (28) use the same database tables as in Problem
1, such that no additional Aspen Plus simulations need to be
run. Therefore, Problem 2 can be solved to global optimality in
under 1 s for any given φExp,D by a simple exhaustive search.
Note that the search space is restricted to combinations of NA,c

and NB,c that will be feasible for both modes of operation. For
example, the combination NA,A1 = 6, NB,A1 = 14 is not
considered because although having 6 stages above the feed and
14 below has a feasible set of operating conditions (condenser and
reboiler duties) that meet the design objectives when operating in
Methanol mode (see the plot for column C1 in Figure 3), there is
no feasible set of operating conditions that will meet the design

objectives when operating in DMEmode (see plot for column C3
in Figure 3).

The results of the optimization for Flexible Case A as a
function of φExp,D are shown in Figure 6, with comparisons to
the Base Case shown for convenience. Looking at (Figure 6A),
it can be seen that the Flexible Case A design has a lower TAC
than the Base Case at all φExp,D (except for φExp,D = 0 or 1,
which reduce to the exact same design). The cost savings arises
completely from capital cost reduction (Figure 6B) with virtually
no savings in energy (Figure 6C). The capital cost savings is
due to savings in both the tower costs (Figure 6D) and the
heat exchanger costs (Figure 6E), with capital cost savings in
the $800,000 to $1 million range (Figure 6F), despite having to
oversize all of the equipment to accommodate both Methanol
Mode and DME Mode conditions. Thus, this approach has a
benefit of about 30–50% capital cost savings with no increase in
operating costs.

Problem 3 Formulation for Flexible Case
B—An Alternative Flexible Design
Although the Case A results are promising, there is another
potential area for improvement. The design concept for Case
A uses one column (A1) for DME product recovery and the
second column (A2) for methanol and water product recovery.
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FIGURE 5 | Selected optimal design parameters for the Base Case as a function of φExp,D. (A) The number of stages of each distillation column (NA,c + NB,c). (B)

The minimum diameter of each distillation column before rounding up to the nearest 0.5 ft (0.152m). increment (Dc). (C) The surface area of the condenser of each

distillation column (AC,c). (D) The same for the reboiler (AH,c).

FIGURE 6 | Optimization results for Problem 2 for Flexible Case A as a function of φExp,D compared against the optimal Base Case results (see Figure 4). (A) The

expected TAC for the Base Case and Case A (TACBaseCase,Exp and TACCaseA,Exp). (B) The total direct costs for the Base Case (TDCC1 + . . . + TDCC4) and Case A

(TDCA1 + TDCA2). (C) The expected annual utility costs for the Base Case (AOCC1,Exp + . . . + AOCC4,Exp) and for (Case A AOCA1,Exp + AOCA2,Exp). (D) The total

distillation column costs for the two cases, (E) the total heat exchanger capital costs for the two cases, and (F) the cost difference of the Base Case minus Case A for

the utilities (green line), total annualized costs (red line), and total direct costs (blue). The average of the cost difference for TAC (cyan line) is shown to better see the

curvature of the red line.
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However, as shown in Figure 5, the optimal column diameters,
stage counts, and heat exchanger sizes can be very different when
comparing the same column under the different feed conditions
experienced in the Methanol or DME modes. Thus, it may be
better in some cases to design a different flexible design with
two columns which instead of having one column dedicated to
DME product recovery and the other dedicated to Methanol
and water recovery, one column is dedicated to the larger job
and one is dedicated to the smaller job. This might result in
additional capital cost savings because one column would have
a large diameter and the other could have a small diameter.

This approach is called Flexible Case B. Here, the products
collected in the distillate and bottoms streams of the columns
would actually switch depending on the mode of operation, as
shown in Figure 7. During Maximize Methanol Mode, the feed
is fed to B1 (the “narrow” column) with DME collected in the
distillate. The bottoms product is fed to B2 (the “wide” column)
where methanol and water are recovered to the desired purities.
During Maximize DME Mode, the DME reactor product is sent
to B2 instead, with DME collected in the distillate of B2, and the
bottoms product sent to B1 to remove methanol and water.

Because of the feed switching manifold, it seems prudent
to allow the feed tray to differ at each connection point, since
the feed compositions will vary significantly between the two
modes. The reboiler and condenser use the same utilities (steam
and cooling water, respectively) for both feed modes, although
the composition of the stream being serviced will change. The
resulting optimal design problem (Problem 3) can be formulated
as follows:
Problem 3

TACCaseB,Exp =

∑

c=B1,B2
Zc (29)

Zc = min
NA,c,MeOH , NB,c,MeOH ,NA,c,DME

TACc,Exp (30)

s.t. NB,c,DME = NA,c,MeOH + NB,c,MeOH − NA,c,DME (31)

TACc,Exp = af TDCc + AOCc, Exp (32)

AOCc,Exp = h
(

QH,c,MeOHUH,c + QC,c,MeOHUC,c

)

(

1− φExp,D

)

(33)

+ h
(

QH,c,DMEUH,c + QC,c,DME,UC,c

) (

φExp,D

)

TDCc = f1
(

AC,c

)

+ f2
(

AH,c

)

+ f3(NA,c,MeOH + NB,c,MeOH ,Dc) (34)

AC,c =

{

max
[

f4,C1
(

NA,c,MeOH ,NB,c,MeOH

)

, f4,C4
(

NA,c,DME,NB,c,DME

)]

for c = B1

max
[

f4,C2
(

NA,c,MeOH ,NB,c,MeOH

)

, f4,C3
(

NA,c,DME,NB,c,DME

)]

for c = B2
(35)

AH,c =

{

max
[

f5,C1
(

NA,c,MeOH ,NB,c,MeOH

)

, f5,C4
(

NA,c,DME,NB,c,DME

)]

for c = B1

max
[

f5,C2
(

NA,c,MeOH ,NB,c,MeOH

)

, f5,C3
(

NA,c,DME,NB,c,DME

)]

for c = B2
(36)

Dc =

{

max
[

f6,C1
(

NA,c,MeOH ,NB,c,MeOH

)

, f6,C4
(

NA,c,DME,NB,c,DME

)]

for c = B1

max
[

f6,C2
(

NA,c,MeOH ,NB,c,MeOH

)

, f6,C3
(

NA,c,DME,NB,c,DME

)]

for c = B2
(37)

QH,c,MeOH =

{

f7,C1
(

NA,c,MeOH ,NB,c,MeOH

)

for c = B1

f7,C2
(

NA,c,MeOH ,NB,c,MeOH

)

for c = B2
(38)

QH,c,DME =

{

f7,C4
(

NA,c,DME,NB,c,DME

)

for c = B1

f7,C3
(

NA,c,DME,NB,c,DME

)

for c = B2
(39)

QC,c,MeOH =

{

f8,C1
(

NA,c,MeOH ,NB,c,MeOH

)

for c = B1

f8,C2
(

NA,c,MeOH ,NB,c,MeOH

)

for c = B2
(40)

QC,c,DME =

{

f8,C4
(

NA,c,DME,NB,c,DME

)

for c = B1

f8,C3
(

NA,c,DME,NB,c,DME

)

for c = B2
(41)

Problem 3 is similar to Problem 2, except that now there are
three integer decision variables for each column: The number
of stages above and below the feed when in Maximize Methanol
Mode (NA,c,MeOH andNB,c,MeOH respectively), and the number of
stages above the feed when in Maximize DME Mode (NA,c,DME).
There is a fourth new variable, the number of stages below the
feed when in Maximize DME Mode (NB,c,DME), but this is not
independent because the total number of stages of a column in
Methanol Modemust be the same as the total number of stages in
DME Mode, and is instead calculated explicitly by the constraint
in new Equation (31). The remainder of the problem is very
similar. Equations (34) through (41) reuse the same functions f1
through f8 as tabulated in the previous problems, and do not have
to be recomputed again. There are only slight changes in how
they are used. For example, in Equation (35), the second term of
the maximum functions swaps the calls to f4,C3 and f4,C4 to reflect
that the columns receiving the primary feed now changes in Case
B depending on the mode. Similar swaps are made in Equations
(36), (37), (39), and (41). Note that like in Case A, the decision
variables are restricted to combinations which result in feasible
operation during both modes.

Even though the dimensionality is higher (3 independent
variables per minimization problem) the number of individual
instances that need to be enumerated is on the order of 50,000,
which is still tractable. Since the same data tables can be reused
from the previous simulations, Problem 3 can be solved to global
optimality for a given φExp,D in just a few minutes.

The key results are provided in Figure 8, showing Flexible
Case B is actually slightly more expensive than Flexible Case
A at any φExp,D. Although heat exchanger and utility costs are
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FIGURE 7 | The process for Flexible Case B. The feed is routed to column B1 when in Maximize Methanol Mode and to column B2 when in Maximize DME Mode.

FIGURE 8 | Optimization results for Problem 3 for Flexible Case B as a function of φExp,D compared against the Base Case and Case A results (see Figures 4, 6). (A)

The expected TAC, (B) the total direct costs, (C) the expected annual utility costs, (D) the total distillation column costs, (E) the total heat exchanger capital costs, and

(F) the difference in TAC of the Base Case minus Case A or Case B.

essentially the same, Flexible Case B requires slightly larger
distillation towers on the whole. In this case, Flexible Case A is
clearly preferred, not just because of cost, but because transitions
between modes are likely to be much easier to do because

condenser utilities, feed location, and feed trays do not need to
change. However, this result is case specific, and so the approach
used in Flexible Case B is still worthy of consideration for other
systems of interest. In sectionDesignUnder Uncertainty, we have
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chosen to use Flexible Case B for the design under uncertainty
analysis even though it is slightly more expensive than Flexible
Case A because Case B has more degrees of freedom and
requires more computational power to solve, and therefore better
demonstrates that optimal design under uncertainty problems
can be solved to guaranteed global optimality using our approach
within reasonable amounts of time.

DESIGN UNDER UNCERTAINTY

Naïve Designs
As demonstrated in section Flexible Polygeneration
Optimization Formulation and Solution, the optimal design
is a strong function of the expected amount of time spent in
Maximize DME Mode over the course of its lifetime. However,
this parameter is highly uncertain, and bad predictions can
result in a significantly sub-optimal design, as demonstrated in
Figure 9. In this figure, 99 Flexible Case B designs were made by
solving Problem 3 on the range 0 < φExp,D < 1 in steps of 0.01.
Then for each of those designs, the actual TAC (TACCaseB,Act) was
computed as a function of φAct,D, which is the actual percentage
of time spent in Maximize DME mode experienced by the plant
once constructed, as follows:

TACCaseB,Act = afTDCB1 + afTDC21 + AOCB1, Act

+ AOCB2, Act (42)

AOCc,Act = h
(

QH,c,MeOHUH,c + QC,c,MeOHUC,c

) (

1− φAct,D

)

+ h
(

QH,c,DMEUH,c + QC,c,DME,UC,c

) (

φAct,D

)

for c = B1,B2 (43)

Where the Q, U, and afTDCc values are the results from
the original Problem 3 solution. As shown in the figure, the
best outcome is to predict φExp,D exactly, with the minimum
TACCaseB,Act located along the φExp,D = φAct,D line. For example,
suppose after 15 years of use, φAct,D = 0.2, meaning that the
plant operated in DME mode for 20% of its life and operated
in Methanol mode for the remaining 80%. Suppose also that the
designer of the process had predicted this exactly (in other words,
the expected time in DME mode was 20%, or φExp,D = 0.2),
and chose to build the design that resulted from Problem 3 using
φExp,D = 0.2. The total actual TAC experienced over 15 years in
this case (Point A in Figure 9) is about $0.928 million TAC/year,
as shown in Figure 9. This is also the true global optimal design
for the outcome/realization of φAct,D = 0.2, since there are no
other designs that could have achieved a lower TAC for this
outcome.

However, suppose that after 15 years of use, φAct,D = 0.2,
but the designer had expected that the system would run in
DME mode only 10% of the time, and so had chosen to build
the design that resulted from solving Problem 3 using φExp,D =

0.1 (point B in Figure 9). This is a suboptimal result, because
the actual TAC experienced in this case is a little higher at
$0.929million TAC/year. The further φExp,D deviates from φAct,D,
the worse the prediction, and the higher the actual TAC goes.
For example, suppose the prediction turned out to be very
bad at φExp,D = 0.8 since the actual time spent in DME

mode was only 20% (point C in Figure 9). The actual TAC
after 15 years in this case is much higher at $0.984 million
TAC/year.

Formulations for Designs Considering
Uncertainty
Uncertainty can be considered by slightly reformulating the
objective function to minimize the expected costs considering
a probability distribution instead of a single value of φExp,D, as
follows:

TACCaseB,Exp =

∑

c=B1,B2
Zc (44)

Zc = min
NA,c,MeOH , NB,c,MeOHNA,c,DME

∫ 1

0
P(φExp,D)TACc,Exp

(

φExp,D

)

dφExp,D (45)

subject to the same Equations (31) through (41) above, where
P(φExp,D) is the probability distribution function such that
∫ 1
0 P

(

φExp,D

)

dφExp,D = 1 and all probabilities P are specified
and P

(

φExp,D

)

≥ 0. In practice, the integral is intractable
to compute analytically and so it is instead approximated
numerically as a collection of discrete scenarios of possible
φExp,D. This change results in Problem 4 as shown:
Problem 4

TACCaseB,Exp =

∑

c=B1,B2
Zc (46)

Zc = min
NA,c,MeOH , NB,c,MeOHNA,c,DME

∑i=S

i=1
P(φExp,D,i)TACc,Exp,i

(

φExp,D,i

)

(47)

s.t. TACc,Exp,i = afTDCc + AOCc, Exp,i (48)

AOCc,Exp,i = h
(

QH,c,MeOHUH,c + QC,c,MeOHUC,c

)

(

1− φExp,D,i

)

+ h
(

QH,c,DMEUH,c + QC,c,DME,UC,c

) (

φExp,D,i

)

(49)

plus Equations (31, 34) through (41) above, where φExp,D,i is the
expected time spent in DMEMode for scenario i, S is the number
of scenarios considered, and

∑i=S
i=1 P(φExp,D,i) = 1 where all

probabilities P are specified and P(φExp,D,i) ≥ 0. The expected
TAC and AOC must be enumerated by scenario, but otherwise
the remainder of the equations are the same. Again, this problem
makes use of the same database tables, and so no additional
simulations need to be performed and the global optimal solution
can again be found feasibly by enumeration. Problem 4 reduces
to Problem 3 for a single scenario (S = 1). Problem 4 required
about 17 cpu-s to solve for S = 99 per instance of the distribution
function. However, Problem 4 is also embarrassingly parallel
(except for overhead) in the individual scenarios (since they can
be computed in parallel), as well as the individual instances of the
three decision variables when solving by enumeration.

A second, robust formulation can be also made which does
not require any guessing of the probability distribution at all.
This is useful to generate a worst-case estimate of the optimal
design, such that the optimal design chosen is the one that has
the cheapest worst-case TAC for any distribution of theMethanol
/ DMEModes. This results in Problem 5:
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FIGURE 9 | The actual TAC for Flexible Case B (TACCaseB,Act ) as a function of the expected time spent in DME mode (φExp,D) and the actual time spent in DME

mode (φAct,D) if designed naïvely without consideration of uncertainty.

Problem 5

TACCaseB,Exp =

∑

c=B1,B2
Zc (50)

Zc = min
NA,c,MeOH , NB,c,MeOHNA,c,DME

max
i=1..s

TACc,Exp,i

(

φExp,D,i

)

(51)

Subject to all of the constraints of Problem 4: Equations (31), (34)
through (41), (48), and (49).

Problem 5 requires essentially the same computation time
as Problem 4 and can be solved to guaranteed global
optimality.

Comparison of Designs Under Uncertainty
Problem 4 was solved for a uniform distribution function with S
= 99 evenly-spaced scenarios of equal probability ranging from
0 < φExp,D,i < 1 and compared to the results of Problem
5 with the same scenario distribution. Both approaches can be
used to select a single design without any prior knowledge of
its final use. S = 99 was chosen as the result of starting with
lower resolutions (i.e., S = 9) and increasing the resolution
until the results no longer changed. The final design resulting
from the solution of Problem 4 uses B1 with 22 stages with
a diameter of 2 ft. (0.610m) and B2 with 51 stages and a
diameter of 2.5 ft (0.762m). The Problem 5 result was a little
bit different, with B1 having 33 stages at 2 ft. (0.610m) diameter
and B2 having 41 stages at 2.5 ft (0.762m) diameter. Figure 10
shows the TAC of those two designs as a function of φAct,D.
The results show that both approaches are comparable, since
either one or the other results in lower actual TAC depending
on the actual amount of time spent in each mode over its
lifetime (φAct,D), but both give similar performance in all cases
anyway. However, both are preferable to the naïve approach
used in Problem 3. For example, when comparing to Figure 9,

FIGURE 10 | The actual TAC of Flexible Case B when designed by solving

Problem 4 with a uniform probability distribution and by solving Problem 5 (the

robust min-max formulation), as a function of φAct,D.

although guessing φExp,D,i = φAct,D exactly correct during
the design phase results in the lowest TAC possible (or the
“true” optimum), these two design under uncertainty approaches
which require no a piori knowledge of the market at all are
not very far from the “true” optimum. In fact, the uniform
distribution result at φAct,D = 0.5 is exactly the same as the
true optimum design for φAct,D = 0.5, and the robust min-max
formulation result at φAct,D = 0.5 has only 4.3% higher TAC
than the true optimum for φAct,D = 0.5. Both methods avoid
bad results when bad guesses for φExp,D,i are used in the naïve
approach.
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FIGURE 11 | The actual TAC as a function of the mean expected φExp,D of the prediction and the actual φAct,D using the Problem 4 formulation, with the results from

the naïve approach from Figure 9 included.

In addition, we performed a sensitivity analysis on Problem
5 by varying the annuity factor, with results shown in the
Supplementary Material. The design of column B1 changed
little over the range, but B2 changed more significantly (larger
columns were favored with lower annuity factor).

Although the robust approach can be used to prevent extreme
circumstances, having good predictive knowledge of the future
market can lead to cost savings. Problem 4 was re-run repeatedly
using a normal distribution centered around different mean
expected percentage of time spent in DME Mode (φExp,D) with
a standard deviation of σ = 0.5 (absolute). The distributions
were truncated on the range 0 < φExp,D < 1 and normalized

such that
∑i=S

i=1 P(φExp,D,i) = 1. Each different distribution
examined used 99 scenarios. This represents the case that
we have good predictions of the expected φExp,D but with a
reasonable amount of uncertainty. The results are shown in
Figure 11, with the Figure 9 results shown again for ease of
comparison.

The results confirm that when the guesses for φExp,D are
accurate, it is better to use the naïve approach (the yellow
surface), noting that it has lower TAC just below the blue
hourglass-shaped region that runs axial to the φExp,D = φAct,D

line. This is easiest to see in the bottom corner of Figure 11 at
the point (φExp,D = 1, φAct,D = 1), where the yellow surface is
just slightly below the blue surface. However, the more inaccurate
the predicted φExp,D is, the better the design under uncertainty
approach with a normal distribution will be since it will have the
lower TAC. This is easiest to see on the left and right corners of
Figure 11 [the points (φExp,D = 0, φAct,D = 1) and (φExp,D =

1, φAct,D = 0), respectively], where the blue surface is the
below the yellow surface by a relatively large amount. Therefore,
the key advantage of the design under uncertainty approach
is that large penalties from very bad guesses are avoided, and
yet when guesses are good, there is only a slight penalty for
“over design” compared to the naïve approach. Thus, on the

whole, the design under uncertainty approach better manages the
risk.

Although not shown in Figure 11 for brevity, Problem 4
was repeated several times using a normal distribution function
with different assumed standard deviations in uncertainty. As σ

increased, the results converged toward the uniform distribution
solution, and as σ decreased, the results converged toward the
naïve solution. This is interesting because in practice, even
with good long-term predictive models, σ is itself uncertain.
In this example, this means that it is probably not worth
the expense of creating good long-term predictive models to
predict φExp,D with high confidence (small σ ), because the
uniform distribution approach provides results that are nearly
as good when predictions are accurate and yet the savings
achieved by avoiding large penalties when predictions are bad
(even if unlikely) are quite large. Although this might not
be true for some other systems, the methodology presented
in this work can be used to make those assessments rather
quickly because of the problem formulation and solution

strategy.
In addition, we note that only issues related to market

uncertainty were addressed in this work, but other kinds of
uncertainties, were not. Depending on the type uncertainty

considered, the above methods can be adapted in various ways.
For example, resolving Problems 3–5 using different annuity

factors or utility costs (or scenario-based probability functions

of them) requires relatively little additional computational effort
because none of the tabulated functions f 1 through f 9 need to

be recomputed. When changing capital cost estimates, only f 1
through f 3 need to be retabulated or rewritten as continuous
functions, which is relatively fast since the simulations do
not need to be rerun. However, considering uncertainty in
the model itself may require repeated re-simulation of the
distillation columns, for which our approach may not be
suitable.
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FIGURE 12 | A summary of the methodology used in this work. Essentially, the results of the single database generation step can be re-used in a variety of different

problem formulations based on the design concept and the market uncertainty characterization.
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CONCLUSIONS

This study presented two flexible versions of a distillation
process designed to handle large changes in feed composition in
order to produce different chemical products based on market
demand. The study addressed the question of how to best
design the process by using a design under uncertainty approach,
since the market conditions that the plant will experience
over its long lifetime are highly uncertain. In this work, we
demonstrated a methodology which breaks down an otherwise
complex problem into discrete, rigorously modeled subproblems
that allows us to find global optimal solutions quickly, which
is summarized in Figure 12. In this way, different design under
uncertainty approaches could be directly and fairly compared
with a minimum number of assumptions.

The study found that using two “over-designed” distillation
columns capable of achieving product purities under both
feed scenario required between 30 and 40% lower total
depreciable capital than using four distillation columns which
were specifically tailored to best suit each feed scenario. The
operating costs, however, were approximately the same. The
optimal choice of which specific design was best was strongly
related to the expected market conditions during the lifetime
of the plant, which is highly uncertain. The results showed that
using a design under uncertainty uniform distribution function
or using a robust min-max approach both resulted in very good
individual designs that performed well no matter how often
one mode was used versus the other. The results also showed
that choosing a process based on guesses (even considering
uncertainty) for the percentage of time that each mode would
actually be used in practice resulted in only slight gains when
the guesses were accurate but large losses where the guesses were
inaccurate. Therefore, the uniform distribution approach was
recommended as the best design methodology for this scenario.

Although the results are interesting for the uncertain
Methanol/DMEmarket switching scenario, themethodology and
optimization framework presented herein is useful for many
other applications because it makes it possible to consider very
large optimal design problems of this type under uncertainty in a
very reasonable amount of CPU-time without loss of fidelity. For
distillation trains in general, this approach could be used for any

number of ordinary binary distillation columns in series in which
their sequence was already known. Special configurations such
as dividing wall columns and Petlyuk configurations may add
more complexity but the general framework could still be used.
Because our design approach decouples each column from the
other, the computation time of the solution to the optimal design
problem under uncertainty scales linearly with the number of
distillation columns in sequence and linearly with the number
of uncertainty scenarios considered. The solution algorithm is
in theory almost embarrassingly parallel, although that was not
experimentally verified in this work.

In addition, the methodology presented decouples the
most computationally demanding portions of the optimization
problem (rigorous tray-by-tray distillation column models in
Aspen Plus) from the rest of the optimization, such that the
results of the process simulations can tabulated off-line. Once

tabulated, the optimal design problems under uncertainty can
be solved extremely quickly because all important continuous
variables can be computed explicitly via table lookup or a trivially
simple calculation, and the same lookup tables can be re-used
for a great many different optimization problems. Thus, the
methodology makes it possible to solve each problem to global
optimality via brute-force enumeration of the decision variables
in a short amount of time.
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