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Classical PRA methods such as Fault Tree Analysis (FTA) and Event Tree Analysis (ETA)

are characterized as static methods due to predetermined event sequences and success

criteria of frontline systems. They are widely accepted for risk analysis of nuclear power

plants. Unlike classical PRA, Dynamic PRA (DPRA) couples the stochastic random

failures of system with deterministic analysis (by simulation) to determine the risk level

of complex systems. It considers the safety significance of the timing and order of

events on accident progression and consequences. However, it is time-consuming to

establish a complicated full-scope system simulation model. Meanwhile, thousands of

accident scenarios are generated due to randomness of state transition, uncertainty

of model and parameters. An overload of modeling, calculating, and post-processing

will arise. So, it is a prospective and challenging idea to integrate the classical PRA

method with the dynamic PRA method. The objective of this paper is to address

an integrated method of risk quantification of accident scenarios. It points out how

to treat time-dependent interactions of accident dynamics including random failures,

temporal events, configuration changes, and physical process parameters explicitly.

Possible dependencies and configuration consistency issues accounting for Discrete

Event Tree (DET) branch probabilities are discussed. For DET simulation, some of

non-safe-related components to be analyzed could be modeled by FTs for conditional

branching probability, instead of a computationally expensive simulation model. A

method of integrating FT into DET is introduced which emphasizes on computing the

conditional branch probability with FTs online, as well as developing a DET model in

case of temporal relations of failure. Finally, a simple case of a Low Pressure Injection

System in Large Break Loss-of-Coolant Accident (LBLOCA) scenario is provided as

a demonstration.
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INTRODUCTION

Overview of Classical PRA and Dynamic
PRA Method
The classical PRA methods, such as Event Tree Analysis (ETA),
Fault Tree Analysis (FTA), Reliability block Diagram (RBD)
are widely accepted throughout nuclear industry. ET/FT are
generally based on static Boolean logic structure. ET is used
to inductively model the accident progression to dictate all
possible accident sequences based on engineering judgment and
thermo-hydraulic analysis. FT is used to deductively model the
system failure by a top-down, hierarchical tree to analyze all the
possible combinations of failure events. But PRA methodology
faces challenges including the treatment of time dependent
interactions (accident dynamics) and the propagation of physical
process uncertainties to risk.

Dynamic PRA (DPRA) have been developed since 1980s.
Under the framework of DPRA, many methods can lead
to a more realistic risk assessment for nuclear power plant,
originating from Dynamic Event Tree Analysis Method
(DETAM; Acosta and Siu, 1992; Siu, 1994), Dynamic Logical
Analytical Methodology (DYLAM; Cojazzi, 1996), Dynamic
Event Tree (DET; Acosta and Siu, 1993). DPRA evaluates the
timing and sequencing of events in accident progression and
identifies the failure paths under all possible accident scenarios.
DPRA is also treated as simulation-based PRA (Mosleh, 2014),
or Integrated Deterministic and Probabilistic Safety Assessment
(IDPSA), and related reviews and literatures can be found in the
references (Aldemir, 2013; Zio, 2014). Among DPRA methods,
DET can partially solve the problem of timing and ordering
by coupling the stochastic analysis (reliability) with accident
simulation. Along with theoretical research, mature modeling,
and computational tools of DPRA have been developed for
risk quantification and uncertainty analysis, like Accident
Dynamics Simulator (ADS; Hsueh and Mosleh, 1996), Analysis
of Dynamic Accident Progression Trees (ADAPT; Hakobyan
et al., 2008), Simulation-based PRA (SimPRA; Mosleh et al.,
2004), Risk Analysis Virtual Environment (Alfonsi et al., 2017),
so as to assist PRA practitioners in improving the modeling
and computing efficiency. However, DPRA still suffers from
several difficulties:

Abbreviations: ACC, Accumulator; ADS, Accident Dynamics Simulator; CCF,

Common Cause Failure; CCS, Component Cooling Water; CDF, Cumulative

Distribution Function; DDET, Discrete Dynamic Event Tree; DET, Dynamic Event

Tree; DETAM, Dynamic Event Tree Analysis Method; DYLAM, Dynamic Logical

Analytical Methodology; DPRA, Dynamic Probabilistic Risk Assessment; ECCS,

Emergency Core Cooling System; ET, Event Tree; ETA, Event Tree Analysis; FT,

Fault Tree; FTA, Fault Tree Analysis; HPI, High Pressure Injection; HX, Heat

Exchanger; IDPSA, Integrated Deterministic and Probabilistic Safety Assessment;

INL, Idaho National Laboratory; LBLOCA, Large Break Loss-of-Coolant Accident;

LPI, Low Pressure Injection; LPR, Low Pressure Recirculation; MCDET, Monte

Carlo Dynamic Event Tree; MCS, Minimal Cut Set; MCSQ, Minimal Cut

Sequence; MGL, Multiple Greek Letter; NPP, Nuclear Power Plant; PAND,

Priority-AND; PBRI, Performance-based reliability indicator; PRA, Probabilistic

Risk Assessment; RAVEN, Risk Analysis Virtual Environment; RBD, Reliability

block Diagram; RCSS, Reactor Containment Spray System; SCAIS, Simulation

Code System for Integrated Safety Assessment; SEQ, Sequence Enforcing Gate; SF,

Sequential Failure; SimPRA, Simulation-based PRA.

• Tens of thousands of simulation runs are required, even
for only one initiating event, when dealing with issues of
complex systems;

• It requires an intensive modeling and expensive computing
work compared to classical PRA;

• DPRA generates a massive amount of scenario data
and requires a post-processing capability of clustering
and data mining.

The first challenge has been partly overcome by time
discretization, process discretization, appropriate parameter
sampling strategies, branching rules, pruning rules, or leveraging
the similar branches. The investigation of the third issue is still
in progress, such as the traditional scenario clustering algorithm
(Mandelli et al., 2013) and topological clustering algorithm
(Maljovec et al., 2016). In addition, the extensive computing
problem can be addressed by parallel processing and configuring
high-performance computing resource. But for the second issue,
a refined simulation model is not required for some components
of non-safety systems or supporting systems in DPRA which
could reduce the work of modeling and debugging.

Currently, DET is one of the most prospective methods
in discrete-time DPRA. DET is similar to traditional ET as
it evolves the accident sequences by spawning branch events.
However, the difference is that the timing and order of ET
accident sequences following an initiating event is predetermined
by PRA analysts without any interaction of system responses,
while that of DETs are determined “online” by a time-dependent
system evolution model and a set of branching rules. In general,
DETs are classified into two kinds depending on the treatment
of continuous stochastic variables: (1) discretization, such as
Discrete Dynamic Event Tree (DDET); (2) sampling-based, such
as Monte Carlo Dynamic Event Tree (MCDET; Kloos and
Peschke, 2006) DDET discretizes continuous aleatory variables
(e.g., failure time or recovery time of equipment, operator
response time, etc.) into various branches, while MCDET adopts
Monte Carlo sampling with DET simulation (with each sample
represented by a DDET). This distinction could impact the
accuracy of final results when many continuous variables are
concerned in the accident sequences.

In recent years, the concept of “hybrid PRA” (Mandelli
et al., 2018) has been proposed as a new methodology which
refers to the integration of classical PRA into dynamic PRA.
The integrated model of DET and FT has been discussed
in previous dynamic PRA research. For DET, the conditional
probability of header events/frontline system is regarded as
a DET branching probability, which accounts for supporting
system dependencies and other dependencies among the safety
functions inDET simulations, asmentioned in section Treatment
of Dependencies in DET Modeling During Accident Analysis.
In most of current DET research, the conditional probabilities
are estimated offline (Chao and Chang, 2000) before simulation,
in order to simplify the DET simulations. An established FT or
a known probability distribution is used to represent the DET
branch probability of a certain system state. The limitations
of conditional probabilities computed offline is that it ignores
the dependencies of conditional branch probability on process
variables or operating conditions. Thus, it is not numerically
accurate enough.
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As an alternative, the conditional branch probabilities of DET
can be calculated online. It intends to take advantages of classical
PRA for treating dependencies and simplifying simulation
modeling work (Karanki and Dang, 2016). Even though basic
ideas are comprehensible, it is complex to couple the Boolean
algorithms and probabilistic calculation with dynamic accident
progression. Simulation Code System for Integrated Safety
Assessment (SCAIS; Ibánez et al., 2015; Izquierdo et al., 2017)
is one of such DET computational tools, but the consideration
of how to calculate the conditional probability online in DET
simulation is not thoroughly discussed, especially when the
branch probability is time-dependent or effected by process
variables. Also, this issue is not clearly clarified in other DET
software tools.

Goal of This Paper
The objective of this paper is to investigate how to incorporate
classical PRA models into simulation-based PRA in a consistent
manner. It addresses a new framework of risk quantification
of accident scenarios. The integration method points out how
to treat time-dependent interactions of accident dynamics
including random failures, temporal failure events, system
configuration changes, and physical process parameters
explicitly. Unlike most of DET previous literatures, this paper
does not estimate the time-dependent conditional branch
probabilities offline before DET simulation but intends to update
FT online in order to obtain DET simulation results more
realistically. So, the issue of time-dependent failure modeling is
illustrated including:

• From the point of the reliability analysis, the availability of a
component is decreasing with operating time, which gives rise
to a time-dependent failure probability. It is generally treated
as the probability of basic events related to the state duration,
with consideration of system configuration changes.

• The dynamic accident progression of a scenario is influenced
by the timing and order of events, so the failure probability of
a system has temporal relations with the events.

The paper is organized into the following five sections. The
mathematical explanation of integration FT into DET with
time-dependent and condition-dependent characteristics is
illustrated in section Mathematical Basis of Integration Method.
The treatment of potential dependencies in DET modeling
and their effect of the DET branch probability is presented in
section Treatment of Dependencies in DET Modeling During
Accident Analysis. Section Integration Method of FT into DET
focuses on technical solutions of time-dependent updating,
system configuration updating and temporal relations of failure.
Finally, a simplified case is provided for demonstration in section
Case Study.

MATHEMATICAL BASIS OF INTEGRATION
METHOD

The PRA analysis which describes the failure events of a system
or equipment is characterized by specific state, process of state

transition, while the mechanics simulation of system provides a
time-dependent system response of operating parameters during
accident evolution. The corresponding control logic is required
in Technical Specification, Accident Procedures, etc. From an
integrated point of view, an integrated model is developed which
couples probabilistic risk analysis with plant condition analysis.

The system state at time t in phase space is characterized by a
set of continuous variables and a set of discrete variables as shown
in Figure 1. Generally, the continuous variables refer to process
variables that have evolved with time, such as pressure and
temperature. The discrete variables mainly represent stochastic
behaviors such as the random failure of components, uncertainty
in the initial and boundary conditions, uncertainty of the system
model, etc.

The state of system ES(t)=[Eθ(t),Ec(t)] can be described by the
following equations (Rabiti et al., 2013),



















































∂ Eθ(t)
∂t = 4(Eθ(t),Ec(t), t)

∂Ec(t)
∂t = Ŵ(Eθ(t),Ec(t), t)

Eθ(t0)=Eθ0

Ec(t0)=Ec0

(1)

Where Eθ(t) describes the NPP status vector of operating
parameters, such as the primary pressure and temperature. Ec(t)
is a vector of discrete states for all components, such as operating
or failure state, valve open or closed. It is also named as system
configuration, i.e., possible combinations of component state.
4 represents the simulation model of system, which is used to
calculate continuous variable, especially operating parameters
response. Generally, 4 is a multi-physics and multi-scale model
of thermal-hydraulic, neutronics, material aging, etc. Γ is a time-
dependent function of equipment state transitions. It describes
the randomness of component states as a probability function.
Meanwhile, it is regulated by the control logic (e.g., setpoint
values) of a system in operating procedures. For instance, if the
water level of pressurizer exceeds an opening threshold, the relief
valve is required to action from closed to open.

For a continuously operating device, the time-dependent
failure probability can be described by Equation (2).

F(t) = P(u < t)

= 1− exp(−

∫ t

0
λ(u)du) (2)

Where λ(t) is the failure rate of component, t is working time.
The reliability method used in classical PRA is “failure-

based reliability” modeling. In this method, the accumulation of
failure time and other information are required. Furthermore,
a priori life probability function should be determined, and
the parameters of probability function should be quantified
based on the collected failure data. As a result, the failure-based
reliability model is developed to evaluate the remaining lifetime
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and reliability level of components. Basically, all the failuremodes
can be classified as traumatic failures and degradation failures.
The basic assumption of failure-based reliability modeling is that
all failures occur at an instant or in a short period of time.
According to this rule, all the failure modes can be regarded
as traumatic failures. However, this rule is not always correct
because 70–80% of failure modes of mechanical components
belongs to degradation failures.

Concerning traumatic and degradation failures, the research
on failure probability related to operating environment of
system is called “performance-based reliability.” It is based
on performance-based reliability indicators (PBRI), that is,
some of the operating variables which are strongly dependent
on reliability.

In fact, reliability parameters are usually both condition-
dependent and time-dependent, where Xt=[X1,X2, ..,Xm]

T is the
vector of PBRI. The failure rate function equipment λ(t,Xt) is
defined as

λ(t,Xt)=
f (t,Xt)

R(t,Xt)
(3)

Where f (t,Xt) is the probability density function of equipment,
R(t,Xt) is the reliability function of equipment.

Under different performance levels Xt1 and Xt2, it is assumed
that the ratio of failure rate is a constant related to performance
level at time t. Then the relationship between failure rate and
performance level is in accordance with the Proportional Hazard
Model (John, 2008)

λ(t,Xt1)

λ(t,Xt2)
=C (4)

Where C is a constant which does not vary with time, only
influenced by performance level.

Then the traumatic failure rate λ(t,Xt) can be split into two
parts as

λ(t,Xt)=λr0(t)g(β,Xt) (5)

Where λr0(t) is the baseline failure rate which is a function of
time alone, independent of performance variables. β is a vector
of coefficients, each element of which indicates the importance
or weight of each variable of Xt . g(β,Xt) is a function of
performance variables Xt and coefficient β.

To be simplified, a general form considered for g(β,Xt) is

g(β,Xt)=exp(

m
∑

i=1

βiXi) (6)

Where Xi is an element of Xt=[X1,X2, ..,Xm]
T, i= 1, 2, . . . , m.

Therefore, the unavailability function is described as

F(t,Xt) = P(s < t |Xt )

= 1− exp(−exp(

n
∑

i=1

βiXi)

∫ t

0
λr0(s)ds) (7)

Equation (7) points out the FT model of continuous running
components is not only related with the system configuration
and state duration, but also dependent on the variation of
process variables. However, it is quite difficult to quantify the
value of βi corresponding to Xi in engineering practice because
of the coupling relationship between failure mechanism and
performance level, especially for mechanical components.

TREATMENT OF DEPENDENCIES IN DET
MODELING DURING ACCIDENT ANALYSIS

In order to simplify the DET modeling process, one of the
generic modeling strategies is to select failures of pivotal
functional events/frontline systems as the headers of DET
branch. DET branch probabilities are supposed to account
for dependencies and configuration consistency among the
safety functions in DET simulations. The dependencies here
include the functional dependency, configuration dependency,
component failure dependency, and human error dependency.
Other dependencies are explicitly accounted for as the event
tree headers, such as the correlations between functional events,
correlations among initiating event and each functional events.

The functional dependency in PSA practice mainly refers
to the supporting system dependencies among functions which
result from shared supply and shared components. The safety
systems in NPP have shared electrical power, water supply, and
cooling systems. In terms of the “Small DET- Large FT” strategy,
the unavailability of supporting systems are modeled as common
modules of FT, and treated by quantitatively determining the
Minimal Cut Sets (MCS) of each sequence. Also, it is not
recommended to be explicitly modeled in DET headers, so as
to reduce the number of branches. In addition, the operating
conditions and state duration of subsequent functioning systems
depend on the continuous operating time and performance level
of previous safety systems, the response time of required human
actions. These timing and conditions are not considered in the
classical ET method.

The configuration consistency means that the unavailable
components during the accident remains irreparable until the
end of simulation time except for offsite power recovery and
EDG recovery. The component failure dependency includes the
common cause failure (CCF) of components due to similar
design defects, process of fabrication or installation, procedures
of operation. CCF events have been employed in the PRA model
to represent all possible dependent reasons in ET/FT logical
models. Some of CCF methods (NUREG/CR-6268, NUREG,
2007) have been applied in PRA modeling, such as β Factor
Model, Multiple Greek Letter (MGL) model and Alpha Factor
Model. Another type of component failure dependency is
sequential failure (SF) of components, which are normally not
explicitly considered in classical PRA, except for employment of
some dynamic gates, such as Priority-AND Gate (PAND) Gate,
Sequence Enforcing Gate (SEQ). Accordingly, the CCF modeling
and SF modeling also need to be considered in DET.

As for the human error dependency, in order to simplify
the analysis and calculation process, the correlation

Frontiers in Energy Research | www.frontiersin.org 4 August 2019 | Volume 7 | Article 74

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Xu et al. Integration of FT and DDET

between human tasks is usually divided by specifying
correlation parameters. In addition, the probability of
human error in the task should be modified according to the
level of correlation.

INTEGRATION METHOD OF FT INTO DET

The INL report (Mandelli et al., 2018) explains how the four main
classical PRA methods (Markov, ET, FT, and RBD) is extended

FIGURE 1 | The trajectory of system state in phase space.

FIGURE 2 | Characteristic parameters of CCS system.
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TABLE 1 | Mapping rules of functional failure simulation for CCS pump.

State Failure mode Functional failure simulation

Operating Operating failure Modify mass flow M < Mf, or M = 0

Set an additional stop time of operating

Standby Demand failure Shield the demand signal in control logic

Operating failure Modify mass flow M < Mf, or M = 0

Set an additional stop time of operating

to time domain. It gives a case study of the LBLOCA accident
to demonstrate how FTs can be linked to RELAP5-3D PWR
model and RAVEN Ensemble Model, and compares the classical
PRA results with dynamic PRA. The considered FTs of LBLOCA
are of four main frontline systems, i.e., Accumulator (ACC),
Low Pressure Injection (LPI) System, High Pressure Injection
(HPI) System, and Low Pressure Recirculation (LPR) System. For
each frontline system, basic events indicate the states of trains
or components, such as failure on demand, unavailable due to
test or maintenance, fail to open, etc. Monte-Carlo sampling
method is employed to sample the set of stochastic parameters
from the calculated probability distribution of basic events. As a
result, a series of simulations are generated for the calculations of
safety parameters. However, the probability distributions of basic
events have been determined before RELAP5-3D simulation.
Although the “mission time” of safety system is not illustrated,
it is usually set as 24 h in classical PRA practice conservatively.
Thus, the “mission time” of safety system is not equivalent to
the commissioning time of a frontline system for mitigating
accident successfully. Besides, all the branch conditions and
configuration changes are embedded into the simulation. The
states and state delay time of ACC,HPI, LPI, and LPR aremapped
into RELAP5-3D input file. Therefore, INL integration method
is only applicable when the probability distribution of stochastic
parameters would not change with process variables, that is,
the failure probability of a component/train is “failure-based,”
not “performance-based.”

To further extend the integration method of INL, a
combination of DDET and FT is proposed with online
calculation of conditional branch probability. The basic
assumptions of events’ behaviors are:

• Once an event occurs, it becomes logically true thereafter.
• The occurrence of an event is instantaneous, such as the

transition from false to true,
• All the components are available and irreparable.

Key Technical Issues of Integration Method
System Configuration Changes Due to Branching

Rules
Unlike ET, DET is more flexible to allow for multiple branches, if
necessary. The branching rules include:

a. The branching occurs whenever the control logic is fulfilled,
setpoint values of system are exceeded or operator actions
are required. These requirements mostly exist in NPP
design, Technical Specifications, and Emergency Operating
Procedures. The system parameters evolve with time for each

branch. Based on the possible outcome of system response,
new demands of frontline systems or human actions are
generated to perform safety functions. Thus, descendent
branching occurs and generates more scenarios because of
different events at different timings.

b. The branching occurs when a certain system parameter (such
as operating time of a component or internal pressure of
a pipe) exceeds the value corresponding to a probability
threshold of a known probability distribution. This probability
threshold rule is used for operating failures and demand
failures. Besides, in engineering practice, it is common
to discretize the distribution by the number of available
components/trains. For instance, the probability distribution
of LPI system is divided into four sections (<5, 5–50, 50–
95, >95%).

c. The branching occurs at a specific failure timing by Monte-
Carlo sampling or user-defined timing. This rule mostly
exists in MCDET.

The state transition of components determines the system
configuration of each branch. For probabilistic analysis, it is
required to update logic values of events. For the simulation
model of the system response, a set of mapping rules of
the functional failure simulation are proposed to update
the states of spawned branch nodes according to system
configuration changes. The mapping rules transfer the state
of components into related operating parameters or control
variables. The implementation of such rules is introduced as
follows. Firstly, the main functional requirements of the system
should be identified to obtain a set of system parameters
that characterize its functional state. Secondly, the function(s)
of the system is decomposed according to a hierarchical
level of system-subsystem-component. Thirdly, FMEA analysis
for each of the main functional components is carried out
to determine the characteristic parameters of components.
Equivalently, the system simulation model can be updated using
these characteristic parameters or control variables in case of
configuration changes. For example, Component Cooling Water
(CCS) System is designed to provide adequate cooling water for
certain systems with nominal temperature and flow rate. It is
composed of two redundant trains A and B. Each train has two
redundant 100%CCS pumps and two 50% heat exchangers (HX),
one tank and related valves. In normal conditions, CCS operates
with one train. To ensure the safe operation, the normal states of
the components/system are guaranteed by a set of characteristic
parameters in Figure 2, thereby one of the ways to update the
system configuration in simulation model is shown in Table 1.

Time-Dependency on Conditional Branch Probability
Unlike ET, the functional demand of a header event/frontline
system in DET is determined by a simulation model, not by
predetermined success criteria of system. Furthermore, the actual
operating time between DET nodes is determined according
to actual accident progression, which is noted as “online.” In
this view, the conditional branch probability can be understood
as “the probability of a specific system configuration, given
a set of history events under an accident scenario.” For
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discrete variables of safety functions, such as valve open or
closed, the probability distribution of demand failure of a
component is a Bernoulli distribution. For continuous variables
of safety functions, such as operating failures, or human
action failures, the probability distribution should be updated
including logic values and state duration of events in an accident
scenario. The duration of a certain state is from its demand
moment to the terminated moment, where “termination” occurs

because of exhaustion of water, power, or random failures
of components.

The demand failures occur when a component state transfers
from a non-functional state to functional state which include:

• Demand to run for pumps, motors, compressors, etc.
• Demand to open or close, for switches, valves, breakers, etc.

Thus, the demand failure probability FSD consists of two parts:

TABLE 2 | Failure probability of time-dependent events.

State before IE Demand state Event State duration/demand time Logic value/failure probability

Standby Running FB – FS(t,Ts
∣

∣FSD (0,Ts) = 0 ) = 1− exp

(

−
Ts+t1
∫

Ts

λs
′
(u)du

)

FD – Q0 · [1− FS(t,Ts
∣

∣FSD (0,Ts) = 0 )] = Q0 · exp

(

−
Ts+t1
∫

Ts

λs
′
(u)du

)

FW (t1, t2) FFW (t,T ) = 1− exp

(

−
Ts+t2
∫

Ts+t1

λR(u)du

)

Standby Failed FB, FD, FW – True

Running Running FB – False

FD – False

FW (0,TOP + t2) FFW (t,TOP ) = 1− exp

(

−
TOP+t2
∫

0

λR(u)du

)

(non-monitored)

(TOP,TOP + t2) FFW (t,TOP ) = 1− exp



−
TOP+t2
∫

TOP

λR(u)du



 (monitored)

Running Failed FB, FD, FW – True

Open Closed RC Demand at t1 Qs(t) = Qs

KP (t1, t2) Qs(t) = 1− exp

(

−
t2
∫

t1

λF (u)du

)

RU/BK/EL/IL (0,TI+ t2) Qs(t) = 1− exp

(

−
TI+t2
∫

0

λF (u)du

)

Failed RC/KP/RU/BK/EL/IL – True

Open RO – False

KP (t1, t2) Qs(t) = 1− exp

(

−
t2
∫

t1

λF (u)du

)

RU/BK/EL/IL (0,TI+ t2) Qs(t) = 1− exp

(

−
TI+t2
∫

0

λF (u)du

)

Closed Open RO Demand at t1 Qs(t) = Qs

KP (t1, t2) Qs(t) = 1− exp

(

−
t2
∫

t1

λF (u)du

)

RU/BK/EL/IL (0,TI+ t2) Qs(t) = 1− exp

(

−
TI+t2
∫

0

λF (u)du

)

Failed RC/KP/RU/BK/EL/IL – True

Closed RC – False

KP (t1, t2) Qs(t) = 1− exp

(

−
t2
∫

t1

λF (u)du

)

RU/BK/EL/IL (0,TI+ t2) Qs(t) = 1− exp

(

−
TI+t2
∫

0

λF (u)du

)

FB, standby failure FD; failure on demand; FW, operating failure; RC, refuse to close; RO, refuse to open; KP, failure to keep the position; RU, rupture; BK: block; EL, external leakage;

IL, internal leakage.

TOP is the running time interval from the last period test to the moment of IE.

t1 is the time when the demand of component is generated since IE occurs.

t2 is the time when functional demand of component ends since IE occurs. It is determined by DET branching conditions and simulation results.

λF (t) is the failure rate of corresponding failure events.

Qs (t) is the unavailability of a switch-type component. Qs (t) is regarded as a constant value.
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• Standby failure probability FS. FS is a function of standby time
and failure rate.

• Failure probability of state transition Q0, given that it does not
fail during standby period.

For online-monitored components, the failure state can be
monitored by Digital I&C system of NPP in a quite short period
after it occurs. It is guaranteed that the state of component is
available when IE occurs. So FSD can be described by Equation
(8) in which t= 0 means the end time of the last periodic test.

FSD(t,Ts

∣

∣FSD(0,Ts) = 0 ) = FS(t,Ts

∣

∣FSD(0,Ts) = 0 )

+ Q0 · [1− FS(t,Ts

∣

∣FSD(0,Ts) = 0 )]

= 1− exp






−

Ts+t1
∫

Ts

λs
′
(u)du







+ Q0 · exp






−

Ts+t1
∫

Ts

λs
′
(u)du






(8)

Where λs(t) is the standby failure rate. Ts is the standby time
interval from the last period test to the instant when IE occurs.

t1 is the time when generating the demand of component after
IE occurs.

For other non-monitored components, the failure
probability is

FSD(t,Ts) = FS(t,Ts)+ Q0 · [1− FS(t,Ts)]

= 1− exp



−

Ts+t1
∫

0

λs
′
(u)du





+ Q0 · exp



−

Ts+t1
∫

0

λs
′
(u)du



 (9)

To be conservative, Ts is chosen to be test interval (TI). So
Equations (8, 9) can be written as

FSD(t,Ts

∣

∣FSD(0,Ts) = 0 ) = 1− exp



−

TI+t1
∫

TI

λs
′
(u)du





+Q0 · exp



−

TI+t1
∫

TI

λs
′
(u)du





(10)

FIGURE 3 | Sequential FT of CCS system.
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FSD(t,Ts) = 1− exp



−

TI+t1
∫

0

λs
′
(u)du





+Q0 · exp



−

TI+t1
∫

0

λs
′
(u)du



 (11)

The operational failure means the failure of a component whose
functions should be maintained. It includes:

• Continuous running failures of active components, such as
pump, motor, etc.

• Failures to maintain an open/closed state for switch-
type components.

• Some components without state transition, such as
heat exchangers.

• Some failures potentially occurred at any time, no matter what
the state is, such as leakage of valves.

For an irreparable component, the time-dependent probability
model related to a certain DET branch is listed in Table 2. It
illustrates the updating process of logic value and probability
when state transition occurs in DET branches.

The Temporal Failure
The temporal failure relationship is dependent on the timing
and order of events. It is assumed that all the failures occur
instantaneously. If X and Y are both events which lead to system
failure, the temporal failure relationship of two events X and Y
can be summarized as:

a) X occurs first, then Y occurs, or Y occurs first, then X
occurs. In other words, one of the failure events occurs
before another.

b) X and Y occur simultaneously.
c) One of the events occurs while another doesn’t occur.

Obviously, the static fault tree cannot directly describe all
of temporal relationship with AND or OR Gates. The issue
of temporal failure is focused on standby redundant systems,
basically sequential failures. There are two common kinds of
sequential failures (Zhang et al., 2018):

• When one of the redundant units/trains fails, standby
unit/train actuates and continues running. The sequence-
dependent failure usually occurs between control/monitoring
units and redundant units in a standby train. The failure
order of two units determines whether the system fails or not,
represented by PAND Gate.

TABLE 3 | Temporal relations of failure in logical gates.

Gate Description Symbol Sequence value Temporal relation and failure probability

AND After all the events occur. X · Y For i = 1, 2, ..., n

∀xi > 1, then S(X ) = x1 · x2 · ... · xn = max(M)

∃xi = 0, then S(X ) = x1 · x2 · ... · xn = 0

M = {xi
∣

∣xi ≥ 0 }

TAND=X · Y={T|T ≥ max(tX,tY)}

FAND(t)=P(T ≤ t) = P(tX ≤ t, tY ≤ t)

= FX (t) · FY (t)

=
∫ t
0 fX (u)du

∫ t
0 fY (u)du

OR At least one of the events

occurs.

X + Y For i = 1, 2, ..., n

∀xi : xi=0, then S(X ) = x1 + x2 + ...+ xn = 0

∃xi : xi ≥ 1, thenS(X ) = x1 + x2 + ...+ xn = min(M)

M = {xi
∣

∣xi ≥ 0 }

TOR=X+Y={T|T ≥ min(tX , tY )}

FOR(t)=1-P(T > t) = 1-P(tX > t, tY > t)

= 1− [1− FX (t)] · [1− FY (t)]

=1-[1-
∫ t
0 fX (u)du] · [1−

∫ t
0 fY (u)du]

PAND X occurs before Y occurs,

both of the events must

occur.

X < Y For i = 1, 2, ..., n− 1

∀xi : xi < xi+1 and xi > 0, then S(X ) = x1 < x2 < ... <

xn = xn
∃xi : xi ≥ xi+1 or xi = 0, then S(X ) = x1 < x2 < ... <

xn = 0

TPAND= X < Y = {T|T ≥ tY, 0 <tX ≤ tY}

FPAND(t)=P(t > tY > tX )

=
∫ t
0 fY (tY )

∫ tY
0 fX (tX )dtXdtY

SAND X occurs at the same time as

Y does. Both of the events

must occur.

X1 Y For i = 1, 2, ..., n− 1

∀xi , xi=xi+1and xi > 0, then S(X ) = x11x21...1xn = xn
∃xi , xi 6= xi+1or xi = 0, then S(X ) = x11x21...1xn = 0

TSAND=X1Y={T|T ≥ tX ,tX=tY }

FSAND(t)=P(t=tY=tX ) ≈ 0

POR Either condition (1) X occurs

while Y does not occur; (2) X

occurs before Y occurs, both

of the events occur.

X ∧ Y For i = 2, ..., n

x1 > 0,∀xi : xi > x1 or xi = 0, then S(X ) =

x1 ∧ x2... ∧ xn=x1
x1 > 0, ∃xi : xi ≤ x1, then S(X ) = x1 ∧ x2... ∧ xn=0

x1 = 0, then S(X ) = x1 ∧ x2... ∧ xn = 0

TPOR=X ∧ Y= {T|T ≥ tX ,tY = ∞∪ T ≥ tX ,tX<tY }

FPOR(t)=P(t ≥ tX ,tY = ∞∪ t ≥ tX ,tX<tY )

=
∫ t
0 fX (tX )dtX · [1−

∫ t
0 fY (tY )dtY ]

+
∫ t
0 fY (tY )

∫ tY
0 fX (tX )dtXdtY

CAND X occurs before Y occurs,

both of the events must

occur. But the demand of Y

is generated after X occurs.

X|Y For i = 1, 2, ..., n− 1

∀xi : xi < xi+1 and xi > 0, then S(X ) = x1
∣

∣x2 |... |xn =

xn
∃xi : xi ≥ xi+1 or xi = 0, then S(X ) = x1

∣

∣x2 |... |xn = 0

TCAND=X |Y = {T|T ≥ tX tSX ≤ tX < tSY ≤ tY }

FCAND(t)=P(T |T ≥ tX tSX ≤ tX < tSY ≤ tY }

=
∫ T
0 fX (tX )

∫ T
tX
fY (tY − tX )dtYdtX

It is assumed that the failures of components are independent of each other.

tX, tY are the failure moments of X and Y, tSX , tSY are the demand moments of X and Y. xi is the sequence value of the ith event. fX (t), fY (t) are the probability distribution functions of X

and Y. F (·) is the function of failure probability. T is the required operating time of system, also named as mission time.
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• For some standby redundant units/trains, failure of the first
operating unit is a prerequisite of the second operating unit
to fail. It is called condition-dependent failure, represented
by CAND Gate.

In accident analysis of NPP, the temporal failure relations are
characterized by supporting systems, not by safety systems,
because the actuating conditions of different trains in a safety
system are the same, as well as the demanding requirements. In
general, all the available trains of safety systems are demanded to
operate after actuation. So, switching among redundant trains is
considered for supporting systems. For instance, the sequential
FT of CCS is shown in Figure 3.

Under some circumstances, the order of events is more
important than the exact moments when they occur. The
sequence value, like in Pandora (Walker and Papadopoulos,
2009), is used to establish a set of temporal laws, and analyze
qualitatively to obtain Minimal Cut Sequences (MCSQ). This
process can identify some sequential contradictions which
reduces the complexity of hybrid model with dynamic and static
gates. Table 3 represents sequence values, temporal relations, and
failure probability for logical gates of dynamic fault tree and static
fault tree.

Procedures of Integration Method
In static FT, events are represented by Boolean variables with
logical values (True, False, and Normal) and probability value.
FT logic gates are treated as operators. In order to ensure that
the timing relationship of different variables is not hindered by
FT model in accident scenarios, this paper proposes “mission-
based DDET” as a framework in consideration of timing
and probability characteristics. “Mission phase” is determined
according to different functional requirements of safety functions
and triggered by branching conditions. In other words, a mission
phase will not change until a new event occurs or ending
conditions is reached.

To illustrate the modeling and updating process of mission-
based DDET, it is necessary to define the state of each branch.
Each branch corresponds to a specific state of safety systems,
or human actions. The response of safety functions could be
represented by either discrete or continuous variables.

1) For the discrete stochastic variables, the number of possible
system states is finite, so the DDET simulation runs to
implement is finite. For example, the demand states might
be success on demand and failure on demand. Besides, it is
common practice to spawn branches with the consideration

FIGURE 4 | Hierarchical structure of integration FT into DET.
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of how many available trains successfully start-up on a
demand, such as the number of ECCS available trains
(0/3, 1/3, 2/3, 3/3). Thus, the DDET allows non-binary
branching nodes and a specific FT is constructed for a
branch state.

2) For the continuous stochastic variables, it is characterized
with a continuous probability distribution, such as
the response time of operator actions, failure time

of components. In DDET method, it is assumed
that the response time of continuous safety function
is described as a known cumulative distribution
function (CDF(t)). Then according to a user-defined
percentile/probability threshold, CDF(t) could be discretized
into several intervals. The occurrence probability of
a representative point for each interval is regarded
as branch probability.

FIGURE 5 | Flow graph of DDET simulation coupled with FT.
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TABLE 4 | Nominal parameters for power operation mode.

Parameter Nominal value

Reactor power (MW) 1,035

Pressure of primary loop (MPa) 15.298

RCS coolant flowrate per loop (kg/s) 3,333

Average heat flux of reactor core (J/h·m2) 1.658 × 106

Input temperature of reactor (◦C) 287.9

Output temperature of reactor (◦C) 302

Feedwater temperature (◦C) 220

Steam flowrate per SG (kg/s) 561

Steam pressure at the outlet of SG (MPa) 5.54

TABLE 5 | Accident sequence of SB-LOCA in FSAR report (Cd = 0.4).

Event Time (s)

IE occurs 0.0

Reactor trips 0.5

ECCS actuates 0.9

ACC injects 10.3

Blowdown period ends 24.5

ECCS injects water into vessel 30.9

Reflooding 40.0

ACC injection ends 53.0

The progression of Mission-based DDET is shown in Figure 4.
The skeleton framework of system failures is developed by
DDET method while the failures of subsystem and components
are represented by FTs. Each node of DDET is labeled by
a specific branching event. Therefore, given previous nodes,
the conditional branch probability could be calculated by the
analysis of FTs. However, this is different from the traditional
PRA method which predetermines the success criteria of
systems offline. The mission-based FTs are used to calculate the
probability of a specific state in a time interval, under the specific
performance level. They are mostly used to model operating
failures and obtain “the conditional probability of specific state or
specific action from the last DET node to this DET node,” such as
the conditional branch probability of S2 system between Node c
andNode d, given only one available train.Meanwhile, the timing
and order of standby redundant trains switching is considered
in FT modeling process on the basis of the temporal failure
relationship as described in section The Temporal Failure. DDET
evolves with time according to the branching rules described in
section System configuration changes due to branching rules. As
a result, the consequences of accident scenarios are determined
by DDET simulation results such as safety parameters of interest
and the probability of accident scenario is determined by the
conditional branch probability.

The procedures of DDET simulation coupled FT is shown
in Figure 5. After the initialization of DDET simulation, the
calculation of simulation model is performed at each discrete
time step. The response of process variables, safety components
and operator actions are examined, in order to judge whether

FIGURE 6 | Traditional ET model for a PWR LB-LOCA.

branch conditions occurs. If one of the branch conditions is
satisfied, the process parameters and system configuration of
this node are recorded. After that, time-dependent probability
updating is performed as described in section Time-Dependency
on Conditional Branch Probability and new branches are
triggered. For the sake of simplicity, only binary branch is
generated in this paper. Then the system configuration updating
of failure branches is carried out. On the one hand, the FT
of failure branch is updated as described in section Time-
Dependency on Conditional Branch Probability. On the other
hand, process variables and control variables are updated in the
simulation model, as required by mapping rules of functional
failure simulation in section System Configuration Changes
Due to Branching Rules. But configuration updating is not
required for successful branches. After this updating process is
completed, each new branch will restart the simulation process,
and continues the above procedures until any terminating
conditions of simulation is reached. Finally, simulation results are
output which include time response of process parameters and
conditional branch probability.

In addition, it is recommended to regard the timing and
state of each event as another attribute of logical gates, so that
the state of upper level can be estimated in advance under
some circumstances. To a large extent, it can prejudge some
of system responses in this way, thereby simplifying the system
simulation model.

CASE STUDY

A simple case of a typical PWR with two loops is used for
demonstration in this section. The initiating event is Large Break
of Loss-of-Coolant Accident (LB-LOCA) on cold leg. The range
of break size is from 400 cm2 to double-ended guillotine break. In
the earlier period, the reactor suffers a sub-cooled blowdown due
to the sudden break on cold leg. The pressure of primary system
drops dramatically from 15.5 to 12.74 MPa, which triggers the
reactor to trip.

When the primary pressure falls to 13.0 MPa, ECCS system is
actuated. To complement the large amount of coolant inventory,
ECCS system including HPI, LPI, and ACC. ACC automatically
actuates at the beginning of the transient accident. When the
reactor coolant system pressure drops below 4.91 MPa, the
N2 in ACC automatically injects boron water into the reactor
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coolant system under the pressure drop of N2 inside. LPI keeps
injecting the cooling water with boron from the Refueling Tank
to the reactor vessel when the primary system pressure drops
below 0.98 MPa, until the low level (2.26m) of Refueling Tank
is reached. The pressure and temperature of containment goes
up after the transient accident occurs. When the pressure of
containment increases to the setpoint value of 0.149 MPa, then
Reactor Containment Spray (RCSS) System actuates to cool down
the containment. The large amount of coolant leaked from the
primary pipe and the cooling water injected are all collected in the
bottom of containment. In order to continue cooling down the
reactor, the water source of LPI and RCSS changes to the sump,
noted as LPI recirculation mode and RCSS recirculation mode.

Table 4 is the steady state parameters of NPP (Ouyang, 2000).
Table 5 lists the timeline of accident progression in Final Safety
Analysis Report. Some of the possible scenarios are illustrated in
the ET model, as shown in Figure 6, but it cannot cover all the
possible scenarios. The progression of accident was modeled with
RELAP5/Mod3.1 program. In order to demonstrate the proposed
integration method discussed in section Integration Method of
FT into DET, a set of phase-based FTs are coupled with the
RELAP5 PWR model.

The LPI is taken as an example of conditional branch
probability. LPI system is composed of two parallel trains Train
A, Train B. Each train consists of one LPI pump and related
valves, sensors, etc. In order to compensate the coolant inventory
and remove the decay heat from the reactor, the main function
of LPI in direct injection mode is to pump the cooling water
from the Refueling Tank to the reactor vessel during the first
injection period. So, the performance indicator of LPI is mass
flow of cooling water.

Assume that:

1) States of a component are binary, i.e., failure and success.
2) The running failure of components are of

exponential distribution.

For the direct injection phase of LPI, the nominal mass flow
of each LPI pump is Mf kg/h, and then the LPI state of direct
injection phase is divided by the availability state of Train A,
B. The combinations of available trains are various, as listed in
Table 6. In fact, the earlier timing of LPI failure would lead to
a decreased total mass flow of LPI. That may result in variation

of state duration, which will influence the subsequent branching
timing and conditions of LPR, RCSS.

For State 1, it requires Train A and B both work at nominal
state, so FTs of State 1 branch (Figure 7) is easily to understand.
Assume that the time when actuating LPI is actuated at time
t1, and continuously operates until time t2, then the conditional
branch probability of functional state 1 is defined as “the LPI
system maintains to cool down the reactor from Refueling Tank
during the period of t1 to t2, with the required mass flow of
2∗Mf .” Thus, the FTs of State 1 is constructed with LHIA0100
and LHIA0200 via OR gate. The conditional probability of State
1 branch is

P(Ms1(t)) = 1− F(LHIA0000)

= P{MA1(t) = Mf

⋃

MB1(t) = Mf } (12)

Where MA(t), MB(t), Ms(t) are the characteristic parameters of
Train A, Train B of LPI system.

P(Ms1(t)) is the conditional probability of State 1 branch.
To calculate the conditional probability, a set of reliability
parameters (Table 7) is adopted in FTs and others like LHIA
2000, LHIA 2100, LHIA 2200, and LHIA 2300 is treated
with transfer gates, whose probabilities are treated with the
consideration of CCF failures.

The FT of State 2 branch can be automatically reconstructed
with LHIA0100, LHIA0200 via NOR gate after time-dependent
updating. Similarly, the FT of State 3 branch is reconstructed
with the same two gates (LHIA0100, LHIA0200) via AND gate.
For the consideration of a conservative simulation output, the
system configuration of State 2 is modeled that only one train
successfully operation, while the other one is not actuated.
Similarly, the system configuration of State 3 is modeled as no
mass flow.

MA2(t) = Mf , MB2(t) =

{

Mf , t1 < t ≤ ι

0,τ<t < t3
or

MB2(t) = Mf , MA2(t) =

{

Mf , t1 < t ≤ ι

0,τ<t < t3
(13)

P(Ms2(t)) = P{MA2(t)
⋃

MB2(t)} (14)

MA3(t) = 0, MB3(t) = 0, or

TABLE 6 | State definition by available trains of LPI.

System

configuration

Train A Train B State duration T Mass flow

State 1 Normal operating until the end

of function

Normal operating until the end

of function

(t1,t2)

t2 > t1

Ms1(t)=2Mf

State 2 Normal operating until the end

of function

Fails (t1, t3)

t3 > t1

Ms2(t)=

{

2Mf , t1 < t ≤ τ

Mf , τ < t < t3

Fails Normal operating until the end

of function

(t1, t3)

t 3 > t1

State 3 Fails Fails Instantly

or (t1, t4)

t4 > t1

Ms3(t)=0, or

Ms3(t) =















2Mf , t1 < t ≤ τ1

Mf , τ1 < t ≤ τ2

0, τ2 < t < t4
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FIGURE 7 | Mission-based FT of LPI.
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TABLE 7 | Parameters adopted in FTs for LPI system.

Name Description Value

QPO_FD Demand failure probability of LPI

pump

9.60e-4

λPO_FW(/h) Failure rate of LPI pump 6.00e-4

QMO_FD Demand failure probability of LPI

pump motor

1.80e-5

λMO_FW(/h) Failure rate of LPI pump motor 4.56e-5

QPO_UV Probability of test/maintenance 5.50e-5

LHIA2100, LHIA2200 Failure probability of taking water

from refueling tank

1.00e-5

LHIA2000, LHIA2300 Failure probability of injecting water

into primary system

2.00e-5

TABLE 8 | Conditional probability of LPI branches.

Probability T/s

Integration method

P(Ms1 (t)) 9.9791e-1 (174, 4,443)

P(Ms2 (t)) 2.1210e-3 (174, 7,005)

P(Ms3 (t)) 5.4740e-5 –

Classical PRA method

Success branch 9.9992e-1 24 h = 86,400 s

Failure branch 8.3330e-5

MA3(t) =

{

Mf , t1 < t ≤ ι

0,τ < t < t4
,

MB3(t) =

{

Mf , t1 < t ≤ ι

0,τ < t < t4
(15)

P(Ms3(t)) = P{MA3(t)
⋃

MB3(t)} (16)

The final results of each LPI branch are listed as Table 8, where
T is the state duration obtained from the simulation outputs
of a certain accident scenario. Compared to the classical PRA
results, the mission time is conservatively chosen to be 24 h of
all time-dependent events of LPI in accident scenarios, but the
state duration of the integration method are based on simulation
results, which varies from each accident scenarios.

CONCLUSION

In Dynamic PRA, the timing and order of events are explicitly
considered. But classical FTA/ETA are based on Boolean logic
structures with predetermined event sequences and success
criteria of systems. This paper aims to incorporate the classical
PRA models into simulation-based PRA in a consistent manner.
The mathematical basis of integration proves that a time-
dependent and condition-dependent model is necessary to
describe the relationship among system configurations and
state duration, influenced by system response of process
variables. To better couple the classical PRA with DPRA,
an integration method of FT into DDET is investigated. It
analyzes about the treatment of dependencies accounted for
DET branch probabilities. To ensure the safety level of NPP, the
integration method proposes a mission-based DDET framework

to describe the time-dependent interactions between physical
phenomena, equipment failures, control logic, and operator
actions. Mission-based DDET considers both time discretization
and discretization of state transition process based on functional
demand. It spawns different branches triggered by branching
rules and each FT is modeled for a specific system state. As the
operating conditions and state duration are determined by the
output of simulation model, the conditional branch probability
of DDET in the integration method is calculated online by
the automatically reconstructed and updated FTs, according to
the time-dependent updating rules and system configuration
updating rules. A case study of LPI system in LBLOCA accident
is taken to demonstrate the feasibility of this integration method.

For the benefits of this paper, the integrated method
can provide a means to identify and characterize a priori
unknown vulnerable accident scenarios in the safety analysis
of NPP, instead of only binary and predetermined logic by
analysts. Besides, it reduces the reliance on expert judgment
and simplifying (or overly conservative) assumptions about
interdependencies. Furthermore, it provides a way to partially
reduce the difficulties of complicated modeling and calculation
in DET simulation, which gives support for decision-making in
safety margin analysis, modifications of operational procedures,
changes of system design.

To improve this study, the future work will focus on how to
maintain the accuracy and efficiency of integrated framework,
how to balance the time step of simulation process and updating
frequency of branch probability, how to enhance the capability
of constructing FT automatically in a computational tool. In
addition, it is prospective to incorporate the performance-based
reliability analysis into this integration method.
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