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This study defines a green mining system as a synergetic operation system composed of

a mining subsystem and an environmental governance subsystem. Through conducting

a case study of China’s coal enterprises, this study identifies the mining subsystem

as the first production stage and the environmental governance subsystem as the

second production stage. To evaluate green mining efficiency, an entire green mining

efficiency indicator system was constructed by analyzing the main inputs and outputs

of the two subsystems. Using the 2019 data collected from Chinese coal mining

enterprises based on the constructed indicator system, this study presents a two-stage

combination Data Envelopment Analysis model to assess green mining efficiency in

terms of mining efficiency and environmental governance efficiency. According to this

empirical study’s results, there were four main findings. First, coal enterprises can be

divided into three categories in accordance with the efficiency value ranking generated

by the two-stage model and the corresponding synergetic development levels. Second,

the percentage distribution of coal enterprises based on their green mining efficiency

level embodies the attributes of a spindle structure. Third, the exported parameters

information from the two-stage model supports green mining efficiency improvement

as quantitative evidence. Fourth, the model results form the basis for policy proposals

and improvement countermeasures.

Keywords: green mining, mining efficiency, environmental governance efficiency, two-stage combined DEA

model, improvement countermeasure

INTRODUCTION

In recent years, the imperative of low-carbon economic development has been acknowledged
globally. Reducing the environmental impacts of mining activities is recognized as a key
component of low-carbon economic development. Therefore, it is vital to conduct research
on green mining efficiency and sustainable development strategies for the mining industry.
Joshua Kirkey, Communications Advisor for Natural Resources Canada (NRC), defines green
mining as “technologies, best practices and mine processes that are implemented as a means to
reduce the environmental impacts associated with the extraction and processing of greenhouse
gases, used water and minerals” (Kirkey, 2014). In short, the development of innovative
green mining technologies aims to improve the mining sector’s economic and environmental
performance simultaneously.

Following decades of deep exploitation of resources, the associated environmental problems
have become increasingly aggravated. The main environmental challenges associated with coal
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mining include the handling of coal gangue, the escape
of coalbed methane (CBM), mine drainage, soil erosion,
and land subsidence. The Chinese authorities have been
seeking to establish more effective policy systems to propel
the implementation of green mining technologies. The close
coordination of coal mining and environment governance is
of great significance for the sustainable development of China’s
mining industry (Shi, 2012; Nurmi, 2017).

The purpose of this study is to evaluate coal mining efficiency
in China through the use of a creative Data Envelopment
Analysis (DEA) model under the framework of green and
sustainable growth. A key focus of attention in China’s pursuit
of a clean, sustainable environment is its coal industry.
Indeed, it is regarded as a strategic objective. This study
constructs an entire green mining efficiency indicator evaluation
system and establishes a two-stage combined DEA model that
reflects the real production condition of China’s coal mining
enterprises. Accordingly, the specific countermeasures and policy
implications under the guidance of greenmining are summarized
based on the empirical study results.

The remainder of this paper is organized as follows. Literature
Review presents a literature review. Materials and Methods
develops a two-stage model that combines input- and output-
oriented slack-based measures for green mining efficiency
evaluation. It also outlines the two-stage evaluation indicator
system of green mining. Empirical Study presents the empirical
study of China’s coal mining enterprises in 2019 and analyzes
the empirical results. Conclusions outlines the main findings and
policy implications for improving the ecological performance of
China’s coal industry.

LITERATURE REVIEW

Table 1 summarizes the main relevant literature carried out
between 2006 and 2018. About a decade ago, Franks, Brereton,
and Moran and Mamurekli evaluated the environmental
cumulative effects of coal resource development and utilization
and suggested that the authorities involved should play
significant roles in improving impact assessment and
institutional formulation (Franks et al., 2010; Mamurekli,
2010). Using evidence from China’s coal sector, a recent study
by Zhang et al. addressed the relationship of energy-price
regulations and price fluctuations by building simultaneous
equations for coal price and coal supply and constructing a
forward-looking coefficient to evaluate different coal pricing
policies from 2008 to 2016 (Zhang et al., 2019). Sueyoshi and
Yuan focused on the unintended consequences of China’s coal
capacity cut policy and revealed that the capacity cut policy
should be differentiated across regions due to the fragmentation
of the coal markets, unbalanced distribution of resources, and
a mismatch between production and demand centers (Sueyoshi
and Yuan, 2018). These same researchers used the intermediate
DEA innovation model to study the energy utilization efficiency
and sustainable development of Asian countries (Sueyoshi and
Yuan, 2015, 2018). Bi et al. used different DEA models to study
the exploitation and utilization efficiency of coal resources

in China and to make comparisons between China and the
United States (Bi et al., 2014).

To date, little research has been carried out on mining
efficiency and sustainable development countermeasures in
China based on the concept of green mining. Hence, this
study constructs an entire green mining efficiency indicator
evaluation system and sets up a two-stage combined DEA
model that reflects the real production conditions of coal
mining enterprises. Specific countermeasures and strategies for
sustainable development under the guidance of green mining are
formulated on the basis of empirical study results.

Second, from the perspective of model establishment, the
authors also tracked and analyzed the relevant research on
DEA theory and its derivative models, which, in recent
years, have been used to examine energy efficiency and
environmental performance.

The classical DEA models and their extensions include the
constant returns to scale model (CCR), variable returns to scale
model (BCC), additive model, and slacks-based DEA models
(Cook and Seiford, 2009). Yang and Pollitt simultaneously
considered the undesirable outputs and uncontrollable variables
to propose six DEA-based performance evaluation models based
on research relating to Chinese coal-fired power plants (Yang and
Pollitt, 2009). Scholars such as Sueyoshi and Goto have applied
different DEA models to systematically evaluate the operational
and environmental efficiency of the United States US coal-fired
power plants. To examine the influence of the US Clean Air
Act (CAA), they used a range-adjusted measure to examine
the environmental and unified performance of United States
coal-fired power plants. They discussed a combined use of
DEA and Discriminant Analysis (DA) (DEA–DA) to determine
the efficiency scores and ranks of the electric power industry
(Sueyoshi and Goto, 2010, 2012b). Tao and Zhang applied two
environmental DEA models incorporating undesirable outputs
to measure the environmental efficiency of the electric power
industry in the Yangtze River Delta from 2000 to 2010 (Tao
and Zhang, 2013). Meanwhile, Xie et al. used a two-stage
environmental network DEA model to compare the efficiency
of 30 provincial administrative power systems in China (Xie
et al., 2012). Zhou et al. proposed a non-radial DEA approach by
integrating the entropy weight and a slacks-based model (SBM)
to access the environmental efficiency of the Chinese power
industry at the provincial level from 2005 to 2010 (Zhou et al.,
2013). Using CCR and BCC models with advanced DEA linear
programming, Fang et al. attempted to compare the relative
technical efficiency performance of listed coal mining companies
in China and the United States (Fang et al., 2009). Sing data
spanning 2002–2010, Wang et al. put forward an innovative
approach based on the meta-frontier DEA theory to conduct
an empirical study on energy efficiency in the eastern, central,
and western regions of China. They discovered the main factors
that lead to inefficiency by taking the provincial heterogeneities
of production technology into full consideration (Wang et al.,
2013). Wang et al. established a method based on a meta-
frontier function and a non-radial directional distance function
to assess performance following the interconnection of energy-
saving and emissions reduction. An empirical analysis was
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TABLE 1 | Research carried out on this topic between 2009 and 2019.

Country References Research topic Main conclusions

Australia Franks et al. (2010) Managing the cumulative impacts of coal

mining on regional communities and

environment

in Australia

I. Governments can play a greater role in improving impact assessment through

the provision of strategic assessments and explicit links between regional and

land use planning and environmental information system.

II. Cumulative impact management approaches represent a range of institutional

forms from single company initiatives and programs, to cross-industry and

multistake holder partnerships and networking.

Australia Zhang et al. (2019) Can energy-price regulations smooth price

fluctuations? Evidence from China’s coal sector

I. A methodological contribution is the building of simultaneous equations for

coal price and coal supply and innovatively constructing a forward-looking

coefficient to evaluate different coal pricing policies from 2008 to 2016.

II. The government needs to coordinate the pricing policies with the policies for

protecting economic growth and environmental development.

III. Suggests that the government make efforts to improve market transparency

by installing and implementing market rules. Other policies may have indirect

impacts on coal prices, such as coal capacity cut policy.

Australia Shi et al. (2018) Unintended consequences of China’s coal

capacity cut policy

I. The capacity cut policy should be differentiated across regions due to the

fragmented coal markets, unbalanced distribution of resources, and a mismatch

between production and demand centers. II. Market approaches would be

preferable to command-and-control instruments. III. Rather than focusing on

overcapacity itself, the policies should target the underlying factors that distort

the behavior of participants and investors. Potential measures may include strict

enforcement of safety, environmental, and technological standards.

America Sueyoshi and Yuan

(2015)

China’s regional sustainability and diversified

resource allocation: DEA environmental

assessment on economic development

and air pollution

I. The Chinese government should distribute its economic resources to cities

located in the northwest region. To improve the environment in major cities such

as Beijing, Tianjin, Shanghai, and Chongqing, the government should also more

strictly reinforce the regulation of energy consumption.

II. Replacing China’s economic growth policy to one of environmental protection

is essential for the future of China.

America Sueyoshi and Yuan

(2018)

Measuring energy usage and sustainability

development in Asian nations by DEA

intermediate approach

I. A methodological contribution is that it newly proposes an “intermediate

approach” between radial and unradial DEA for assessing a level of

social sustainability. II. The Asian nations examined in this study were classified

into four or five groups based upon their unified efficiency measures under natural

disposability and managerial disposability in terms of the proposed approach.

Turkey Mamurekli (2010) Environmental impacts of coal mining and coal

utilization

in the UK

I. The most significant reductions in the environmental impacts from coal usage

can be achieved through the adoption of higher efficiency combustion

technologies in power generation.

II. More modest improvements can be achieved by improving the efficiency of

existing processes across the coal value chain.

China Bi et al. (2014) Does environmental regulation affect energy

efficiency in China’s thermal power generation?

Empirical evidence from a

slacks-based DEA model

I. Environmental efficiency plays a significant role in affecting the energy

performance of China’s thermal power generation sector. Decreasing the

discharge of major pollutants can improve both energy performance and

environmental efficiency.

II. Three main findings: (1) Energy efficiency and environmental efficiency were

relatively low. (2) Energy and environmental efficiency scores showed great

variations among provinces. (3) Both energy efficiency and environmental

efficiency were obvious geographical characteristics.

organized to examine the primary factors that cause performance
loss in energy-saving and emissions reduction (Wang et al.,
2015). Zhang et al. used dynamic SBM models to evaluate
the overall efficiency of decision-making units (DMUs) for the
whole term period, as well as the term period efficiencies in
industrial water pollution (Zhang et al., 2019). This proposed
dynamic DEA model incorporates carryover activities and
helps measure a period’s specific efficiency based on long-term
optimization during the whole period. It can also calculate
the system and period efficiencies under dynamic conditions.
Patricija Bajec and Danijela Tuljak-Suban proposed an integrated
analytic hierarchy process (AHP) as well as an SBM DEA

model (Bajec and Tuljak-Suban, 2019). First, an AHP pairwise
comparison was used to rank a set of criteria (inputs, outputs)
according to their importance. Then, an SBM DEA model that
evaluated both the undesirable and desirable outputs was used.
Incorporating undesirable performance criteria, this combined
model was employed to evaluate the efficiency of logistics service
providers. Yang and Wei used the game cross-efficiency DEA
model to study the urban total factor energy efficiency of China’s
26 interprovincial cities from 2005 to 2015. They concluded that
city-scale and economic development can improve the energy
efficiency of a city, while investment and endowment will lower
the urban energy efficiency (Yang and Wei, 2019). Wu et al.
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divided 38 industries into four categories through cluster analysis
and used a DEA model with non-homogeneous inputs and
outputs to evaluate the energy and environmental efficiencies of
38 industries in China’s industry from 2007 to 2011 (Wu et al.,
2019). The results showed that the energy and environmental
efficiency of China’s industry is generally low, that the variation is
large, and that efficiency increased over 5 years. Li Xie proposed a
combined different DEAmodel using a Gini criterion to measure
environmental efficiency (Xie et al., 2019). The authors used data
for 36 Chinese industries spanning 2006–2015 and a multiple
DEA with a Gini criterion as well as a systematic clustering
approach. They first calculated the environmental efficiency score
of Chinese industries, then identified the pollution sources based
on a ranking and clustering analysis. The main conclusion was
that the ranking of various industries’ environmental efficiency
varied greatly by time. Shao and Han proposed an SBM
model to address the inefficiency of the production system
after considering pollutant abatement technology heterogeneity
for different kinds of pollutants (Shao and Han, 2019). The
authors then employed the model to study the inefficiency of the
Chinese industrial production system, analyzing the inefficiency
in the stages of economic production and pollutant treatment.
Sueyoshi et al. used DEA Window Analysis to evaluate the
efficiency using moving averages (Sueyoshi et al., 2017). In other
words, the analysis outcome focused on recent years by different
windows. Therefore, the advantage of this study is that the
policy implications are more accurate and credible. In their
recent research on resource abundance, industrial structure, and
regional carbon emissions efficiency in China,Wang and Shi et al.
employed the SBM with window analysis approach to estimate
the carbon emissions efficiency and abatement potential while
applying the panel Tobit model to investigate the influencing
factors of carbon emissions efficiency under the framework of
DEA (Wang et al., 2019). Xian and Shi et al. constructed a
non-parametric DDF model based on the DEA technique to
measure carbon efficiency and productivity in the study of carbon
emission intensity reduction targets for China’s power industry
(Xian et al., 2018). They determined that the nationwide 18%
CO2 reduction target is not feasible through improving the
technical efficiency or an upgrading of technologies for electricity
generation and carbon abatement in the short or medium term.
Wang and Shi et al. optimized the frontier-based optimization
model by combining environmentally extended input–output
analysis (EEIOA) and DEA to calculate an environmental
inefficiency score in the study of spatial heterogeneity and driving
forces of environmental productivity growth in China (Wang
et al., 2019). They found that from 2007 to 2012, all regions
experienced environmental productivity progress. According to
the driving factors of environmental productivity, seven regions
can be divided into three modes (Wang et al., 2019).

There are three main findings from the above literature
review. First, the research to date concerning green mining
efficiency and sustainable development countermeasures based
on the concept of greenmining and the DEA approach, especially
relating to China, is relatively rare. As for the green mining
evaluation indicator system, the highly correlated literature is
sparse. Second, there has been much less empirical research

on mining industry efficiency performance using DEA than
on electricity or other energy industries. In addition, the
focus of most studies on environmental efficiency or energy
utilization efficiency in China has been at the state, regional,
or industry level, rather than at the enterprise level. Second,
there is nearly no literature using a two-stage combined DEA
model to assess integrated green mining efficiency, which
incorporates mining efficiency in the first production stage
and environmental governance efficiency in the second stage.
Most of the existing literature has focused on only one
aspect of the efficiency measurement, i.e., energy production
or environmental efficiency (Fang et al., 2009). Therefore,
in this paper, to reveal the features of real-life production
circumstances and reflect the relationship between mining and
environmental governance efficiency performance, we attempted
to establish a two-stage combined DEA evaluation model.
Moreover, to measure green mining efficiency, we aimed
to simultaneously examine the mining and environmental
governance performance of China’s coal industry at the
enterprise level by conducting undesirable outputs conversion
and distinguishing uncontrollable input variables between the
two stages. Our goal was to enrich the understanding of the
synergetic green mining performance of mining enterprises
and thereby help the authorities formulate more targeted
improvement policies.

MATERIALS AND METHODS

Following the seminal work of Charnes et al., DEA as a non-
parametric approach to efficiency measurement has been widely
studied and applied (Charnes et al., 1978). The classical models
and their extensions include the constant returns to scale
model (CCR), variable returns to scale model (BCC), additive
model, and slacks-based DEA models (Cook and Seiford, 2009).
Compared to other measures of productivity and efficiency, the
utility of DEA is a function of its ability to analyze efficiencies
in systems featuring multiple inputs and outputs. DEA, as
a useful tool for performance analysis, is used to evaluate
the relative efficiencies of DMUs using some specific linear
programmingmodels (Tong and Ding, 2008). DEA has a number
of advantages. First, it does not require any prior assumptions on
the relationships between input and output data (it is therefore
a non-parametric approach) (Seiford and Thrall, 1990; Zhou
and Ang, 2008). Second, it only requires physical quantities of
inputs and outputs for evaluating technical and scale efficiency
indicators (i.e., only allocation efficiency needs fact or prices),
and thus, the information required for DEA is less than that
in the traditional case (Qiu-ying, 2019). Third, it is a more
objective efficiency assessment because the weighting of each
index is the optimal weighting determined by dimension less
real data from the DMU (Tong and Ding, 2008). In addition,
as Tong and Ding point out, the reason for DMU inefficiency
can be found through a projection analysis of each DMU, and
then, an improvement can be planned for the future. All of the
above-mentioned advantages are sufficient for us to study the
characteristics of the subject in this paper.
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Basic Equations
In this section, we introduce a slacks-adjusted two-stage
combined with input- and output-oriented BCC model.
We considered applying the linear transformation function
simultaneously to switch the undesirable outputs in the first stage
and incorporating undesirable outputs as uncontrollable input
variables to measure the second stage efficiency of coal mining
enterprises located in central-west China in 2019. According to
the production features of each evaluation unit, we primarily
adopted the input- and output-oriented BCC equations as a
reference foundation for building our two-stage slacks-adjusted
combination model. Under the constraints of variable returns
of scale (VRS), the production possibility set of BCC theory is
defined as:

PVRS =

{

(X,Y)|X ≥
∑n

j=1
λjXj,Y ≤

∑n

j=1
λjXj,

∑n

j=1
λj

= 1, λj ≥ 0, j = 1, 2, · · · , n

}

(1)

The input-oriented equations of BCC are:
min θ0

s.t.θ0x10 ≥

n
∑

j=1

λjxij, i = 1, 2, · · · ,m

yr0 ≤

n
∑

j=1

λjyrj, r = 1, 2, · · · , s

n
∑

j=1

λj = 1

λj ≥ 0, j = 1, 2, · · · , n (2)

The output-oriented equations of BCC are:
minϕ0

s.t.

n
∑

j=1

λjxij ≥ x10, i = 1, 2, · · · ,m

n
∑

j=1

λjyrj ≥ ϕ0yr0, r = 1, 2, · · · , s

n
∑

j=1

λj = 1

λj ≥ 0, j = 1, 2, · · · , n (3)

Building a Two-Stage Green Mining System
Model
Currently, according to the actual conditions of China’s
coal enterprise operating system, and the imperative for
green mining, the coal enterprises should simultaneously
conduct environmental governance and restoration through
the promotion of resource recycling while exploiting the
coal resource. The coal enterprise operating system can be

divided into two subsystems, namely, coal mining subsystem
and environmental governance subsystem, respectively. The
mining subsystem refers to a sequential production assignment
of exploiting, transportation, ventilation, drainage, equipment
maintenance, power supply, water supply, and so on. Its main
purpose is to produce coal and generate profits. Within the
mining subsystem, the input cannot be entirely converted into
desirable outputs such as marketable coal and valuable associated
resources. The undesirable outputs of industrial pollutants
inevitably appear in the production process due to the limitations
of the existing mining technologies. Therefore, to fulfill the goal
of environmental governance, a subsystem of environmental
governance is necessary to transform the undesirable outputs
and newly invested inputs into desirable outputs (Bian and Yang,
2010). The two synergetic subsystems constitute the entire green
mining system and are connected by undesirable outputs in this
two-stage production model (Toloo et al., 2017). The system
framework model is shown in Figure 1.

To describe the two-stage system shown in Figure 1, we
assume that there are n

(

j = 1, . . . , n
)

DMUs, and each DMU has
two stages. For every DMUj(j = 1, . . . , n), we put intom kinds of
resources in the first stage x1j = (x11j, x

1
2j, . . . , x

1
mj) and the output

of this stage is y1j = y1j + zj; y
1
j = (y11j, y

1
2j, . . . , y

1
sj) represents

main desirable outputs, and zj = (z11j, z
1
2j, . . . , z

1
tj) represents

the pollutants generated during the mining process, t being the
undesirable output.

In the second stage, we invest I kind of resource elements
process the pollutants generated in the first stage x2j =

(x21j, x
2
2j, . . . , x

2
lj
); the final output of second stage is y2j , y2j =

(y21j, y
2
2j, . . . , y

2
hj
). Among the variables mentioned above, zj is an

intermediate variable of great significance, which represents both
the undesirable output of the first stage and the partial input of
the second stage (Wu et al., 2017). To evaluate the first stage
efficiency, it is necessary to adopt an appropriate method to
deal with the undesirable output of contaminants and convert
them into desirable outputs to meet the requirement of the DEA
method (Sueyoshi and Goto, 2012a). Contrary to the desirable
outputs, the smaller the value of undesirable outputs, the better
the model can operate. In reality, according to the DEA efficiency
evaluation theory, there are several transformation methods for
undesirable outputs, such as the directional distance function,
curve measure evaluation method, and linear transformation
function. In this study, we selected the linear transformation
function to convert the undesirable outputs into normal desirable
outputs (Zhou and Ang, 2008). We adopted the equation of

z
′

j = −zj + z > 0
(

j = 1, 2, . . . , n
)

in which z represents a

large enough vector large. After conversion, z
′

j can be accepted

as normal desirable outputs and adopted by the traditional DEA
efficiency evaluation model.

Building a Two-Stage Combined DEA
Model
According to the guidelines of the green mining concept, we
decided to select the input-oriented radial BCC theory as the
first stage modeling foundation (Sueyoshi and Goto, 2012c). In
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FIGURE 1 | Two-stage green mining system framework.

addition, to calculate the DMU efficiency of the first stage or
of the mining subsystem, we introduced adjusted slack variables
with constraint conditions and added the linear transformation
function to refine the original BCC model and set up our own
measurement method (Bi et al., 2014).

Minθ1

s.t.

n
∑

j=1

λjx
1
ij + s−i = θ1x

1
io, i = 1, 2, . . . ,m

n
∑

j=1

λjy
1
rj − s+r = y1ro, r = 1, 2, . . . , s

n
∑

j=1

λjz
′

pj − s+p = z
′

po, p = 1, 2, . . . , t,

n
∑

j=1

λj = 1

λj, s
−
i , s

+
r , s

+
p ≥ 0 (4)

θ1 represents the efficiency value of the first stage.
From the perspective of continuously pursuing improvements

in environmental governance, we selected the output-oriented
radial BCC theory as the second stage modeling foundation.
Hence, we designed another DEA model to calculate the
efficiency of the second stage DMU of the environment
governance subsystem also through introducing adjusted slack
variables only in the constraint conditions. In this stage, it is

important to pay attention to the different input features. As
discussed above, the undesirable output of contaminants from
the first stage accounts for partial inputs for the second stage.
These inputs are also uncontrollable, which should be processed
by the uncontrollable input method (Yang and Pollitt, 2009).
Meanwhile, the newly added input elements of the second stage
should be processed by the adjustable input method.

Maxθ2

s.t.

n
∑

j=1

λjx
2
kj + s−

k
= x2ko, k = 1, 2, . . . , l

n
∑

j=1

λjzpj = zpo, p = 1, 2, . . . , t

n
∑

j=1

λjy
2
qj − s+q = θ2y

2
qo, q = 1, 2, . . . , h

n
∑

j=1

λj = 1

λj, s
−
k
, s+q ≥ 0 (5)

θ2 represents the efficiency value of the second stage.
Regarding the model construction, first, it is necessary to

point out that we established the two-stage combined DEA
model on the basis of the coal mining enterprise real production
scenarios and green mining concept. Specifically, we divided
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the coal enterprise production system into two subsystems. One
subsystem was defined as the coal mining process, while the
other subsystem was defined as the comprehensive utilization
of associated resources process, which can also be called the
environmental governance process.

Second, we calculated the efficiency values of the different
two stages through the constructed two-stage combined DEA
model. Although the second stage of the DEA model seems
relatively independent, we actually created the linkage between
the two stages’ model output by processing and transforming
the undesirable contaminants generated from the first stage
into desirable input elements for the second stage. According
to the concept of green mining, a coal enterprise should
strive toward recycling resources and environmental governance
simultaneously. This two-stage combined model is able to not
only reflect the real production scenarios but also measure the
level of coordinated development of the two subsystems by
providing efficiency values for the two stages.

Third, for each coal mining enterprise, this study combined
two orientation DEA measures into one model to assess the
efficiency value objectively in terms of economic development
and environmental governance. We identified the first stage as
the output-oriented production subsystem and the second stage
as the input-oriented generation subsystem.

Establish the Two-Stage Evaluation
Indicator System of Green Mining
First, according to the two-stage green mining system framework
established in Literature Review, the first stage corresponds to
the mining subsystem, through which the input elements can be
transformed into coal output that can generate economic profits.
We designed the input indicators of the mining subsystem based
on the production costs and their sensitivity value sequence to
coal output. Specifically, the input indicators are human resource
costs, electricity and materials consumption costs (Huang et al.,
2007), and fixed asset investment. The other production cost
elements have been ignored because they represent only a small
proportion of the total production costs. Meanwhile, the output
indicators of the mining subsystem include total coal production,
coal output value, and pollutants or associated resources during
the mining process. The coal gangue is identified as representing
solid waste (Ma et al., 2015). The liquid waste generated during
the mining process is mainly mining water and industrial sewage.
The coalbed methane is identified as representing waste gas.
Thus, we selected the total coal production, coal gangue output,
polluted mining water volume, and coalbed methane emission
quantity as output indicators in the first stage. The undesirable
outputs of pollutants or associated resources should be separated
from the desirable outputs of coal in this stage. Obviously, the
total coal output should be defined as desirable output elements
and the coal gangue, pollutedmining water, and coalbedmethane
should be defined as undesirable output elements.

The second stage corresponds to the environmental
governance subsystem, through which the input elements
can be converted into valuable output. It is critical to point out
that the new input elements, such as environmental governance

investment and relevant human resources, are indispensable
inputs for the pollutant treatment and associated resource
reutilization in this stage. As a result, the input indicators
are composed of two parts in the second stage. These are,
respectively, the pollutants or associated resources produced
from the first stage, like coal gangue, polluted mining water,
and coalbed methane, and the new inputs of environmental
governance investment and the relevant human resources in
the second stage. The output of the second stage refers to
beneficial yields from pollution treatment and control. The
comprehensive utilization of coal gangue has two aspects. One
aspect is backfilling the mining subsidence area, and the other is
the production of building materials. The abandoned mine water
is treated and recycled back into production and domestic water.
The coalbed methane produced during the mining process
(mainly methane) is a safe and reliable clean energy source,
which can be developed into multiple industrial feedstocks.
Based on the strategic guidelines of the China Ministry of
Environmental Protection and the Energy Bureau enacted in
2017, the utilization ratio of coalbed methane has been an
important indicator of green mining. Therefore, we selected the
comprehensive recycling utilization of coal gangue, polluted
mine water, and coalbed methane as the output indicators for the
second stage. The indicator system of green mining efficiency
assessment is shown in Table 2.

Data and Sample
We selected 30 coal mining enterprises in the central and western
regions of China that have received considerable attention
from the National Energy Administration and the National
Development and Reform Commission. They are defined as
DMUs with three essential characteristics. The first is that the
total coal production falls within the range of 3.6–7.8 million
tons. The second is that they have similar resource endowment
conditions, and the third is that they have all constructed
some form of environmental governance structure. We obtained
updated 2019 data through a questionnaire and field research.
In addition, the enterprises are required to accept the relevant
administrative authority’s supervision and evaluation. Through
long-term investigation and research into China’s coal industry,
we selected 30 coal enterprises that represent the real and
universal situations of green mining in China. All the above
factors describe the characteristics of the sample for this empirical
study. To achieve a reasonable level of discrimination, one rule of
thumb was to limit the number of input and output indicators.
For example, the number of DMUs should be at least twice the
total number of inputs and outputs (Chen, 2009). Here, we have
30 DMUs, 4 inputs and 4 outputs in the first stage, and 5 inputs
and 3 outputs in the second stage. Thus, our results have a
reasonable level of discrimination. The summary statistics of the
original data (index form) are provided in Table 3.

EMPIRICAL STUDY

There are three main findings as shown in Tables 4, 5, Figures 2,
3. The efficiency values of the two-stage model are presented in
Table 4. The θ1 represents the efficiency value of the first stage,
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TABLE 2 | The two-stage green mining efficiency evaluation indicator system.

Stage Input/output Indicator Unit Indicator description

The first stage

(mining

subsystem)

Input Number of employees x11j Persons Sum of actual labor resources

Total electricity consumption x12j kwh Actual amount of electricity consumed by production

equipment

Material consumption x13j RMB (Million) Total amount of materials put into production

Fixed asset investment x14j Purchase cost of fixed assets equipment for production

Output Coal production y11j Tons (Million) Total coal production in first stage

Associated coal gangue y12j Tons (10, 000) Coal gangue associated with coal production process

(representing the industrial solid waste)

Contaminated mine water y13j Mine water contaminated during the coal production process

(representing the industrial liquid waste)

Associated gas volume y14j Cubic meters

(100 million)

Quantity of gas emissions during the coal production process

(representing the industrial gas waste)

The second stage

(environmental

governance

subsystem)

Input Environmental management

investment x21j

RMB (Million) Amount of money invested in environmental governance

Number of human resources for

environmental governance x22j

Persons Amount of human resources invested in environmental

governance

Associated coal gangue x23j Tons (10, 000) Coal gangue associated with coal production

Contaminated mine water x24j Mine water contaminated during the coal production process

Associated gas volume x25j Cubic meters

(100 million)

Quantity of gas emissions during the coal production process

Output Comprehensive utilization of coal

gangue y21j

Tons (10, 000) Comprehensive utilization capability of associated coal

gangue (representing one of the environmental governance

standards)

Standard discharge of mine

wastewater y22j

Treatment and recycling capability of contaminated mine

water (representing one of the environmental governance

standards)

Comprehensive utilization of

mine gas y23j

Cubic meters

(100 million)

Comprehensive utilization capability of waste gas

(representing one of the environmental governance standards)

TABLE 3 | Summary statistics of input and output indicators.

X1
1 X1

2 X1
3 X1

4 Y1
1 Y1

2 Y1
3 Y1

4

Max 5,700.00 320.62 291.98 620.10 789.00 241.23 279.20 4092.00

Min 722.00 103.20 78.65 66.80 364.90 80.72 71.36 96.50

Mean 3,997.31 208.74 163.69 328.13 589.94 146.04 158.07 1,924.70

SD 1,058.15 49.53 43.56 139.96 117.45 39.82 44.25 921.80

X1
1 X1

2 X1
3 X1

4 X1
5 Y1

1 Y1
2 Y1

3

Max 659.00 165.00 241.23 279.20 4,092.00 219.95 241.92 3,563.04

Min 215.00 48.00 80.72 71.36 96.50 36.92 50.24 46.35

Mean 437.53 96.87 146.04 158.07 1,924.70 78.03 92.75 756.93

SD 125.24 24.18 39.82 44.25 921.80 35.67 37.45 733.56

and the θ2 represents the efficiency value of the second stage. To
illustrate the real status of the two-stage efficiency level for each
DMU, we drew the histogram in Figure 2 according to the data
given in Table 4. The fluctuation features and ranking differences
of the two-stage efficiency level of each DMU can be observed
clearly in Figure 3.

First, we recognized that the efficiency values for both stages
fluctuated dramatically among the 30 DMUs, as portrayed in
Figures 2, 3. They show that there was great potential for

efficiency improvement in various coal enterprises, especially in
the environmental governance stage. For the coal enterprises
whose efficiency levels in the second stage were relatively low,
it was apparent that efforts should be made to improve both
mining and environmental governance efficiency and tomaintain
a balance between environmental and economic benefits.

Second, from the comparison of the efficiency value ranking
scores, the 30 coal enterprises generally fell into three categories.
In this article, we defined the categories largely on the ranking
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TABLE 4 | The calculated efficiency values of the two-stage model for each DMU.

DMU θ1 θ2 DMU θ1 θ2

S01 0.63 0.61 S16 1.00 1.00

S02 0.84 0.67 S17 0.92 0.73

S03 0.71 0.54 S18 0.91 0.63

S04 0.82 0.73 S19 0.76 0.64

S05 1.00 1.00 S20 0.88 0.72

S06 1.00 1.00 S21 0.76 0.61

S07 0.86 1.00 S22 0.68 0.76

S08 0.67 0.55 S23 0.74 0.63

S09 0.86 0.87 S24 0.98 0.85

S10 0.81 0.78 S25 0.88 0.63

S11 0.68 0.57 S26 0.93 0.81

S12 0.78 0.64 S27 0.78 0.60

S13 0.71 0.71 S28 0.54 0.53

S14 1.00 1.00 S29 0.99 0.70

S15 0.99 0.78 S30 0.68 0.64

TABLE 5 | Detailed calculation results relating to material consumption.

DMU Score Benchmark

(Lambda)

Proportionate

movement

Slack

movement

Projection

S18 0.91 S05(0.32);

S14(0.38);

S16(0.31)

−18.73 −68.53 125.14

scores of the two-stage efficiency level. The top 6 of the two-stage
efficiency values ranking constituted the first category, while the
last 6 of the two-stage efficiency values ranking constituted the
third category, and the middle 7–24 of the two-stage efficiency
values belonged to the second category. The enterprises whose
two-stage efficiency values were simultaneously high among the
sample enterprises, i.e., whose efficiency value ranked at a high
position in both stages, with hardly any difference, such as S05,
S06, S14, and S16, are clearly apparent in Figures 2, 4 and were
classified into the first category. It is important to highlight
that the first category enterprises ranked highly in terms of
both mining and environmental governance. Consequently, the
synergetic development level in the two stages is the highest
among the sample. Actually, these enterprises were continuously
engaged in seeking synergetic performance growth in both
the mining stage and environmental governance stage. The
enterprises whose second stage efficiency values were lower
than those of the first category at different degrees, and
whose efficiency value ranking scores were also lower than
those of the first category, i.e., S02, S04, S07, S08, S09, S10,
S12, S13, S15, S17, S18, S19, S20, S21, S22, S23, S24, S25,
S26, S27, S29, and S30, are clearly apparent in Figures 2, 4
and belong to the second category. It is also meaningful to
note that deviations in ranking of the efficiency value of the
second stage not only existed but also were larger than those
of the first category. Logically, the synergetic development
level of the second stage was lower than that of the first

category. Obviously, in reality, these enterprises had tended
to focus on mining efficiency while neglecting environmental
governance to some degree. Consequently, they generally had
poor environmental governance performance. The enterprises
whose efficiency level ranked in the last six positions, such
as S01, S03, S11, and S28 can be seen in Figures 2, 4 and
are classified as belonging in the third category. It is not
difficult to surmise that it was the poor operation standards
that lead to the lowest efficiency values ranking status of the
third category enterprises. Undoubtedly, the third category
enterprises had a poor synergetic development level of mining
and environmental governance.

In addition, we determined the enterprise percentage of
the three different categories as demonstrated in Figure 5.
It can be seen that the second category enterprises
accounted for the highest percentage among all the sample
enterprises. The first category enterprises accounted
for almost the same percentage among all the sample
enterprises. This percentage distribution situation resembled
a spindle structure. In reality, this kind of distribution
structure also conforms with the real green mining
development status of coal mining enterprises in China at
the present stage.

Third, we were able to obtain the specific data and
corresponding countermeasures to improve the efficiency levels.
Detailed information about the efficiency value, benchmark
(lambda), proportionate movement, slack movement, and
projection value of each input and output can be achieved
from the exported model calculation results. Owing to space
limitations, we chose one input of material consumption from
DMU18 in the first stage to be displayed in Table 5. We
devised countermeasures to adjust its input value to optimize
its efficiency value according to the corresponding parameters
exported from the model calculation results. Based on the
data information in the proportionate movement and slack
movement columns, we adjusted the amount and direction of
input elements to reach the projection value. Correspondingly,
the efficiency value can be optimized eventually. For instance,
to reach the projection value and optimize the efficiency
value of DMU18 in the first stage, we can diminish the
input value of material consumption in the first stage by
0.6853 million yuan on the basis of the data information
found in the proportionate movement column. Meanwhile,
we can decrease the value of the input element of material
consumption by DMU18 in the first stage by 0.1873 million
yuan according to the data information found in the slack
movement column to reach the projection value of 1.2514
million yuan, thereby improving the efficiency value rationally.
Actually, we can carry out such adjustments for all the input
and output indicators of the two stages according to the
parameters exported from the MAXDEA calculation results
to realize green mining performance improvement across all
30 DMUs. Owing to space limitations, we displayed the full
information in Appendix. By generating quantified evidence, all
of these precise adjustments indicate that this empirical study is
exactly what is needed by the coal authorities to improve green
mining efficiency.
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FIGURE 2 | The two-stage efficiency value of each decision-making unit (DMU).

FIGURE 3 | The fluctuation curve of the two-stage efficiency level.

CONCLUSIONS

This study set up a two-stage green mining system structure
and the correlated input–output indicator system to evaluate
green mining efficiency. In addition, a two-stage combined
DEA model was proposed to assess the mining subsystem and
environmental governance subsystem efficiency of 30 sample
coal enterprises situated in China’s central-west region in 2019.
This empirical study provides detailed information about the
efficiency value, efficiency ranking level, benchmark of scale
to return, value of slack movement, value of proportionate
movement, and value of projection for the 30 DMU. Together,
all of this information provides policy makers (especially at the
enterprise level) with valuable insights into green mining and

improvement countermeasures. DEA has been widely applied
to evaluate the performance of the energy industry. However,

few studies to date have attempted to deal with the case of
mining enterprises by evaluating theirmining and environmental

governance performance simultaneously. The four key findings
of this study were as follows.

First, the coal enterprises fell into three categories based on

a comparison of their two-stage efficiency values and ranking

status. The first category enterprises had high efficiency ranking
(top 6) in terms of both mining and environmental governance
and their synergetic development level in the two stages was
the highest among the sample. Consequently, the enterprises
in the first category were regarded as being green mining
enterprises with a high level of efficiency. The enterprises in the
second category had a lower efficiency ranking in both mining
and environmental governance than those in the first category.
Moreover, the larger deviations in the efficiency ranking in the
second stage of the second category revealed that the synergetic
development level in the two stages was lower than that of the
first category. In reality, the second category enterprises could
be generally regarded as green mining enterprises with middle-
level efficiency. The third category enterprises had the lowest
efficiency ranking (lowest 6) in the two stages. Accordingly, the
operation capability and synergetic development level of mining
and environmental governance were both poor. It was therefore
unrealistic to discuss the greenmining efficiency level of the third
category enterprises.

Second, we determined the enterprise percentage of the three
different categories. From Figure 5, it can be seen that the
second category enterprises accounted for the highest percentage
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FIGURE 4 | The efficiency level ranking of the two stages for each DMU.

FIGURE 5 | The enterprise percentage distribution of the three different

categories.

among all the sample enterprises. There was almost no difference
in the ratio of the first and the third category enterprises.
They both accounted for 13% of the sample enterprises. This
percentage distribution situation embodied the features of a
spindle structure. Actually, this kind of distribution situation
also conforms with the real green mining development status of
mining enterprises in China at the present stage. This finding
is helpful for policy makers tasked with formulating rational
countermeasures geared at optimizing the layout of the coal
industry in the central and western area by adjusting the
percentage distribution.

Third, the exported parameters information from the
two-stage combined DEA model definitely provided a
quantitative basis for efficiency level improvements. This is

crucial for coal enterprise managers who are trying to pursue
continuous progress in green mining implementation and
operation capability.

Fourth, several specific policy implications and improvement
countermeasures for mining enterprises come to light from the
empirical study results. With respect to the grim environmental
damage that has accompanied coal mining in China for decades,
high priority should be given to the establishment of a green
mining policy system to encourage mining enterprises to
shoulder the responsibility for implementing green and low-
carbon development.

From the perspective of optimizing coal mining industrial
layout, the authorities should create a green mining efficiency
evaluation system in coal mining enterprises based on the two-
stage model and, in strict accordance with the efficiency ranking
status of the two-stage model, formulate a set of rules needed to
eliminate the enterprises that have poor operations. According to
our empirical study, the third category enterprises had the lowest
efficiency value rankings in the two-stage model. This means
that based on the quantified evaluation results, such enterprises
should be eliminated. Meanwhile, to boost the green mining
efficiency of the mining sector, the authorities should also design
incentive policies to stimulate the smart expansion and growth of
the first category enterprises.

From the perspective of technology innovation, the authorities
should reinforce the application and reformation of greenmining
technologies. Currently, green mining technologies primarily
refer to mine filling, water preservation, simultaneous extraction
of coal and gas, oxidizing utilization of ventilation air methane
(VAM), and gangue discharge reduction. Specifically, the
authorities should formulate regulations and establish standards

Frontiers in Energy Research | www.frontiersin.org 11 March 2020 | Volume 8 | Article 18

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Wang et al. Green Mining Efficiency Evaluation

to encourage the application of green mining technologies and
simultaneously curb the use of old mining methodologies at
the coal enterprise level. The government should also foster
green mining technology innovations through cooperation
mechanisms by forging efficient operation frameworks
organized by government sectors, commercial corporations,
and coal enterprises. It is essential to identify priority areas of
technology application and innovation. Methane extraction
and comprehensive utilization technologies are definitely of
great significance in improving the environmental governance
efficiency in the second stage. Therefore, it is imperative to
propel the policy design with respect to the application and
innovation of methane extraction and comprehensive utilization
technologies in coal mining enterprises.

In terms of institutional innovation, to implement rigorous

control over production behaviors that intentionally ignore
environmental performance, the authorities should strengthen

the relevant legislation and regulations. As for positive

institutional design, feasible tax subsidies, and financial aid
policies should be created to encourage enterprises to promote

the comprehensive utilization of coalbed methane, coal gangue,
and other associated resources. For instance, a value-added

tax (VAT) exemption policy for imported equipment should
be issued to motivate enterprises to invest in advanced
equipment that facilitates clean production and green mining
implementation. In addition, a green mining assistance fund
could be established from the central government budget to

finance the renovation of coal mine gas control technologies.
Meanwhile, green mining system channels could be increased
through the issuance of treasury bonds and creation of financial

instruments (Zhu et al., 2019). As for public governance, the
authorities should build and improve the stakeholder common
governance institutions to achieve the goal of joint progress
between enterprises and the society. Co-governance mechanisms
could also serve as important factors for conducting transparent
and strict supervision of information disclosure pertaining to the
environmental governance performance of coal enterprises.
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APPENDIX

TABLE A1 | Detailed calculation results for all 30 enterprises.

DMU Score Benchmark (Lambda) Proportionate movement

(material consumption)

Slack movement

(material consumption)

Projection (material

consumption)

S01 0.63 S05(0.18); S06(0.37); S16(0.45) −64.79 −3.06 106.15

S02 0.84 S05(0.04); S06(0.96) −30.02 −60.23 97.54

S03 0.71 S05(0.34); S06(0.36); S16(0.29) −65.06 −57.42 98.95

S04 0.82 S05(0.41); S06(0.10); S14(0.13);

S16(0.35)

−28.41 −17.13 108.05

S05 1.00 S05(1.00) 0.00 0.00 78.65

S06 1.00 S06(1.00) 0.00 0.00 98.30

S07 0.86 S05(0.096); S06(0.50); S14(0.40) −20.51 0.00 123.19

S08 0.67 S05(0.66); S14(0.24); S16(0.10) −62.07 −20.45 103.78

S09 0.86 S05(0.26); S06(0.62); S14(0.12) −16.01 0.00 101.13

S10 0.81 S05(0.59); S06(0.17); S14(0.24) −36.41 −52.65 103.04

S11 0.68 S06(0.59); S14(0.12); S16(0.29) −64.28 −20.46 113.56

S12 0.78 S05(0.45); S14(0.19); S16(0.36) −43.15 −43.99 111.46

S13 0.71 S05(0.58); S16(0.42) −57.84 −43.93 97.43

S14 1.00 S14(1.00) 0.00 0.00 165.30

S15 0.99 S05(0.10); S06(0.01); S14(0.38);

S16(0.52)

−1.85 −5.29 135.06

S16 1.00 S16(1.00) 0.00 0.00 123.70

S17 0.92 S06(0.56); S14(0.44) −13.02 −31.16 127.83

S18 0.91 S05(0.32); S14(0.38); S16(0.31) −18.73 −68.53 125.14

S19 0.76 S06(0.88); S14(0.12) −70.53 −115.20 106.25

S20 0.88 S05(1.00) −10.80 0.00 78.65

S21 0.76 S05(0.91); S06(0.01); S16(0.08) −40.12 −42.86 82.45

S22 0.91 S05(0.75); S14(0.25) −15.39 −61.55 100.26

S23 0.74 S05(0.02); S06(0.98) −49.54 −42.27 97.83

S24 0.98 S06(0.10); S14(0.10); S16(0.79) −3.03 −14.27 125.48

S25 0.88 S06(0.90); S14(0.10) −18.27 −27.63 105.09

S26 0.93 S05(0.35); S06(0.38); S16(0.27) −7.22 0.00 98.38

S27 0.78 S05(0.39); S06(0.57); S14(0.03) −26.65 0.00 92.75

S28 0.54 S05(0.58); S06(0.20); S14(0.03;

S16(0.20)

−81.22 −3.22 93.95

S29 0.99 S05(0.08); S14(0.40); S16(0.52) −1.45 −18.62 136.91

S30 0.68 S05(0.55); S06(0.02); S16(0.43) −57.58 −22.04 98.36
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