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Smart home appliances and applications are gaining popularity, due to the high level

of service they provide to users. In a smart home, all electrical and smart appliances

are interconnected together to form a special private network. Due to economic and

environmental factors, energy consumption is of great concern to both users and service

providers. The integration between the technological advancement in electricity grids and

the environmental awareness led to the rise of smart grids. A reliable and well-grounded

smart grid system can be achieved by well handling the in-home power requests. Thus,

a key aspect in the design of smart grids is scheduling the start time and duration of run

of electrical appliances to minimize the amount of energy consumed, as well as to force

a cap on the maximum amount of energy consumed at any given time. In this paper,

we present a scheduling framework for serving a request from electrical appliances in

a smart home network. The network is assumed to allocate the available power to the

incoming requests from appliances and serve each appliance at a fixed rate according

to its initial requirements. Moreover, each request is assumed to have maximum bounds

on both the tolerable start of service and the total interruption delays. The problem

is formalized as a discrete scheduling problem which employs an adaptive algorithm.

The proposed framework consists mainly of a scheduling mechanism formulated as a

dynamic program. The paper presents two scheduling schemes: a non-preemptive and

a preemptive one. We compare the performance of the proposed algorithm against other

schemes from the literature. Simulation results show improvements in terms of consumed

energy expressed as total saving in electricity bill cost.

Keywords: smart grid, electricity, scheduling, adaptive, smart home, non-preemptive scheduler, preemptive

scheduler

INTRODUCTION

The advancements in modern societies are regarded in the development and deployment of
electrical grids. Electricity provides the necessary power to run all modern appliances. In addition
to the widespread of renewable energy initiatives to accommodate the global increase in electricity
demands, a more efficient and well-managed electricity resources is needed. The continual increase
in electricity consumption by residential premises is expected to account for 30–40% of the total
electricity usage worldwide (Tchuisseu et al., 2019). Hence, an efficient in-home smart grid control
and management solutions deem useful. The notion of automation is strongly associated with
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electrical energy. The future advancement of electrical grids
is challenged by both environmental and economic concerns.
To overcome these challenges, the concept of smart grids has
emerged. The main objective of smart grids is to provide
cost-effective and environmentally friendly electrical power to
consumers. Electricity is a secondary source of energy, and
it uses other sources, such as coal and wind. Facilitating a
reliable and well-grounded smart grid system can be achieved
by expediting and optimizing the power requests in a real-time
and automated fashion (Erol-Kantarci and Mouftah, 2015). An
efficient utilization for using smart grid mostly depends on the
wide-spread participation of users (Alam et al., 2013).

Energy sources are classified into renewable and non-
renewable sources. Renewable sources are available in a timely
manner from natural resources on regular or irregular bases.
Sunlight is an example of renewable source; it is available on
a daily basis in most parts of the world. Other examples of
renewable sources are wind power, tidal power, solar power, wave
power, radiant energy, hydroelectricity, compressed natural gas,
biomass, and geothermal power (Ipakchi and Albuyeh, 2009).

Non-renewable sources are not renewable at constant
rates. For example, oil takes thousands of years to build
naturally and cannot be available at a relevant proportion
of consumption. Examples of such sources are natural
gas, petroleum, coal, and nuclear power. Electricity can be
defined as the set of physical phenomena associated with
the flow of electric charge (Ipakchi and Albuyeh, 2009).
Traditionally, electricity is generated from non-renewable
sources. However, recent literature has placed considerable
emphasis on generating electricity from renewable sources as a
cheap and environment-friendly alternative. Electrical appliances
are common in houses (e.g., oven, washer, dishwasher, TV, and
microwaves), and each appliance consumes a specific amount
of energy. The increase and spread of these appliances increase
the demand for electricity. Such an increase in demands
increases the amount of consumed electricity, and hence,
its cost.

Smart grids are a modern form of electrical grids that are
based on digital technologies to supply electricity to consumers
via two-way digital communication between the grid operator
and the users. It enables end-users to generate electricity (usually
from a renewable source) and to insert part of this generated
electricity in the main electricity network. Moreover, it provides
the users with the capability to monitor and control their
consumption patterns. In typical electricity networks, grid refers
to the distribution system, which transmits electricity from the
power plants to the end users’ locations.

As we mentioned above, smart grids can monitor and control
electricity consumption. Each appliance has different operations.
In a smart grid system, each appliance is assumed to have the
capability to be started, resumed, suspended, and stopped by
a special module connected to the home smart meter (Erol-
Kantarci and Mouftah, 2010a). Smart grids usually employ a
scheduling module to plan these operations to reduce energy
consumption during peak hours, reduce cost, increase reliability,
and reduce power interruptions periods. The smart grid consists
of four main components (Erol-Kantarci and Mouftah, 2010a):

1. Supportive communication systems, which are
communication infrastructures used to exchange data
between the different elements of the system (e.g., utility
and user, and user and appliance). Both wired and wireless
networks can be used to implement this sub-system.

2. Advanced metering infrastructure (AMI), which provides
accurate real-time readings of power and energy consumption
for users.

3. Advanced distribution operations.
4. Advanced asset management.

Smart grids support a two-way flow of energy and information
and aim to achieve multiple objectives. The main goals of
smart grids are improving energy storage, enabling self-healing
grid, making it more environment-friendly, and imposing
user-oriented solution with customized management policies.
However, smart grids face many challenges, such as regulation,
standardization, and security. Figure 1 shows a typical smart
grid layout.

This work considers supportive communication systems,
in particular, the communication between users and home
appliances. In such systems, the users communicate with home
appliances to start, modify or shut down a particular appliance
or service. Wireless Sensor Networks (WSNs) are typically used
to support the communication services required by the smart
grid (Erol-Kantarci and Mouftah, 2010a). WSNs provide low-
cost and low-power solutions. Environment monitoring with
consumption and fault detection is a common example of the
usage of WSNs in smart grids. However, harsh environmental
conditions (e.g., high humidity, vibrations, and dust), security,
constrained resource, and system reliability are the main
challenges for using WSNs in smart grids. The design and
implementation of WSNs are constrained by three types of
resources: energy, memory, and processing.

As we mentioned above, in a smart home environment,
scheduling is a key operation performed by smart grids tomanage
energy consumption smartly. It is responsible for deciding which
electrical appliance (machine) will start (run) and when it
will start. Scheduling mechanisms are divided into two types:
non-preemptive scheduling, which assumes that a connection

FIGURE 1 | General smart grid layout.
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request is served to completion without service interruption,
and preemptive scheduling, which aims at achieving higher
throughput by allowing service preemption.

Electrical appliances are major energy consumption
appliances (e.g., washer, dishwasher, dryer, coffee maker,
plug-in hybrid electric vehicle, and air conditioning), where each
appliance consumes a specific amount of electrical energy that
can be measured in kilo watt per hour (kWh). Each appliance has
many different cycles and an energy consumption level for each
cycle. Typical cycles in minutes are 10, 30, 60, 60, 60, and 90 for
the coffee maker, washer, dryer, plug-in hybrid electric vehicle,
air conditioning, and dishwasher, respectively. Moreover, the
energy consumption for each appliance in kWh is 0.4, 0.89, 2.46,
9.9, 1.5, and 1.19, respectively. Table 1 lists some common house
appliances and their characteristics (Erol-Kantarci and Mouftah,
2010a,b, 2011).

Traditional electricity grids were built to generate and
distribute energy services. Urbanization and automation pushed
the consumption levels to very high limits. The smart and
innovative solution was needed to control this unstoppable
growth. Dynamic pricing is one of the possible solutions in which
prices are increased at peak hours and reduced at normal hours.
This work considers the integration between dynamic pricing
and schedulingmechanism to achieve themain goals of the smart
grid in terms of controlling and managing energy consumption
in the home environment.

This paper is composed of six sections. Section Introduction
introduces the general concepts and framework. Section
Literature Review presents the literature review. Section System
Model presents a detailed comparison and evaluation between
the proposed works with other schemes. Section Simulation
and Results presents the methodology of the work and its
implementation details. Section Conclusions and Future Work
summarizes the topic, the experiments, the conclusion of the
suggested work, and future work.

LITERATURE REVIEW

In this section, we first discuss various pricing schemes used in
smart grids. Then we review and consider many algorithms and
techniques used in smart grids among houses, and other schemes
used to schedule appliances’ operations inside single house.

Many pricing schemes are proposed for use in the smart grid
including Real Time Pricing (RTP), Time of Use (TOU), Critical
Peak Pricing (CPP), and Day Ahead Pricing (DAP). In smart

TABLE 1 | List of appliances and their properties.

Appliance Energy consumption (kWh) Duration (min)

Washer 0.89 30

Dishwasher 1.19 90

Dryer 2.46 60

Coffee maker 0.4 10

PHEV 9.9 60

AC 1.5 60

grids, real time (dynamic) pricing is an effective tool for reducing
pressures on the electricity infrastructure, encouraging energy
efficiency, and saving consumers money (Mohsenian-Rad and
Leon-Garcia, 2010).

An example of pricing schemes usage in some popular
techniques is TOU pricing which is used in Appliance
Coordination with Feed In (ACORD-FI), Optimization-based
Residential Energy Management (OREM), and in-Home Energy
Management (iHEM). The RTP is used in Residential Energy
Load Consumption (RLC) scheme, and it also uses TOU and CPP
pricing in the decision support tool scheme (Erol-Kantarci and
Mouftah, 2011).

The RTP is a pricing scheme that changes hourly and is
fixed. The RTP reflects the wholesale prices weather conditions,
generator failures, and wrong of generation (Mohsenian-Rad
and Leon-Garcia, 2010). The pricing changes in intervals of
15min to an hour. This is described as a critical component
of energy efficiency programs, because it enables the user to
reduce consumption at peak load hours, which saves billions
of dollars and contributes to the efficiency of the grid system.
The RTP consists of a meter that is capable of recording
usage data in intervals; this communication allows consumers to
modify consumption, and market operator to modify generation
and distribution.

Rehmani et al. (2018) presented an overview of recent
works that aim to integrate renewable energy resources into the
environment of smart grids. These studies consider the resources
along with the smart grids supporting communication networks.

The scheduling problem in smart grids is investigated at
different levels of the network. For example, the work by
Zhang et al. (2016) proposed a day-ahead scheduling mechanism
for generation and storage appliances in the smart grid. A
game-based strategy is proposed by Reka and Ramesh (2016)
for scheduling at the utility company level among different
residential users (homes). The work in Reka and Ramesh (2016)
does not consider the in-home appliance level scheduling in their
solution. Moreover, the work by Khonji et al. (2019) formulates
the scheduling problem in smart grid at the users’ level (house)
and devise a greedy algorithm for the time-slotted case.

Communication between appliances in the smart grid is
a crucial issue and it must be considered carefully as it
can greatly affect the performance of the smart grid. The
communication issues are beyond the scope of this paper, an
optimal communicationmodel is proposed in Zhang et al. (2019).
Tchuisseu et al. (2019) proposed a management module for
smart grid utilizing two main concepts: communication between
appliances to exchange important information, and frequency
fluctuations. The main goal in Tchuisseu et al. (2019) is to
stabilize the overall system frequency and to avoid frequency
fluctuations at peak times.

Erol-Kantarci and Mouftah’s work (2010a) proposes the
Appliance Coordination (ACORD) scheme for smart grids,
which allows flexibility in the start time for home appliances.
The main goal of the ACORD scheme is to shift the start time of
appliances to off-peak hours when the consumer’s desired start
time falls between peak hours. The scheme uses the in-home
WSN to relay the data between the coordinator and the different

Frontiers in Energy Research | www.frontiersin.org 3 February 2020 | Volume 8 | Article 22

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Mardini et al. Novel Predictive Management Algorithm

appliances in the home. When the consumer presses on the start
button of the appliance, it generates the START-REQ packet,
which contains the desired duration cycle of the appliance (e.g., a
washing cycle of the washer), and the packet is sent to an Energy
Management Unit (EMU) by the WSN.

If no hard start time is requested, after communicating
with the smart meter to check the TOU rate and peak hour
information, the EMU receives the START-REQ packet, which
schedules the available start time. In a large house environment,
the EMU may be physically far away from the appliances. This
means that the EMU is not reachable in one hop by all appliances.
Thus, a multi-hoping is required for message delivery. The
waiting time or the scheduled start time is sent back to the
consumer by the START-REP packet and set to zero, if the
consumer requests a hard start time or the desired start time is
in off-peak hours, and no other requests are scheduled on that
time. The final decision of the consumer, if any, based on the new
scheduled time, is sent back to the EMU in notification packets,
using decision in reserve time slot for the device. They tested
the performance of the scheme using two different load scenarios
high and low consumer activity cases. In the high and low activity
cases, the inter-arrival times between two requests are assumed to
be a negative exponential distribution with means of 6 and 48 h.
Used devices included a washer, dryer, dishwasher, and coffee
maker. Also, the peak hours are chosen between 7–11 a.m. and 5–
9 p.m. in the winter week days. The maximum acceptable delay is
10 h. The performance metrics are the total cost saving in dollars
and the number of lost requests in a sensor network. Finally, the
results showed the total contribution of devices to the energy
bill 46US$ of the consumer requests at the period time 210 days
(i.e.,∼7 months).

Erol-Kantarci and Mouftah (2011) proposed the ACORD-
FI scheme as an improvement of the ACORD scheme (Erol-
Kantarci and Mouftah, 2010b). The authors’ main assumption
is that the device could manage the consumer demands and
locally generated energy to reduce the sharing of the appliances
in the total energy bill, and provides savings on the energy bill.
The scheme uses the in-home WSN to relay the data between
the coordinator and the different devices in the home. When the
consumer presses on the start button of the device, it generates
the START-REQ packet, which contains the desired on duration
cycle of the device (e.g., washing cycle of the washer), and the
packet is sent to an EMU by the WSN.

Once the EMU receives the START-REQ packet, it schedules
the available start time, if no hard start time is requested, after
communicating with the smart meter to check the TOU rate and
peak hour information. In a large house environment, the EMU
may be physically far away from the appliances. This means that
the EMU is not reachable in one hop by all devices. Thus, a
multi-hoping is required for message delivery.

The waiting time or the scheduled start time is sent back to
the consumer by the START-REQ packet and the waiting time
is then set to zero, if the consumer requests a hard start time or
the desired start time is in off-peak hours, and no other requests
are scheduled on that time. The final decision of the consumer,
if any, based on the new scheduled time, is sent back to EMU

in notification packets, using decision in reserve time slot for
the device.

They tested the performance of the scheme using two different
load scenarios high and low consumer activity cases. In the
high and low activity cases, the inter-arrival times between two
requests are assumed to be a negative exponential distribution
with means of 6 and 48 h. The devices used include a washer,
dryer, dishwasher, and coffee maker, and the peak hours are
chosen between 7–11 a.m. and 5–9 p.m. in the winter week days.
The maximum acceptable delay is 10 h. The performance metrics
used are the total cost saving in dollars and the number of lost
requests in a sensor network. The results improved over ACORD
by a rate of 37US$ as the total contribution of devices to the
energy bill.

Al Balas et al. (2016) introduced an efficient scheme to
reduce the total cost of the energy bills. The proposed schemes
utilized the ACORD-FI (Erol-Kantarci and Mouftah, 2010b,
2011) scheme to obtain an efficient solution. The scheduling
schemes proposed in this work are the Appliances Coordination
that uses waiting for a time (ACORD-WT) and Appliances
Coordination that uses a priority scheme (ACORD-P) (Erol-
Kantarci and Mouftah, 2010b, 2011). The authors compared
their scheme with these schemes and the results show that the
efficiency of the ACORD-WT scheme is better than the ACORD-
FI and the (ACORD-P) schemes, regardless of the number of
appliances. Moreover, the preemptive scheduling scheme by
giving priority (ACORD-P) is still better than the standard
ACORD-FI scheme.

Chakraborty and Kalaimannan (2017) studied the peak hours
load re-scheduling of applicable devices based on their power
consumption level. The proposed solution is based on the
two-dimensional bin packing problem. The authors discussed
obtaining an exact solution using optimization solvers. And they
also presented an approximation technique that give acceptable
solutions much faster.

Reddy and Singh (2018) discussed the load scheduling of
commonly used devices daily (called Delayable in the paper) and
less usable devices which are used less frequently (Non-Delayable
devices). The scheduling is done first for a group of users for
the Delayable devices and then, in the second phase, for the
Non-Delayable devices. Twomain factors are taken into account,
namely first the remaining energy for the users having solar PV
and then the price rates. The authors formulated an optimization
problem based on Genetic Algorithm Optimization (GAO). The
authors provided two types of results: Day-ahead and Hour-
ahead scheduling, which can help in matching closely load for
real-time consumption.

Nouri et al. (2018) proposed a multi-period scheduling
scheme to minimize the cost. The authors generated various
scenarios to model any uncertainties that could arise with
renewable resources, upstream systems, and system loads. The
model consists of different periods: firstly, variable selection
is performed, which will be used for all scenarios; Then the
same process is applied until the final scheduling is achieved.
The authors tested and illustrated the method for a couple of
case studies.
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Dhivyaprabha and Subashini (2018) used Synergistic
Fibroblast Optimization (SFO) to solve the multi-objective
scheduling problem. The objectives the authors used were:
minimize the consumption cost and maximize renewable
resources usage. The authors discussed a case study to illustrate
the effectiveness of the approach compared to some other
strategies, such as First Fit, Best Fit, Firefly Algorithm (FA),
Particle Swarm Optimization (PSO), and Invasive Weed
Optimization (IWO).

Charoen et al. (2018) used user preferences to optimally
schedule the operation of the device in the user premises.
They calculated the optimal energy consumption scheduling
based on, for example, day-ahead schedules. They considered
the implications of allowing users to change their preferences
and request new schedules at any time. Besides, they proposed
single-user and multi-user adaptive rescheduling algorithms
which address any changes in user preferences. The algorithms
reschedule deviating energy consumption optimally, thus
reducing the total energy cost. Simulation results show that the
total energy cost of the community can be reduced by as much as
11.4% in specific scenarios.

Yao et al. (2016) devised an energy management system based
on dynamic user responses and the ability of shifting start time
of home appliances based on the current pricing tarrif. The
authors presented a home energy management system using

Mixed Integer Linear Programing (MILP) technique, aiming

to solve both load scheduling problem of home appliances

and the energy dispatch problem of utility grid under a single
optimization framework in real time. The results show that the

proposed system minimized the energy cost required to satisfy
the scheduled load.

Helal et al. (2017) formulated the power requests scheduling
problem as a mixed-integer non-linear programming. The
authors took the technical constraints of the grid as well
as users’ preferences into account, where the users inform a
centralized controller with their preferences, which are included
in the proposed optimization problem according to the type of
the appliance. The simulation results show that the proposed
scheduling scheme can significantly reduce the overall system
operating costs via demand side management.

The main results of the surveyed literature are presented
in Table 2. In this work we propose an adaptive online
schedules (preemptive and non-preemptive ones) to the in-home
appliances scheduling problem. The proposed schedulers takes
into consideration users’ preferences, available energy, and any
other fluctuations in the system, such as the arrival of new
request. Most of the works done in the literature formulates
the scheduling problem and constructs the scheduler in advance
(e.g., a day ahead) using the available users requests. No or
minimal consideration of future requests is done. Moreover, no
prediction components are used to predict the near-future trends
and construct the scheduler accordingly.

SYSTEM MODEL

The framework we proposed in this work is designed for the
smart grid in the home environment, and considers common
electrical appliances used in typical houses, as we outlined above.

TABLE 2 | Literature review summary.

References Description Limitation

Zhang et al. (2016) Day-ahead scheduling mechanism for generation and storage in the

smart grid

Considers the higher-level scheduling problem only

Reka and Ramesh (2016) Game-based scheduler at the utility company level Does not consider the in-home appliances

Khonji et al. (2019) Proposed a greedy scheduler for the time-slotted case Considers the scheduler for a group of houses

Erol-Kantarci and Mouftah (2010a) Proposed ACORD scheduler with flexible start time No prediction of future requests is used

Erol-Kantarci and Mouftah (2011) Enhanced version of the ACORD scheme by the adding the

capabilities of some appliances to generate electricity

No prediction of future requests is used

Al Balas et al. (2016) Proposed schemes based on ACORD-FI which uses waiting time

and priority levels between appliances

No prediction of future requests is used

Chakraborty and Kalaimannan (2017) Presented a scheduler based on the appliances’ power consumption

level

Prediction is not considered in this work

Reddy and Singh (2018) Utilized the genetic algorithm to obtain a scheduler that considers 2

factors: the remaining energy for the users and price rates

Users preferences are not considered

Nouri et al. (2018) Proposed a multi-period scheduler. It starts with variable selection

period and then followed by another period to schedule the

remaining requests

The paper assumes no control on the system resources

Dhivyaprabha and Subashini (2018) Utilize the Synergistic Fibroblast Optimization technique to solve the

scheduling problem

No prediction of future requests is conducted

Charoen et al. (2018) Flexible one-day ahead scheduler that considers the users

preferences

Non-adaptive scheduler as it does not respond to sudden

changes to the scheduling problem, such as the arrival of

new request(s)

Yao et al. (2016) Used MILP to solve both the scheduling problem as well as the

energy dispatching problem

All devices are assumed to be interruptible devices which

can be stopped/resumed any time

Helal et al. (2017) Used MINLP to solve the scheduling problem All appliances are assumed to fall into either low, medium,

or high power consumption
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In the following, we present some notations, assumptions, and
definitions to be used in the proposed framework:

– Set of request R(ri, i = 1, . . . ,N), in which each appliance’s
request ri is defined by the following parameters:

◦ Arrival time (ai), length (li), deadline (di), and weight
(wi). N is the maximum number of incoming requests. An
electrical appliance issues a request for service, in which
it sends along with the above parameters. The smart grid
system receives and processes requests from all appliances
in the home, and it basically decides whether to serve each
request or not and the service pattern (time allocation) for
each accepted request.

– The request’s weight is computed for each request, based
on several factors, and is used to differentiate and prioritize
between competing requests. The objective of the proposed
framework is to maximize the sum of served request weights
∑

wi.
– Ptime is a parameter that denotes a length of the prediction

period used in computing the overload probability from the
transition diagram.

– Pwtotal is the total power allocated to serve appliances.
Power is assigned to appliances based on their manufacturing
requirements, as Table 1 indicates.

– Padmit is a parameter (a probability) used in accepting new
requests. It is set by the smart grid operator.

– Each appliance may have a maximum of one request at any
given time.

– Time is slotted. The algorithm views time as a sequence of
slots, each of length Timeslot (e.g., 1 s).

– If a request i does not receive the required service within the
acceptable delay interval [ai, ai + di−1 or di], then that request
is considered to be inadequately served.

– αqos is a quality parameter (αqos > 0) to fix an upper bound on
the maximum acceptable processing time experienced by any
of the admitted appliances. The derivation of this bound will
be introduced later.

– Poverload is the overload probability that is defined as the
probability that the object will be in an overload state at time
t + tpredict.

In order to derive the quality parameter αqos, we define the
following notation: for any given appliance i, define ai as the start
time for serving this appliance, li as the service time length, ci as
the completion time, and di as an upper bound on the acceptable
total time. In order to simplify the notations, these parameters
are measured in time slots. Thus, the total processing time of
appliance i is (1+ ci − li) slots, hence, di= [(1+ αqos)li].

PROPOSED SCHEMES

Figure 2 depicts the general architecture of the proposed
framework. In this architecture, once the user makes a new
request, the system checks to validate whether this is a forced
request (i.e., a request that must start immediately) or not; if it is a
forced one, it gets started immediately. If it is not a forced request,
then the admission scheme is invoked, which, in turn, performs
overload estimation. Once the admission scheme is completed,
it invokes the scheduling component (in this work, we propose
two different scheduling schemes, namely preemptive and non-
preemptive schedulers). The scheduler constructs a schedule of
which appliances to start and when.

The proposed scheme is distinguished from other schemes by
making the following assertions:

– Serving a particular appliance is bounded by a deadline, so any
appliance must be served within a specific time frame.

– A request does not need to be either accepted or rejected. A
request can also be delayed (for a reasonable amount of time)
to be served later, in case of many requests arriving at the
same time.

The approach taken in this work devises a management
framework that utilizes the following modules (Liu et al., 2017;
Hans et al., 2018):

1. A predictive scheme that utilizes a priori knowledge of
distributions of appliances to predict the overload probability.

2. A scheduler to determine which appliance will be served next.

Proposed Admission and Planning Scheme
Given the above-mentioned definitions and assumption, in the
following, we present the general admission scheme. However,

FIGURE 2 | General architecture of the proposed framework.
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we note that the user may opt to force a appliance to start right
away (we will refer to these requests as “forced requests”), without
being subjected to the admission and the scheduling procedures.
In this case, the appliance request will not be considered among
the total requests.

The goal of the quality check is to ensure that the system
will not be in an overload situation in case it accepted the
incoming request. It basically computes the overload probability
given the current requests distribution vector for the interval
[t, t+ tpredict].

In order to estimate the overload probability that is
necessary for the quality test, we devise the following simple
probabilistic model. We remark that the probability of having
m appliances (from n appliances) operating at time t +

Tpredict follows the binomial distribution B(m; n, pactive), where
pactive is the probability that any appliance remains active.
The probability of new appliance becoming active during
the time interval t + Tpredict is denoted by pnew, and the
probability that z appliances will be active during this interval
follows the binomial distribution B(z; q, pnew). Therefore,
the overload probability is computed using the convolution
sum of two binomial distributions, namely B(m; n, pr) and
B(z; q, pnew).

We note that the choice of the prediction interval (Ptime) is
essential to achieve the best performance. Hence, we propose an
adaptive planning estimator to adjust the value of the planning
interval based on the number of incoming requests. For high
demanding situations, the interval is decreased. On the other
hand, the planning interval is increased as the request demand
decreases. Initially, the interval is set to the average requests rate.
Then, the value is adjusted with an exponential moving average
using Equation (1):

Ptime = αPtime + (1− α)DT (1)

where α is a favoring factor, 0 ≤ α ≤ 1, and is used to
favor the historical average over the most recent reading, and
DT is the most recent reading. For simplicity, we set α to
0.5, in this paper. Figure 3 shows the steps of the general
admission scheme.

Proposed Non-preemptive Scheduling
Scheme
The scheduling scheme is the main module in the proposed
framework. Calling the scheduling function at time t, with
available resources (energy), a set R(t) of all of the outstanding
unexpired requests, and Ptime. Now, we construct a non-
preemptive scheduler that can select a subset R′ ∈ R(t) of
requests that can start no later than t + Ptime and maximizes
the total weights. In order to facilitate the design of the proposed
scheduler, we make the following definitions and assumptions:

DR is the set of all request that is seeking to be scheduled.
It consists of both undelayed and delayed instances of traffic
requests. The delayed request is bounded by Ptime units.

• MDR is the total number of requests in set DR.Mathematically,
MDR is computed using the following formula: MDR =
∑

ri∈R

(

1 + min
(

di, Ptime

))

.
• For request ri, the undelayed component is accounted for by

the term “1,” and the delayed version is compensated for by
the term “min (di, Ptime).”

• L[1, 2, . . . , MDR] is a non-decreasing order sorted list of
the set DR; the instances in L are sorted according to their
starting times.

• L[k] is the identity (i.e., the index j) of a request with index k
in list L that correspond to instance rj,d of request rj.

• A subset of the first k entries of L, where L[z]| z= 1, 2, . . . , k, is
of type S(k)[i, j], if it satisfies the following two conditions:

◦ For any request in R, no two instances in this subset
correspond to this request.

◦ The subset can be scheduled over two channels. The term
i=−1 is used and indicates that no request is scheduled on
channel i.

The proposed scheduler finds the optimal solution using a
dynamic program that considers all instances of requests in DR,
according to the ordering determined by L. In particular, at the
kth phase, k = 0, 1, 2, . . . , MDR, for request L[k], the algorithm
computes the effect of including and excluding this request by
tracking all S(k)[i, j] quantities.

To construct the scheduler, it is best to view the available
power (Pwtotal) as a spectrum that is divided into m bands; each

FIGURE 3 | General admission scheme.
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band is divided into k channels of equal capacity. Each appliance
requires a specific number of channels to be served. For any
K requests, where K > m, we define a sub-scheduler that can
schedule a maximum of K

′

requests at a time, namely SS-K.
The SS-K scheduler needs to be called [K/m] times. Each call
selects a subset of size 2 to start simultaneously. NP-SK utilizes
dynamic programming concepts in its design. Figure 4 depicts
the NP-SK algorithm.

In this algorithm, L[k] is the set of all requests, both new
and delayed requests. S(k)[i, j] is a subset of valid requests in
the interval [t, t+Ptime]. Thus, each of these requests can be
scheduled over m bands such that the latest requests can start
over the two bands i, and j, respectively, where i≤ j. S(k−1)[i, j] is a
subset of the maximumweighted sets of the corresponding types.
Request L[k] can be scheduled with set S(k−1)[i, j] if S(k−1)[i, j]
can be scheduled over 2 channels. Also, in case of L[k] being
a delayed instance of request rj, then no idle or overlap time
occurs between its scheduled start time and the finish time of its
predecessor on the same channel.

Lemma: The proposed non-preemptive scheduler is a
correct one.

Proof: The scheduling algorithm considers the effect of
including and excluding all qualified instances in the DR set;
hence, it is proven to be correct. In particular, the loop in
the scheduler accounts for the two cases of including and
excluding L[k] as the new set S(k)[i, j] takes the maximum
weighted set of these two cases.

The scheduler runs for MDR iterations. The length of each
iteration is bounded by the shortest request size (Ml). Therefore,

the run time of each iteration is bounded by O( 12 (
Ptime
Ml

)
2
). The

total run time is O( 12 (
Ptime
Ml

)
2
.MDR).

For the NP-SK algorithm to work, the number of channels
must be even. In case of an odd number of channels,
the algorithm must schedule one request over one channel,
assuming the second channel is occupied by request with infinity
request length.

Proposed Preemptive Scheduling Scheme
One way of enhancing the proposed scheduling algorithm is
to replace the non-preemptive scheduler with a preemptive
one, where the service of any appliance can be preempted

FIGURE 4 | Non-preemptive scheduling function.

several times during the operation period of the appliance. The
proposed preemptive scheduler follows a similar approach as
the non-preemptive one. However, a key difference between the
preemptive scheduler and the non-preemptive one is the set of
connections considered by the scheduler, namely the set R(t).
In the preemptive scheduler, the set R(t) is defined as the set
of all outstanding unexpired service requests plus all requests
already in service. The proposed scheduler may select an active
appliance and decide to shut it down for a certain amount
of time to serve another appliance. Hence, at the arrival of a
new request, the scheduling mechanism is invoked, and a new
schedule is computed, taking into account all active, delayed, and
new requests.

In addition to the notations and variables we defined for the
non-preemptive case, we define the following attributes for the
preemptive case:

• idi is the allowable maximum total service interruption delay
for request ri.

• sti is the allowable maximum start of service time (delay) for
request ri.

Hence, the appliance request is dropped in two cases: first if it
cannot be started on, or before, (si = ai+sti), secondly, if a request
cannot be completed before (si + li + rdi).

The scheduling (i.e., P-S2) takes as input the timing
information of all requests in the set R(T), namely two time
instants (i, j), such as i, j ǫ [0, Ptime], where the two channels
are available for service. The function yields a subset denoted SR,
which can be scheduled over two channels (i.e., SR⊆ R).

The algorithm works iteratively. In each iteration, the
algorithm selects a subset S of at most three requests to be
scheduled to start over two available channels to start at times
i, j. The chosen subset S is required to have the maximum
total weight among the candidate subsets. If S can be computed
(i.e., exists), then a sub-schedule is constructed to start at two
channels at times i and j. The function is terminated if S does not
exist, and it will return the computed subset SR. Figure 5 shows
the algorithm.

Computing the best request(s) to include in each schedule is
done exhaustively over the set of all active and inactive requests
by packing three requests over two channels.

Let Ml be the length of the shortest request. Hence, at most
Ptime
Ml

sub-schedules are computed by the scheduler. Each sub-

schedule needs O(nDR
3) to perform a brute force search in the

set DR for the set (S) that achieves the maximumweight with two
or three requests. Hence, the total running time for the scheduler

is O( 12 (
Ptime
Ml

)
3
·MDR).

In order to prove the correctness of the preemptive scheduler,
assume we have three requests (r1, r2, and r3) to be served
interchangeably over two channels only. The start times for these
requests are denoted by H1, H2, and H3, respectively. The end
times are denoted by E1, E2, and E3, respectively, where E1 < E2
< E3. Assume OT is the total duration where the three requests
overlap. The three requests can be scheduled as follows:

1. Serve connections r1 and r2 during the interval [H1, H3+
OT
2 ].
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FIGURE 5 | Preemptive scheduling function.

2. Serve connections r2 and r3 during the interval [H3+
OT
2 ,E1].

3. Serve connections r1 and r3 during the interval [E1, E1+
OT
2 ].

Using this sub-schedule, each request is delayed by the maximum
of OT

2 .

SIMULATION AND RESULTS

The performance of the proposed non-preemptive and
preemptive scheduler is evaluated using simulation. We
conducted and wrote a discrete event simulator as a code in
C++. The user requests are modeled as follows: inter-arrival
rate in off-peak hours follows a negative exponential probability
distribution function with a mean of 12 h, while in the peak
hours it is assumed as 1 h. The appliances used are a washer,
dryer, dishwasher, and coffee maker, in the winter peak period
from 7 to 11 a.m. and from 5 to 9 p.m., and the mid peak hours
from 11 to 5 p.m. The simulation runs on the period between 10
and 210 days, and the maximum delay is set to 24 h.

The obtained results are compared against results obtained
from state- of the art algorithms in the literature; in particular,
we compare the performance of the proposed schemes against
Erol-Kantarci and Mouftah’s work (2010b, 2011), namely on-
off ACCORD-FI Al Balas et al.’s (2016) work, namely modified
ACCORD (both preemptive and non-preemptive versions).
The performance metric we used to evaluate the performance
of the investigated schemes is the total cost (cumulative) of
electricity usage during the simulation time (∼7 months).
The reported results are the average of 10 runs, and to
eliminate the transient effects, the results of the first 5 days
in the simulation were cropped from the final results. Table 3
lists the main parameters and assumptions we used in the
simulation study. Table 4 shows energy consumption and
cycle durations of the appliances used in the simulations.

TABLE 3 | Simulation parameters.

Parameter Value

Simulation time 210 days

Number of devices 4 and 6 devices (Washer, Dishwasher, Dryer, Coffeemaker,

PHEV, AC)

Inter-arrival time Poisson process:

Peak periods: Negative exponential distributed with mean

of 12 h.

Off peak periods: Negative exponential distributed with

mean of 1 h.

TABLE 4 | Energy consumption and cycle durations (Erol-Kantarci and Mouftah,

2010a, 2011).

Appliance Energy consumption (kWh) Duration (min)

Washer 0.89 30

Dishwasher 1.19 90

Dryer 2.46 60

Coffee Maker 0.4 10

PHEV 9.9 60

AC 1.5 60

Table 5 shows the TOU rates and two price models: one
from Ontario/Canada (Erol-Kantarci and Mouftah, 2010a, 2011)
and another from Jordan, as presented in Al Balas et al.
(2016) research. We refer to these two models as model 1
and model 2, respectively. Moreover, we assume that 10% of
the initiated requests by the users are forced requests. Hence,
these requests will not be handled by the admission or the
scheduling schemes.

The five schemes are shown in the comparison figure are:

• The proposed non-preemptive scheme.
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• The proposed preemptive scheme.
• ACCORD-FI scheme [Erol-Kantarci and Mouftah’s work

(2010b, 2011)].
• The non-preemptive modified ACORD (Al Balas et al., 2016).
• The preemptive modified ACORD (Al Balas et al., 2016).

Figures 6, 7 depict the obtained simulation results for price
model 1 used in Ontario/Canada, for both 4 and 6 appliances,
respectively. Figure 6 compares the total energy cost when
using 4 appliances for all 5 schemes. It is apparent that
the proposed non-preemptive scheme achieved slightly more
total cost than the ACCORD-FI scheme. This is rather

TABLE 5 | TOU rates (Erol-Kantarci and Mouftah, 2010a,b, 2011).

Period Time Rate

Ontario/Canada (model 1) On-peak 7:00 a.m. to 11:00 a.m. 9.3 cent/kWh

On-peak 5:00 p.m. to 9:00 p.m. 9.3 cent/kWh

Off-peak 9:00 p.m. to 7:00 a.m. 4.4 cent/kWh

Jordan (model 2) On-peak 7:00 a.m. to 11:00 p.m. 62.71 fils/kWh

Off-peak 11:00 p.m. to 7:00 a.m. 52.66 fils /kWh

expected as service interruption to free the resources to
more important request is not permitted in non-preemptive
scheduling. For this reason, it is also apparent that the preemptive
approaches outperformed the non-preemptive ones. Moreover,
the proposed preemptive approach with overload prediction
achieved better results than all other approaches. In addition,
the overload prediction component enhanced the performance
of the proposed schemes, both proposed preemptive and non-
preemptive schemes, achieved lower total costs than their
respective counterparts. For example, at day 210, the proposed
non-preemptive approach managed to achieve a saving of about
25US$ in comparison to the non-preemptive approach of the
modified ACORD (Al Balas et al., 2016) proposed.

Figure 7 reports a similar behavior with higher saving values
when 6 appliances are used. For example, the saving reaches
around 300US$ during the same period at 210 days. This can
be justified by the addition of the admission phase (overload
prediction). However, the other schemes achieved lower
saving and relatively comparable performance. Nonetheless, the
proposed preemptive approach achieved the best savings.

We conducted the same set of experiments for the other
pricing model (model 2) adopted in Jordan. Figures 8, 9 depict

FIGURE 6 | Total energy cost of using 4 appliances with price model 1.

FIGURE 7 | Total energy cost of using 6 appliances with price model 1.
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FIGURE 8 | Total energy cost of using 4 appliances with price model 2.

FIGURE 9 | Total energy cost of using 6 appliances with price model 2.

the results for the pricing model 2. Although the 2 pricing
models (1 and 2) exhibit different pricing strategies, the proposed
schemes achieved similar behavior, as in the case of model 1, in
comparison to the other schemes from the literature. Again, the
proposed preemptive approach managed to achieve the highest
savings in the energy bill.

CONCLUSIONS AND FUTURE WORK

Smart grids are an emerging and innovative solution to
overcome the limitations of traditional energy grid systems.
Smart grids encompass many components, such as smart energy
generation from renewable resources, smart metering, and smart
management. From the perspective of the user of a typical
home, smart grids must provide a smart solution, inside the
house, that monitors and controls the energy bill. The main
goal of this work was to design and implement novel and
efficient appliances scheduling schemes that aim to reduce the
total energy cost by deciding which appliances will start and
when they will start. In this paper, we proposed two scheduling
schemes, namely non-preemptive and preemptive ones. The
proposed schemes will invoke a prediction component to predict
whether the system will be overloaded or not in the near future.
Then, a scheduling component is invoked (in fact, we proposed

the two above-mentioned scheduling schemes) to decide which
request will be served and when. The scheduling component
will try to pack as many requests as possible at the same time.
We compared the performance of the proposed schemes with
other schemes from the literature under two different pricing
models. Simulation results show improvements in terms of
consumed energy expressed as total saving in electricity bill cost,
with percentages ranging, for example, from 5 to 20% when
comparing our proposed preemptive scheme with the modified
preemptive scheme (solid green and blue curves in the figures).
We note that the admission phase of our approach played an
important role in shaping the input and the output of the
scheduling schemes.

The performance of the proposed schemes is to be enhanced
in the future by considering more sophisticated and realistic
prediction models, such as Markovian process and game theory.
Moreover, it is necessary to investigate their performance
under other pricing models from different regions around
the world.
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