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Electroautotrophs are microbes able to perform different biocathodic reactions by using

CO2 as sole carbon source and electrochemical reducing power as a sole energy source.

Electroautotrophy has been discovered in several groups of microorganisms, including

iron-oxidizing bacteria, iron-reducing bacteria, nitrate-reducing bacteria, acetogens,

methanogens and sulfate-reducing bacteria. The high diversity of electroautrophs

results in a wide range of Bioelectrochemical Systems (BES) applications, ranging from

bioproduction to bioremediation. In the last decade, particular research attention has

been devoted toward the discovery, characterization and application of acetogenic

and methanogenic electroautotrophs. Less attention has been given to autotrophic

sulfate-reducingmicroorganisms, which are extremely interesting biocatalysts for multiple

BES technologies, with concomitant CO2 fixation. They can accomplish water sulfate

removal, hydrogen production and, in some case, even biochemicals production.

This mini-review gives a journey into electroautotrophic ability of sulfate-reducing

bacteria and highlights their possible importance for biosustainable applications. More

specifically, general metabolic features of autotrophic sulfate reducers are introduced.

Recently discovered strains able to perform extracellular electron uptake and possible

molecular mechanisms behind this electron transfer capacity are explored. Finally, BES

technologies based on sulfate-reducing electroautotrophs are illustrated.

Keywords: bioelectrochemical systems, electroautotrophs, sulfate-reducing microorganisms, biocathodes,

bioremediation, bioproduction

INTRODUCTION

During the last decade, much research focused toward the use of electroautotrophic
microorganisms in Bioelectrochemical Systems (BES). While exoelectrogens have evolved to use
extracellular insoluble minerals or electrodes as terminal electron acceptors, electroautotrophs are
able to acquire energy by taking up electrons from extracellular solid compounds or electrodes,
while using carbon dioxide (CO2) as inorganic carbon source (Tremblay et al., 2017).

Electroautotrophy was first discovered in the model exoelectrogen genus Geobacter (Gregory
et al., 2004; Gregory and Lovley, 2005). As the majority of exoelectrogenic biocatalysts are
dissimilatory iron-reducing bacteria, researchers hypothesized that iron-oxidizing bacteria could
be able to accept electrons from a cathodic electrode. Indeed, Acidithiobacillus ferrooxidans,
Mariprofundus ferrooxydans PV-1, and Rhodopseudomonas palustris have been designated
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as electroautotrophs (Carbajosa et al., 2010; Summers et al.,
2013; Bose et al., 2014). Moreover, the chemolithoautotrophic
archea Methanococcus maripaludis and Methanobacterium-like
archaeon strain IM1, isolated with metallic iron as sole electron
donor, are able to perform electromethanogenesis (Lohner
et al., 2014; Beese-Vasbender et al., 2015a). Several acetogenic
bacteria, including Sporomusa ovata, Sporomusa silvacetica,
Sporomusa sphaeroides, Sporumosa acidovorans, Sporumosa
malonica, Clostridium ljungdahlii, Clostridium aceticum, and
Moorella thermoacetica, can utilize the cathodic current for CO2

reduction to organic acids (Nevin et al., 2011; Aryal et al.,
2017). Also, some autotrophic sulfate-reducing microorganisms
(SRM) have shown the ability to consume electrons from the
cathode to accomplish sulfate reduction and hydrogen (H2)
production (Rodrigues and Rosenbaum, 2014; Beese-Vasbender
et al., 2015b). However, overall fairly little research has been
devoted toward this last group of electroautotrophic biocatalysts.

Pioneering discoveries regarding cathodic electron
consumption of SRM are related to anaerobic microbial
induced corrosion (MIC) studies (Widdel, 1992). SRM can
stimulate not only a chemically-influenced corrosion of iron
through the production of corrosive hydrogen sulfide (Widdel,
1992), but also an electrochemical-induced corrosion by the
consumption of “cathodic hydrogen” formed on iron in contact
with water (von Wolzogen Kühr and van der Vlugt, 1934;
Pankhania, 1988), or by directly uptaking electrons from iron
(Dinh et al., 2004; Gu et al., 2009; Gu and Xu, 2010; Xu and Gu,
2011). The readers are referred to several excellent reviews on to
role of SRM in MIC (Enning and Garrelfs, 2014; Anandkumar
et al., 2016; Li et al., in press).

It should be noticed that early BES studies with SRMhave been
focused on their anodic exploitation for electricity generation
and sulfate removal using organic substrates (Habermann and
Pommer, 1991; Liang et al., 2013; Zheng et al., 2014). However,
it was soon clarified that the production of electricity with
SRM-based anodes was mainly due to the abiotic oxidation of
biologically produced sulfide to elemental sulfur (Zhao et al.,
2008). Consequently, sulfur-oxidizing bacteria have started to be
applied in anodic oxidation processes for current generation (Sun
et al., 2009; Gong et al., 2013; Lee et al., 2014; Zhang et al., 2014).

Another very recent and promising BES application of SRM
is the cathodic electrofermentation of short chain organic acids
into more valuable compounds as alcohols and acetone (Sharma
et al., 2013a,b, 2014, 2015).

Figure 1A summarizes the application of the different
metabolic capabilities of SRM in various BES. Despite these
different attractive SRM-based BES technologies, the specific
focus of this mini-review is to summarize the current
understanding and trends in biocathodic applications of
electroautotrophic SRM, using CO2 as inorganic carbon source
(highlighted with a red box in Figure 1A).

SULFATE REDUCING MICROORGANISMS

SRM are a heterogeneous group of anaerobic microorganisms,
widely distributed in anoxic environments with essential roles in

the global cycling of carbon and sulfur (Jørgensen, 1982). Most
cultured SRM belong to four bacterial (Deltaproteobacteria,
Nitrospirae, Firmicutes, Thermodesulfobacteria) and two
archaeal phyla (Euryarchaeota, Crenarchaeota) (Rabus et al.,
2006; Muyzer and Stams, 2008). SRM have the ability to use
sulfate, the most oxidized sulfur specie, as terminal electron
acceptor for the oxidation of organic compounds or hydrogen
in a process named dissimilatory sulfate reduction (Widdel and
Hansen, 1991). This is an intracellular pathway that requires an
eight-electron reaction for the reduction of sulfate to sulfide, with
sulfite as intermediate. After crossing microbial membranes,
sulfate is “activated” to form adenosine 5′-phosphosulfate (APS)
by the enzyme Adenosine Triphosphate (ATP) sulfurylase
(Peck, 1959). APS is then reduced to sulfite in a two-electron
reaction performed by the enzyme APS reductase (AprBA)
(Lampreia et al., 1994). The final step of sulfite reduction to
sulfide is catalyzed by the dissimilatory sulfite reductase complex
(Dsr), with the involvement of an energy-conserving membrane
complex (DsrMKJOP or DsrMK) (Fike et al., 2016).

Carbon Assimilation and Electron Donors
SRM can grow on more than one hundred organic compounds,
including monocarboxylic acids, dicarboxylic acids, sugars,
alcohols, ketones, amino acids, aromatic compounds, and
hydrocarbons (Barton and Fauque, 2009).

SRM can either perform incomplete or complete oxidation of
organic compounds (Rabus et al., 2006). Incomplete oxidation
of organic substrates results in the excretion of acetate as main
product, due to a deficiency for the terminal oxidation of
acetyl-CoA (Widdel, 1988). On the contrary, complete oxidizers
degrade organic compounds to CO2, oxidizing acetate with two
different pathways: amodified citric acid cycle (e.g.,Desulfobacter
spp., Brandis-Heep et al., 1983), or the acetyl-CoA pathway
(e.g., Desulfobacterium spp., Schauder et al., 1986). Both of these
groups can also utilize H2 as electron donor during sulfate
reduction. Despite the prospects for chemolithoautotrophic
growth on H2, most SRM require acetate in addition to CO2

for growth (Badziong et al., 1979). Nevertheless, true autotrophic
growth with H2 as electron donor was discovered in some
SRM (Pfennig et al., 1981; Jansen et al., 1985; Klemps et al.,
1985; Brysch et al., 1987; Rozanova et al., 1988; Schauder et al.,
1989). Of these facultative chemolithoautotrophic SRM all but
Desulfosporosinus orientis are complete oxidizers (Brysch et al.,
1987). Thereby, CO2-fixation proceeds through reverse reactions
of the pathways used by SRM for acetyl-CoA oxidation during
heterotrophic growth. D. hydrogenophilus assimilates CO2 via
a reductive citric acid cycle (Schauder et al., 1987), while
D. autotrophicum and D. orientis use the reductive acetyl-CoA
pathway (Wood Ljungdahl–pathway) (Schauder et al., 1989),
the only autotrophic microbial route able to simultaneously fix
CO2 and yield ATP by converting acetyl-CoA to acetate (Wood
et al., 1986; Fuchs, 2011). This pathway consists of two separate
branches: one molecule of CO2 is reduced to carbon monoxide
(CO) in the carbonyl branch and another CO2 molecule is
reduced to a methyl group in the methyl branch. The acetyl-
CoA is generated from the combination of the CO and methyl
group with the coenzyme A (Wood et al., 1986). Recent reviews
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FIGURE 1 | (A) Metabolic classification of the sulfate-reducing microorganisms (SRM) presented in this Mini-Review, whereby the review focus is on

electroautotrophic SRM. (B,C) Schematic model of possible extracellular electron uptake (EEU) mechanisms in electroautotrophic SRM with (B) Direct EEU: the

cathodic electrons can enter SRM cells through outer membrane (OM) multiheme cytochromes (Cyts) or via Cyt-covered nanowires (Deng et al., 2018). Cyt-rich group

of SRM (Deltaproteobacteria and Nitrospirae) are characterized by periplasmatic tetraheme Type I cytochrome c3 (TpIc3) that could act as periplasmatic electron

shuttle component, like cytochrome Cyc-1 in A. ferroxidans (Ishii et al., 2015) and the monoheme c-Cyt PccH in Geobacter sulfurreducens (Strycharz et al., 2011).

TpIc3 serves then as electron donor for several inner membrane redox complexes that reduce the menaquinone pool or are involved in transmembrane electron

transfer; and (C) Indirect EEU: SRM belonging to Cyt-poor group (Archaea and Clostridia) have no periplasmatic multiheme c-Cyts and they most probably perform a

mediated electron transfer, using H2 and formate as soluble electron donors for their hydrogenases (Hase) and formate dehydrogenases (Fdh) associated to the inner

membrane (IM). The abiotic electrochemical production of H2 and formate can be enhanced by extracellular Hase and Fdh, excreted by viable cells or released after

microbial death (Deutzmann et al., 2015). MES, Microbial electrosynthesis; MIC, microbial induced corrosion; MQ/MQH2, menaquinone/menaquinol; TM cmplx,

transmembrane complex.

give an exhaustive biochemical description of these CO2-fixation
pathways (Berg, 2011; Fuchs, 2011; Schuchmann and Müller,
2014).

Energy-Conservation and Electron
Transport Pathways
In chemolithoautotrophic SRM, sulfate reduction must be
coupled to energy conservation by oxidative phosphorylation.
This implies an electron transport chain that allows the
production of a transmembrane proton motive force for the

chemiosmotic synthesis of ATP (Thauer et al., 2007; Grein
et al., 2013). While APS and sulfite reduction are two strongly
exoergonic reactions, the enzymes responsible, AprBA and
DsrAB/DsrC, are cytoplasmic soluble reductases and, thus,
cannot be directly involved in the formation of a transmembrane
proton gradient. Instead, the quinone-interacting membrane-
bound oxidoreductase complex (QmoABC) (Pires et al., 2003)
and the DsrMKJOP complex (Pires et al., 2006) represent the
membrane complex candidates that can act as electron donor
for AprBA and DsrAB/DsrC, respectively (Ramos et al., 2012;
Grein et al., 2013). Both complexes are strictly conserved across
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SRM (Pereira et al., 2011). Other energy-conserving membrane
complexes, capable of ion translocation, are present in SRM, but
they are less conserved (Pereira et al., 2011).

Due to the high variability of organic and inorganic
electron donors used by SRM, there is no unifying theory for
their electron transport chain. However, one classification
method is based on the content of periplasmic c-type
cytochromes (c-Cyt) (Rabus et al., 2015). The cytochrome-
rich group has numerous multiheme c-Cyt and includes SRM
belonging to Deltaproteobacteria (e.g., Desulfovibrio spp.,
Desulfobulbus spp., Desulfomicrobium spp.) and Nitrospira
(e.g., Thermodesulfovibrio spp.), while the cytochrome-poor
group has few or no c-Cyt and comprises Archaea (e.g.,
Archaeoglobus spp.) and Clostridia SRM (e.g., Desulfosporosinus
spp., Desulfotomaculum spp.) (Pereira et al., 2011; Rabus
et al., 2015). Cytochrome-rich SRM have soluble periplasmatic
hydrogenases and formate dehydrogenases that lack an integral
membrane subunit. These soluble enzymes use a periplasmatic
multiheme c-Cyt, usually the tetraheme cytochrome c3 (TpIc3),
as electron acceptor (Louro, 2007; da Silva et al., 2012; Romaõ
et al., 2012) (Figure 1B). These SRM also contain a set of inner
membrane redox complexes that reduce the menaquinone
pool (Qrc, Nhc and Ohc) or are involved in transmembrane
electron transfer (Tmc and Hmc) (Rabus et al., 2015). On
the contrary, cytochrome-poor SRM have membrane-bound
hydrogenases and formate dehydrogenases associated to the
inner membrane through a b-type cytochrome that directly
reduce the menaquinone pool (Pereira et al., 2011) (Figure 1C).

Electroautotrophic SRM
The discovery of direct electron uptake capacity of some
Fe(0)-corroding SRM (Dinh et al., 2004; Gu et al., 2009; Gu
and Xu, 2010; Xu and Gu, 2011) suggested the researchers to
start employing these microorganisms for biocathodic BES
applications, turning, thus, this negative metabolic feature
into positive and sustainable biotechnological solutions.
However, so far only few pure culture SRM are elucidated as
electroautotrophs.

In 2008, Desulfovibrio desulfuricans ATCC 27774 was shown
to form an electroactive cathodic biofilm at an applied cathodic
potential (Ecath) of −0.169V vs. SHE. A stable negative current
was obtained after 20 days, but lactate was supplied as carbon
source, not CO2 (Cordas et al., 2008). Subsequently, other species
of the genus Desulfovibrio were tested for cathodic current
generation and H2 production, using bicarbonate or lactate as
carbon source and Ecath that allow abiotic H2 evolution: D.
paquesii andD. caledoniensis (Yu et al., 2011; Aulenta et al., 2012).

As first pure culture SRM to really show electroautotrophy,
we identified Desulfosporosinus orientis and Desulfovibrio piger
at Ecath = −0.31V vs. SHE, which is much more positive
than the H2 evolution redox potential at neutral conditions
(E0

′

H+/H2 =−0.41V vs. SHE), with gaseous CO2 as sole inorganic
growth substrate (Rodrigues and Rosenbaum, 2014). D. orientis
is a spore-forming SRM in the class Clostridia and is able to
perform anaerobic sulfate respiration but also acetogenesis. It
can utilize a wide range of energy sources, such as H2/CO2,
CO, formate, lactate, pyruvate, methanol, ethanol, and medium

chain fatty acids (Klemps et al., 1985; Robertson et al., 2001), and
different terminal electron acceptors, such as sulfate, thiosulfate,
sulfite, sulfur dioxide (Cypionka and Pfennig, 1986).

D. piger is a non-spore-forming, H2-oxidizing Gram-negative
SRM Deltaproteobacterium. It can oxidize organic compounds,
such as ethanol, lactate, and pyruvate, incompletely to acetate.
Like for the other Desulfovibrio species, autotrophic growth on
CO2 was not reported before.

Desulfopila corrodens strain IS4 is the first Fe(0)-corroding
SRM characterized in BES (Beese-Vasbender et al., 2015b). This
Gram-negative Deltaproteobacterium was isolated from marine
sediment using metallic iron as the sole electron donor. Using
iron as energy source, this strain is able to perform very rapid
sulfate reduction and hydrogen production compared to the
conventional hydrogen-scavenging Desulfovibrio species (Dinh
et al., 2004). In BES, direct electron uptake was achieved at
Ecath = −0.4V vs. SHE with CO2 in the headspace as carbon
substrate (Beese-Vasbender et al., 2015b).

Very recently, electroautotrophic activity was reported also in
the fully sequenced sulfate-reducing bacterium Desulfobacterium
autotrophicum HRM2, using a Ecath = −0.5V vs. SHE (Zaybak
et al., 2018). This Deltaproteobacterium, isolated from marine
mud, is a complete oxidizer SRM belonging to the c-Cyt rich
group and harboring a bidirectional Wood-Ljungdahl pathway
(Brysch et al., 1987; Strittmatter et al., 2009). D. autotrophicum
HRM2 exhibited acetate bioelectrosynthesis ability, with an
extremely high coulombic efficiency of 83 ± 6% (Zaybak et al.,
2018).

EXTRACELLULAR ELECTRON UPTAKE IN
SRM

Little is known about the molecular mechanisms beyond
extracellular electron uptake (EEU) in SRM and in
electroautotrophic microorganisms in general. As for the
extracellular electron transfer (EET) frommicrobes to the anode,
direct and indirect pathways can be employed. So far, direct
EEU mechanisms have been elucidated in the oxygen-reducers
Shewanella oneidensis, which directly uses electrons from the
cathode via the reversed anodic Mtr pathway (Ross et al., 2011),
and Acidithiobacillus ferroxidans, which utilizes a cascade of
outer membrane (OM) cytochrome reductases (Ishii et al., 2015).
Indirect electron transfer pathway has been demonstrated for
the anaerobic methanogen Methanococcus maripaludis (Choi
and Sang, 2016). Here, the electron uptake seems dependent
on extracellular formate dehydrogenases and hydrogenases that
catalyze the cathodic production of hydrogen and formate, which
act as soluble electron donors for microbial activity (Deutzmann
et al., 2015).

Indirect Mechanism
Generally, in BES for bioremediation and bioproduction a
power input is given to reduce cathodic potential and drive
thermodynamically unfavorable bioelectrochemical reductions.
If the Ecath is more negative that the standard redox potential
of the H+/H2 couple, molecular H2 is generated at the
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cathode. The majority of acetogens, methanogens as well as
SRM are able to use H2 as electron donor. Consequently,
abiotic H2 can easily mediate the EET from cathode to
hydrogenotrophic microorganisms. In addition, similar to the
case of M. maripaludis, solubles enzymes, released by SRM
after cell lysis, could increase the abiotic production rate of
H2 and even formate by decreasing the overpotentials of these
abiotic electroreduction processes (Figure 1C). Indeed, SRM are
characterized by a high amount of soluble periplasmatic and
cytoplasmatic hydrogenases and formate dehydrogenases (Rabus
et al., 2006).

Direct Mechanism
As discussed above, D. orientis, D. piger, and D. corrodens strain
IS4 have shown ability to grow in cathodic environments with
applied potentials too positive for the abiotic H2 evolution,
suggesting a direct EEU requiring a physical interaction between
the electrode and the microbial cells (Figure 1B).

D. piger andD. corrodens strain IS4 belong to the cytochrome-
rich group of SRM, both having the periplasmatic TpIc3, but
not D. orientis (Rabus et al., 2006). Nevertheless, the OM
proteins that permit the entrance of extracellular electrons inside
SRM cells and the subsequent reduction of periplasmatic redox
components have yet to be elucidated. Electrochemical and
infrared spectroelectrochemical analyses identified c-Cyt as redox
active components associated with the OM of D. corrodens
strain IS4 and are, thus, possibly involved in direct EEU (Beese-
Vasbender et al., 2015b). These results are supported by the
very recent study of the electron uptake mechanism of another
iron-corroding SRM, Desulfovibrio ferrophilus IS5 (Deng et al.,
2018). This strain was isolated from marine sediment with
D. corrodens IS4 (Dinh et al., 2004). Biochemical, transcriptomic,
and microscopic analyses of D. ferrophilus IS5 pointed out a high
expression of different OM multiheme cytochromes in response
to organic electron donor limitation. Moreover, transmission
electron microscopy revealed segmented nanowire structures,
strongly positive for cytochrome staining and very similar to the
ones of S. oneidensis, suggesting that also D. ferrophilus IS5 can
use nanowires for EEU (Deng et al., 2018).

BES TECHNOLOGIES BASED ON
ELECTROAUTOTROPHIC SRM

With growing interest in Microbial Electrolysis Cell (MEC)
(Logan and Rabaey, 2012), SRM have started to be applied in
biocathodic systems. This section outlines the recent applications
of electroautotrophic SRM-based biocathodes, using CO2 as
inorganic carbon source.

Sulfate-Rich Waters Treatment
Sulfate-rich wastewaters require treatment before being
discharged to the environment, as this anion may create acute
laxative effects in humans and it may increase dissolution
of metals in water resources (Gomez et al., 1995). Biological
sulfate removal technologies are based on the exploitation of
SRM. Sulfate-rich wastewaters are usually deficient in organic
matter and, thus, external electron donors are required to

achieve complete sulfate reduction in bioreactors (Liamleam
and Annachhatre, 2007). While methanogens are generally
more competitive to use organic electron donors, autotrophic
SRM are generally more efficient in H2 utilization. However,
the application of hydrogen reports several disadvantages, like
cost and safety aspects of H2 storage. BES can overcome some
of these limitations since the production/consumption of H2

occur in the same reactor, without H2 waste, and with operations
at atmospheric temperature and pressure. Electricity-driven
autotrophic sulfate-reduction has been reported by several
authors (Su et al., 2012; Coma et al., 2013; Luo et al., 2014; Pozo
et al., 2015, 2017a; Blázquez et al., 2017) and an overview is
presented in Table 1. The first sulfate-reducing biocathode used a
mixed culture originated from wastewater and at Ecath = −0.2V
vs. SHE a maximum sulfate reduction rate of 0.02 g L−1

day−1 was achieved (Su et al., 2012). Thereafter, many studies,
mostly with Desulfovibrio, have investigated different Ecath, BES
operation conditions cathodic electrode materials, inoculum
source and start-up strategies (Table 1). To date, the highest
bioelectrochemical sulfate reduction rate of 5.6 g L−1 day−1 was
obtained with a mixed microbial community collected from
previous sulfate-reducing BES reactors at an Ecath of −1.1V vs.
SHE (Pozo et al., 2017a).

Sulfide is the principal product of biological sulfate respiration
and it may lead to significant issues such as corrosion, bad odors
and human health toxicity. For real application of BES in sulfate-
rich water treatment, a second step of sulfide transformation
to elemental sulfur should be integrated. Two recent studies
have combined the bioelectroreduction of sulfate to sulfide with
the recovery of elemental sulfur (S0) through the use of sulfur-
oxidizing bacteria in the anodic chamber of a separate BES,
resulting in a S0 recovery of 74% (Pozo et al., 2017b), or in the
same biocathodic system by using part of the anodic-produced
oxygen that partially diffuse to the cathode through the ion
exchange membrane (Blázquez et al., 2016).

Hydrogen Production
H2 was the first value product generated through BES technology
(Liu et al., 2005; Rozendal et al., 2006). Compared to conventional
methods (dark fermentation, biophotolysis, water electrolysis
and water photolysis), H2 production with MECs shows multiple
advantages. Firstly, MECs can theoretically produce hydrogen
with an energy inputmuch lower than for industrial electrolyzers,
1 kWh m−3H2 (Rozendal et al., 2008) vs. 4.5–5 kWh m−3H2

(Wang et al., 2014). Secondly, no precious metals catalysts
are needed since both anodic and cathodic reactions can be
catalyzed by electroactive microorganisms (Jafary et al., in press).
Thirdly, cathodic biocatalysts can use the CO2 originating from
organic matter as inorganic carbon source for cathodic H2

production. MEC biocathodes are usually inoculated with the
effluent of running BES or by directly transferring used bioanodes
or biocathodes to new cathodic chambers (Hasany et al.,
2016). Microbial community analysis of several H2-producing
biocathodes revealed SRM as amongst the dominant bacteria
(Table 1). SRM, indeed, have an extremely high hydrogenase
activity and in sulfate limitation conditions can produce H2
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TABLE 1 | Overview of mixed-community electroautotrophic SRM-based biocathodes for sulfate removal and H2 production.

SRM-Biocathodes for sulfate-rich water treatment

Inoculum Dominant species Operation mode Ecath (V

vs. SHE)

SO2−

4
reduction rate

(g L−1 day−1)

CE

sulfate%

References

Enriched WWT

sludge

Desulfobulbus propionicus,

Geobacter spp.

Fed-batch −0.2 0.015 72 Su et al., 2012

MFC effluent – Continuous −0.26 0.06 – Coma et al., 2013

Enriched WWT

sludge

– Continuous −0.6 0.19 47 Luo et al., 2014

Non-acclimated

consortia +

autotrophic

acetate-producing

biocathode

Methanobacterium

Desulfovibrio

Desulfomicrobium

Fed-batch

Continuous

−0.9

−1.1

0.19

5.6

5

78

Pozo et al., 2015

Pozo et al., 2017a

Acclimated sediment Desulfovibrio Fed-batch −0.7 0.03 16 Teng et al., 2016

Lab-scale sewer Desulfovibrio Fed-batch −1 0.7 85 Blázquez et al., 2017

Sediment Desulfovibrio Fed-batch −0.7 0.06 25 Luo et al., 2017

Enriched river

sediment

Desulfovibrio

Acetobacterium

Fed-batch −0.85 0.15 56 Hu et al., 2018

SRM-Rich Biocathodes for H2 production

Inoculum Dominat species Operation mode Ecath (V

vs. SHE)

H2 production rate

(m3 m−3 day−1)

CE

H2%

References

Marine sediment

MFC

Eubacterium limosum,

Desulfovibrio sp.A2,

Rhodococcus

Batch −0.54 0.08 mmoles – Pisciotta et al., 2012

Effluent of 4 year old

MFC and MEC

Desulfovibrio vulgaris Continuous −0.7 0.63 – Croese et al., 2011

MEC effluent Hydrogenophaga

Desulfovibrio

Continuous −0.7 2.7 – Croese et al., 2014

Palm oil mill effluent

enriched in SRM

– Batch Rext

1�

1.85 – Jafary et al., 2017

Except for the work of Jafary et al. (2017), all the BES studies reported in the table operated in MEC mode.

CE, coulombic efficiency; Rext, external resistance.

fermentatively (Rabus et al., 2006). Very recently, Jafary and co-
workers have purposely enriched a palm oil mill effluent sample
for autotrophic SRM and then used this as inoculum source for
biocathodic H2 production. The SRM enriched-biocathode was
able to generate 1.85m3 H2/ (m

3·d) in acidic catholyte conditions
(pH= 4) (Jafary et al., 2017).

It should be highlighted that the sulfate concentration in
the catholyte of SRM-based MEC has to be limited not only
to encourage SRM fermentative metabolism, but also to avoid
the generation of a harmful off-gas mixture of H2S and
H2. Researchers should start to focus their attention on the
purification of the produced H2, especially in the case of mixed-
community biocathodes.

Microbial Electrosynthesis Enhancement
BES research on biocathodic production of alternative fuels and
higher value chemicals from CO2 has caught much attention
in the last years. Methane and acetate are, usually, the main
products of this microbial electrosynthesis (MES), particularly

in pure culture-based systems (Tremblay and Zhang, 2015).
For practical implementation, the generation of molecules with
higher value than acetate, such as longer carbon-chain organic
compounds and alcohols, is desirable. Approaches with mixed-
culture MES that exploit intermediate metabolite transfer and
microbial cooperation show some success to extend the product
spectrum to n-butyrate, propionate, ethanol, isopropanol and
caproate (Ganigué et al., 2015; Arends et al., 2017; Batlle-Vilanova
et al., 2017; Jourdin et al., 2018). In addition, the low rate EEU
of electroautotrophic acetogens and methanogens still constitute
a big limit for application on a commercial scale. Especially
in undefined mixed community biocathodes, high negative
potentials are applied to allow H2-mediated bioproduction
processes, resulting in high energetic efficiency losses.

Very recently, researchers have evaluated the enhancement of
MES rates through syntrophic growth of SRM with acetogens
or methanogens (Deutzmann and Spormann, 2017; Song et al.,
2017; Xiang et al., 2017). By adding low concentration of
sulfate in the catholyte of a MES, Xiang et al. enriched the
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biocathodic community in Desulfovibrionaceae (37%), resulting
in a 2.7-fold increase in acetate production in comparison to a
MES with lower abundance of SRM (Desulfovibrionaceae 7.3%).
As proof of concept, the Spormann group evaluated two defined
co-culture biocathodes: D. corrodens strain IS4 as high rate
electron uptaking and H2 producing strain was combined with
Acetobacterium woodi, as acetogenic biocatalyst, or with M.
maripaludis, as methane producer (Deutzmann and Spormann,
2017). A. woodi is not able to directly consume electrons from
the cathode to produce acetate (Nevin et al., 2011), but in this
case the co-culture showed acetate production rate of 0.21–0.23
µmol cm−2 h−1 at Ecath = −0.4V vs. SHE. The D. corrodens-M.
maripaludis co-culture exhibited a methane production 20-times
higher (0.6–1.2 µmol h−1 cm−2) (Deutzmann and Spormann,
2017) compared to a pure cultureM. maripaludis cathode poised
at −0.6V (0.05 µmol h−1 cm−2) (Lohner et al., 2014). This
study opens the door for the exploitation of defined co-cultures
for microbial electrosynthesis of higher value chemicals from
CO2. Thereby, naturally efficient electroautotrophic strains, can
be coupled with acetogenic engineered strains. Importantly,
this combination of an efficient cathodic EEU catalyst with an
efficient bioproduction catalyst in the bulk liquid allows for a
better use of the entire volume of the cathodic reactor. For the
real scale-up of the MES process using SRM, researchers should
consider also undesired MIC activities of these biocatalysts and,
thus, avoid the use of metallic materials in the reactor design.

CONCLUDING REMARKS AND OUTLOOK

With the aim to mitigate climate change, much research
efforts have been initiated toward the development of new
biotechnologies able to convert CO2-rich waste gases into
valuable products. MES represents one of these technologies.
Thereby, the exploitation of autotrophic SRM in CO2-based
cathodic bioprocesses has just begun. With this mini-review,
we highlight that SRM-based biocathodes represent a very
promising technology for sustainable and environmentally
friendly bioremediation and bioproduction applications. Further

understanding and characterization of these electroautotrophic
biocatalysts will enable successful realization of SRM-based BES
technologies. First of all, more effort should be addressed toward
the screening of other Fe(0)-corroding strains, in order to
likely discover SRM with superior EEU rate capacity. Moreover,
the complete elucidation of the molecular mechanisms beyond
the EEU transport chain will allow genetic and metabolic
engineering of these biocatalysts for the incrementation of
their natural electron uptake rate and to extend the product
spectrum. From an engineering point of view, the most critical
challenge to achieve the commercialization of BES technologies
is the development of a cost-effective and scalable reactor
design. The combination of the recovery of multiple value-added
products could possibly help to cut down the implementation
cost. The versatility of electroautotrophic SRM could positively
contribute in accomplishing this goal. For example, the sulfide
produced by SMR biocathodes can be exploited for the
precipitation of heavy metals, combining, thus, the treatment
of sulfate-rich wastewaters and metal-rich industrial effluents
with the recovery of precious metals. Thus, with the highlighted
new developments and emerging technologies the formerly
considered destructive process of MIC might open new ways
to biotechnological productions and environmental engineering
strategies.
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