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Pre-lithiated sulfur materials are promising cathode for lithium-sulfur batteries. The

synthesis of lithium sulfide-carbon (Li2S-C) composite by carbothermic reduction of

lithium sulfate (Li2SO4) is investigated in this study. The relationship between reaction

temperature and the consumption of carbon in the carbothermic reduction of Li2SO4

is first investigated to precisely control the carbon content in the resultant Li2S-C

composites. To understand the relationship between the material structure and the

electrochemical properties, Li2S-C composites with the same carbon content are

subsequently synthesized by controlling themass ratio of Li2SO4/carbon and the reaction

temperature. Systematic electrochemical analyses and microscopic characterizations

demonstrate that the size of the Li2S particles dispersed in the carbon matrix is the key

parameter determining the electrochemical performance. A reversible capacity of 600

mAh g−1 is achieved under lean electrolyte condition with high Li2S areal loading.

Keywords: lithium-sulfur batteries, lithium sulfide, lithium sulfate, carbothermic reaction, carbon composite

INTRODUCTION

Lithium-sulfur (Li-S) batteries have received intensive investigations over the past decade due to
its great potential as a high-capacity rechargeable battery technology (Ma et al., 2015; Manthiram
et al., 2015; Wild et al., 2015; Fang et al., 2017; Peng et al., 2017; Zheng et al., 2017; Chen et al.,
2018). To eliminate the potential safety hazard induced by the Li metal anode, high-capacity non-
Li anodes, particularly silicon-based materials, have been sought as the alternative (Yang et al.,
2010; Agostini et al., 2014; Cao et al., 2015; Jha et al., 2015; Guo et al., 2017). Utilizing non-Li
anodes requires lithium sulfide (Li2S) cathode materials, which have been produced by a number
of methods reported in literature. The most common method is to physically mix Li2S and carbon
materials with high-energy ball milling (Cai et al., 2012; Jeong et al., 2013; Chen et al., 2014; Liu
et al., 2015a; Lee et al., 2016; Liang et al., 2016). Li2S solution in ethanol was used to deposit Li2S
on various carbon structures (Wu et al., 2014a,b,c, 2015, 2016; Wang et al., 2015; Han et al., 2016;
Zhou et al., 2016). Other solvent such as anhydrous methyl acetate was also used to disperse Li2S
in carbon (Seh et al., 2014). A number of chemical methods were also reported: Li2S-C composite
could be produced from sulfurization of lithium carbonate with H2S (Dressel et al., 2016; Hart et al.,
2018). Li2S-C composite was also synthesized via the reaction between lithium polysulfides and the
nitrile group in polyacrylonitrile (Guo et al., 2013). A recently reported novel method utilized the
thermal reaction between metallic Li and gaseous carbon disulfide (CS2) to form carbon coated
Li2S in one step (Tan et al., 2017). Another chemical method to produce Li2S-C composites is to
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TABLE 1 | Elemental analysis of KJB before and after the hydrogen reduction

treatment.

Elements C (wt.%) H (wt.%) N (wt.%) O (wt.%)

Before 97.72 0.48 0.29 1.51

After 98.87 0.22 0.17 0.74

convert lithium sulfate (Li2SO4) to Li2S via carbothermic
reduction (Yang et al., 2013; Kohl et al., 2015; Li et al., 2015;
Liu et al., 2015b; Wang et al., 2016; Yu et al., 2017; Zhang
et al., 2017; Ye et al., 2018). Comparing to all other methods
mentioned above, carbothermic reduction of Li2SO4 involves
neither hazardous gas such as gaseous CS2 or H2S, nor air
sensitive reactants such as Li2S or Li metal. Furthermore, Li2S-C
composites can be produced in one-step reaction in carbothermic
reduction of Li2SO4. In this study, we focus on understanding
the effect of reaction temperature on stoichiometric ratio of
C/Li2SO4 in the carbothermic reduction and the structure-
property relationship of the obtained Li2S-C composites as the
cathode materials for Li-S batteries.

MATERIALS AND METHODS

Temperature Effect on C/Li2SO4

Stoichiometric Ratio
All reagents were used after purchase without further purification
unless otherwise noted. Ketjen black EC-600JD (KJB, purchased
from AkzoNobel) was used as the carbon source in this study. To
minimize the effect of the impurity in KJB (mainly oxygen) on the
carbothermic reduction of Li2SO4, KJB was treated by hydrogen
reduction: In a typical experiment, approximately 400mg KJB

was heated under hydrogen/argon (5%/95%) environment at
1,000◦C for 3 h. Elemental contents of KJB before and after the
hydrogen treatment was analyzed as shown in Table 1.

Li2SO4 and KJB was thoroughly mixed by mechanical ball
milling with different weight ratios including 2.0:1, 2.3:1, 2.5:1
and 2.9:1. The mixture was heated in a tube furnace under
flowing argon (Ar) environment to form Li2S-C composite. The
temperature of the tube furnace was first raised to 200◦C from
room temperature at 5◦C min−1. The temperature was held at
200◦C for 2 h, followed by further increasing to neither 700
or 750◦C at 5◦C min−1. The temperature was kept at 700 or
750◦C for 6 h to complete the carbothermic reduction of Li2SO4.
Ethanol was used to leach out the Li2S in the resultant Li2S-
C composite to measure the conversion of Li2SO4 and carbon
content, from which the C/Li2SO4 stoichiometric ratio in the
carbothermic reduction can be calculated.

Li2S-C Composite Synthesis and
Characterization
To improve the areal loading the Li2S-C composite at the
cathode, micron-sized carbon particles were first synthesized
with KJB as the precursor following the method reported by
Lv et al. (2015). In a typical synthesis of Li2S-C composite, the
micron-sized carbon particles were mixed into 5mL aqueous

solution of Li2SO4 with a specific Li2SO4/C ratio, followed
by dispersion by sonication for 5min and thorough stir for
additional 24 h. One hundred milliliter ethanol was then added
into the mixture and stirred for 10min. The Li2SO4-C dispersion
in the water/ethanol mixture was dried with rotary evaporator at
90◦C. The obtained Li2SO4-C mixture was further dried at 80◦C
under vacuum overnight. To produce the Li2S-C composite, 0.5 g
of Li2SO4-C mixture was heated under flowing Ar environment
in a tube furnace using the same process as aforementioned.

The Li2S-C composite was characterized by powder X-Ray
diffraction (XRD, PANalytical). Kapton tape was used to seal
the XRD sample to prevent Li2S from reacting with moisture
in the ambient environment. Nitrogen adsorption-desorption
isotherms of the Li2S-C composites were measured with a
surface area and porosity analyzer (Micromeritics ASAP2020).
The surface area was obtained with the Brunauer-Emmett-
Teller (BET) method. To avoid Li2S reacting with environmental
moisture, all Li2S-C composites were transferred into the BET
sample tube in the glovebox and sealed with Teflon tape. The
microstructure of the Li2S-C composites was characterized with
scanning electron microscopy (SEM) and elemental mapping
was obtained by energy-dispersive X-ray spectroscopy (EDX). To
perform the SEM characterization, the samples were carefully
sealed into a stainless-steel vacuum tube in an Ar-filled glovebox.
The sample tube was transferred into the SEM chamber under
flowing argon protection using a glove-bag.

Electrode Fabrication, Cell Assembly and
Testing
To prepare the electrode, Li2S-C composite was mixed with
carbon black and polyvinylidene difluoride with a weight ratio
of 85:5:10 in N-methyl-2-pyrrolidone. The obtained slurry was
uniformly pasted on a carbon coated aluminum foil current
collector and dried in the Ar-filled glovebox at 135◦C for at least
15 h. The dried electrodes were assembled into 2032-type coin
cells with Li foil anode (99.9%, Alfa Aesar) and Celgard R© 2500
separator. The electrolyte used in this study was 1M lithium
bis(trifluoromethanesulfonyl)imide solution in a mixture of 1,3-
dioxolane, dimethoxyethane and 1-butyl-1-methylpyrrolidinium
bis(trifluoromethanesulfonyl)imide (1:1:2 by vol.) with 1.5 wt.%
of LiNO3. The electrolyte to Li2S ratio (µL/mg) was kept at 7
in all coin cells testing. The average areal loading of Li2S on
the electrode is 2mg cm−2. The first charge (activation) was
performed at a rate of C/50 (24mA g−1) to a charge cutoff of
3.8 V vs. Li+/Li. The subsequent cycles were performed at C/10,
C/5, C/2, and 1C between 2.8 and 1.7 V.

RESULTS AND DISCUSSION

Despite the previous reports on synthesizing Li2S-C composites
via carbothermic reduction of Li2SO4, the influence of reaction
temperature on the stoichiometric ratio between carbon and
Li2SO4 has not been investigated. As shown in Reaction 1,
carbothermic reduction of Li2SO4 generally produces both
carbon dioxide (CO2) and carbon monoxide (CO) (Li et al.,
2015; Zhang et al., 2017). However, the ratio between CO2 and

Frontiers in Energy Research | www.frontiersin.org 2 June 2019 | Volume 7 | Article 53

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Shi et al. Lithium Sulfide-Carbon Cathode

CO changes with temperature due to their different stability as
the function of temperature (Zhang et al., 2017). Therefore, the
carbothermic reduction of Li2SO4 can be expressed as Reaction
2, in which the stoichiometric ratio of C/Li2SO4, x, is a function
of temperature. To synthesize Li2S-C composite in one-step
carbothermic reduction with precise carbon content, it is critical
to learn the value of x at different temperature.

Li2SO4 + xC →Li2S+ yCO2 + zCO (1)

Li2SO4 + xC →Li2S+ xCO4/x (2)

With certain Li2SO4/C mass ratio (carbon in excess) and
assumption of 100% conversion of Li2SO4 to Li2S, the Li2S
content in the Li2S-C composite from the carbothermic
reduction can be calculated as the function of the stoichiometric
ratio of C/Li2SO4 as shown in Figure 1. The four solid lines
represent four different Li2SO4/C mass ratio, 2.0:1, 2.3:1, 2.5:1,

FIGURE 1 | Mass ratio of Li2S in the Li2S-C composite as the function of

stoichiometry ratio of C/Li2SO4 with different Li2SO4/C mass ratio at 2.0:1,

2.3:1, 2.5:1, and 2.9:1 at 700 and 750◦C.

and 2.9:1, which all have excess of carbon. Carbothermic
experiments were first performed with Li2SO4/C mass ratio
of 2.0:1, 2.3:1 and 2.5:1 at 700 and 750◦C. The reaction at
each condition (temperature and Li2SO4/C mass ratio) was
repeated at least three times to minimize experimental errors.
The content of Li2S in the resultant Li2S-C composite was
measured and the results demonstrated full conversion of Li2SO4

to Li2S in all experiments. Therefore, the stoichiometric ratio
of C/Li2SO4, x, was calculated at all experimental conditions
and the average values were marked on the theoretic curves in
Figure 1. It is clear that the stoichiometric ratio of C/Li2SO4

is lower at 700◦C, indicating less carbon is consumed at lower
temperature with higher CO2 content in the gaseous products.
The experimental results can also be linearly fitted to obtain
an empirical relationship between Li2S content in Li2S-C and
the stoichiometric C/Li2SO4 ratio at different temperature. The
empirical relationship at 700◦C is Li2S wt.%= 175.3 – 54.9x (red
dotted line) and the one at 750◦C is Li2S wt.% = 212.0 – 58.6x

(blue dotted line).
To study the structure-property relationship of the Li2S-C

composites, we need to select a composite from each reaction
temperature with same Li2S content. One selected Li2S-C
composite is produced at 750◦C with Li2SO4/C mass ratio of
2.5:1, which contains 72 wt.% of Li2S. The same Li2S content
was projected on the empirical linear fitting of Li2S content vs.
stoichiometric C/Li2SO4 ratio at 700

◦C, from which the required
Li2SO4/C mass ratio was calculated to be 2.9:1. The carbothermic
reduction of Li2SO4 at 700

◦C with Li2SO4/C mass ratio of 2.9:1
yielded Li2S-C with 71 wt.% Li2S content, which agreed very well
with the prediction.

The two Li2S-C composites with the same Li2S content
are denoted as Li2S-C700 and Li2S-C750 according to the
reaction temperature. The XRD patterns of these two composites
in Figure 2A indicate well-crystallized Li2S formed from the
carbothermic reduction of Li2SO4. The broad peak around 20◦

is due to the Kapton tape protecting Li2S from reacting to the
ambient moisture. Based on the full-width at half-maximum
of the XRD peaks, Li2S-C750 has smaller crystal grain size
than that of Li2S-C700. The BET surface areas of these two

FIGURE 2 | (A) XRD patterns and (B) N2 adsorption-desorption isotherms of the Li2S-C composites synthesized at different temperature.
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FIGURE 3 | (a) SEM image of Li2SO4-C mixture with Li2SO4/C mass ratio of 2.5:1, (b) SEM image, (c,d) EDX elemental mapping, and (e) Li2S size distribution of

Li2S-C750; (f) SEM image of Li2SO4-C mixture with Li2SO4/C mass ratio of 2.9:1, (g) SEM image, (h,i) EDX elemental mapping and (j) Li2S size distribution of

Li2S-C700.

Li2S-C composites from the N2 adsorption-desorption isotherms
(Figure 2B) are very close: 350.8 m2 g−1 for Li2S-C750 and 326.8
m2 g−1 for Li2S-C700. We believe the higher carbon content in
the Li2SO4-Cmixture at the 750◦C reaction alleviated the particle
aggregation thus leading to smaller Li2S particles.

SEM was used to characterize the microstructure of the Li2S-
C composites. Figure 3a shows the structure of the Li2SO4/C

mixture before carbothermic reduction for Li2S-C750. Li2SO4

exhibited typical monoclinic crystal structure as hexagonal plate
with crystal size around 10µm. Interestingly, the carbothermic
reduction of Li2SO4 yielded spherical Li2S particles dispersed
in carbon matrix as displayed in the SEM image in Figure 3b

and the EDX elemental mapping in Figures 3c,d. The SEM
characterization of the Li2S-C700 demonstrated very similar
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FIGURE 4 | CV curves of (A) Li2S-C750 and (B) Li2S-C700; the 1st, 2nd, 10th, and 50th cycles of charge-discharge of (C) Li2S-C750 and (D) Li2S-C700 at C/5; the

cycle stability at C/10, C/5, C/2, and 1C of (E) Li2S-C750 and (F) Li2S-C700.

microstructure with Li2S-C750 as displayed in Figures 3f–i. The
particle size of Li2S was measured by ImageJ software and
the average particle size was analyzed by Gaussian distribution
over 700 particles. As the particle size distribution shown in
Figures 3e,j, the Li2S particle size in Li2S-C750 was smaller than
that in Li2S-C700: The average Li2S particle size was 4.4µm in
Li2S-C750 and 6.4µm in Li2S-C700.

Figures 4A,B show the CV cycles of Li2S-C750 and Li2S-
C700 electrodes. The Li2S-C750 electrode demonstrated slightly
lower delithiation potential than Li2S-C700 in the first cycle (3.5
vs. 3.6 V for the cathodic peak, respectively). This observation
is consistent with the first galvanostatic delithiation (charge)

curves of these two composites shown in Figures 4C,D. Li2S-
C750 clearly demonstrated a lower activation potential at
approximately 3.2V vs. Li+/Li in the first two third of the
charge process. On the contrary, Li2S-C700 showed much
higher activation potential at 3.5 V vs. Li+/Li, which led to
a lower first charge capacity. We speculate that the lower
delithiation overpotential of Li2S-C750 is attributed to its
structural advantage, mainly smaller Li2S particle size. Previous
studies also reported that larger Li2S particle size could result to
higher activation potential in the first charge process (Yang et al.,
2012; Kohl et al., 2015; Liu et al., 2015a; Wang et al., 2016; Ye
et al., 2018). In addition to the effect from particle size, activation
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potential of Li2S can also be affected by surface impurities such
as Li2SO4, Li2CO3, and Li2O (Jung and Kang, 2016; Vizintin
et al., 2017). The better microstructure of Li2S-C750 is also
evidenced by the lower charge-discharge potential hysteresis
(Figures 4C,D), better cycle stability and rate capability shown
in Figures 4E,F. The average initial discharge capacity of Li2S-
C750 is 600 mAh g−1 (average of 3 electrodes), and 400 mAh
g−1 capacity was retained after 200 cycles at C/5. The specific
capacity of Li2S-C750 at C/2 only slightly decreased from C/10
and C/5, indicating good rate capability. On the other hand, Li2S-
C700 suffered from not only lower specific capacity at C/10, but
also inferior rate capability as indicated by the low capacity at
C/5, C/2, and 1C. It is clear that particle size of Li2S is the critical
parameter for rate performance of the Li2S-C composites. It is
also worth noting that the initial specific capacity of Li2S-C700

started with slight increase during cycling at C/10, which can
be attributed to its inferior activation process due to larger Li2S
particle size.

CONCLUSION

In summary, the synthetic route of Li2S-C from carbothermic
reduction of Li2SO4 was investigated in this study.
Particularly the relationship between reaction temperature and

stoichiometric ratio of C/Li2SO4 in the carbothermic reduction
was obtained for the first time. Through investigations on
microstructures and electrochemical properties, we speculated
that smaller Li2S particle size dispersed in carbon matrix is the
key parameter to improve the electrochemical performance.
Methods to further reduce particle size of Li2S via carbothermic
reduction of Li2SO4 will be investigated in future studies.
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