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A commercial wave energy system will typically consist of many interacting wave

energy converters installed in a park. The performance of the park depends on many

parameters such as array layout and number of devices, and may be evaluated based on

different measures such as energy absorption, electricity quality, or cost of the produced

electricity. As wave energy is currently at the stage where several large-scale installations

are being planned, optimizing the park performance is an active research area, with many

important contributions in the past few years. Here, this research is reviewed, with a focus

on identifying the current state of the art, analyzing how realistic, reliable, and relevant

the methods and the results are, and outlining directions for future research.
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1. INTRODUCTION

Wave energy has the potential to contribute significantly to the world’s electricity consumption. To
produce electricity in the range above a few MW, most wave energy concepts require that wave
energy converters (WECs) are deployed together in arrays, or parks.

Interaction between the devices will affect the full performance, reliability, cost, and life-time
of the park. The interaction can be hydrodynamical (scattered and radiated waves), mechanical
(shared mooring and foundations), electrical (sea cables, substations, grid connection), and
economic (shared capital and operational costs). As a result, many parameters will affect the
interaction and the park performance, reliability, and costs. The number of devices and their
separation distance, the park layout, mooring configurations, electrical and power take-off (PTO)
systems, rated power of individual devices, constraints of subsystems, and so on—all parameters
should be tuned to obtain the optimal design of the wave energy park before installation. In
addition, environmental parameters have a large impact on the park. Wave climate, wave direction
and variability, water depth, currents, and distance from shore are some factors that all affect the
wave energy system, and different sites and environmental conditions will require different optimal
solutions. Optimization is the procedure of identifying the best solution from some set of available
alternatives, under given constraints. In the simplest case, an optimization problem consists of
maximizing or minimizing a real function by systematically choosing input values from an allowed
set and computing the value of the function. In a more complex situation, optimization includes
finding the best available values of some objective functions given a defined parameter space.

Many papers on wave energy parks have claimed to carry out optimization, whereas, in reality,
they have only compared a few distinct configurations or tuned one parameter to obtain a
minimum or maximum point. In recent years, there has been a vast increase in the research field
of wave energy park optimization, and several global optimization algorithms have been developed
and applied. Ideally, optimization of a wave energy park should find the best available solution to an
objective function that considers all aspects of the park, including all costs and total revenue over
the lifetime, reliability, constraints regarding available ocean area, deployment, and maintenance,
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allowed power fluctuations, water depth, etc. In short, the goal of
the research should be to provide wave energy developers with
clear, unbiased and reliable answers on how they should best
design their park, given the constraints they are facing.

The aim of the current paper is to ask how far we are from
providing such answers. The paper poses questions on how
realistic the current models and results for wave energy park
optimization are, how reliable they are, and if they are relevant.
Further, the paper aims to outline possible routes on how to reach
that goal. The focus of the paper is on the state of the art in this
research field. Most of the referenced papers have been published
during the last five years, although older key references have also
been included for consistency. All figures have been reproduced
with permission from the journal copyright holders.

1.1. Structure of the Paper
The objective of this review paper is to review the state
of the art of wave energy park optimization and to analyze
how realistic, reliable, and relevant the current methods and
results of the research area are. To arrive at this, first, the
modelingmethods and the optimization algorithms are reviewed.
Modeling methods used in wave energy park optimization are
reviewed in section 2, with focus on hydrodynamic modeling
and WEC dynamics. Optimization methods are reviewed in
section 3, and both simple “optimization” procedures such as
comparing distinctive configurations or tuning single parameters
are included, as well as global optimization algorithms such
as evolutionary strategies. In section 4, we then return to the
technical aspects reviewed in sections 2-3 and analyze how
realistic (section 4.1), reliable (section 4.2), and relevant (section
4.3) the different methods and output are. Different approaches
and systems are also compared to find general trends. Challenges
and constraints for the research field are discussed in section 5,
and future routes are outlined. Finally, some general conclusions
are presented in section 6.

2. MODELING METHODS

As mentioned in the introduction, a large wave energy
system consists of hydrodynamical, mechanical, and electrical
subsystems, all with their own complexities and requiring
different modeling techniques. In the current section, different
methods used to model hydrodynamics, wave-structure
interaction, and WEC dynamics, including power take-off
models, are reviewed.

2.1. Hydrodynamic Modeling
The vast majority of works on hydrodynamical interactions
in wave energy parks have been carried out based on linear
potential flow theory. In other words, the fluid is assumed to
be non-viscous, non-rotational, and incompressible, such that
the governing equation of the fluid velocity reduces to the
Laplace equation 18 = 0, where 8(x̄, t) is the fluid velocity
potential. By further assuming non-steep waves, the boundary
constraints at the free surface can be linearized and the first-order
linear approximation taken. Although there is some progress in
studying the hydrodynamical interactions in wave energy arrays

using non-linear potential theory and even computational fluid
dynamics methods (Devolder et al., 2017, 2018), the optimization
of arrays typically involves a large number of evaluations. This
demands fast methods for the hydrodynamic computations,
requiring that linear potential flow theory, and sometimes
additional approximations, are used. For further reviews of the
hydrodynamics modeling methods of wave energy parks than
the one presented here; see Li and Yu (2012), Babarit (2013) and
Folley et al. (2013).

2.1.1. Analytical Methods
Hydrodynamic modeling of wave energy parks by means of
analytical methods was initiated already in the early works on
wave energy. Budal (1977) studied a system of buoys under the
assumption that the floats were so small that the interaction due
to scattered waves could be neglected. The same point-absorber
approximation was used by Evans (1980) and Falnes (1980) in
early works on wave energy arrays and is sometimes used even
today to facilitate modeling of large parks or modeling with low
computational costs (Göteman et al., 2015b; McGuinness and
Thomas, 2019). Similarly, in the plane-wave approximation, the
structures are assumed to be so far apart that they influence
each other only by plane waves, and the evanescent modes are
neglected (Simon, 1982; McIver and Evans, 1984). The point-
absorber approximation has been found to perform well at low
frequencies and for large separating distances, whereas the plane-
wave approximation works better at high frequencies. However,
the error is expected to grow with an increase in the number of
interacting units (McIver, 1994; Mavrakos and McIver, 1997).

By applying an acoustic multi-body diffraction theory to water
waves, the iterative multiple scattering method was developed
by Ohkusu (1974) to study offshore platforms and further
developed byMavrakos and Koumoutsakos (1987) andMavrakos
(1991) for wave energy applications. In the iterative multiple
scattering method, the diffraction and radiation properties of
isolated bodies are used, and the reflected waves within an
array are added iteratively until convergence is achieved. This
method was combined with the direct matrix method of Simon
(1982) and Kagemoto and Yue (1986). The resulting method,
sometimes referred to as the directmatrixmethod and sometimes
as the multiple scattering method, solves the wave amplitude
around each body simultaneously without iteration and is exact
within the assumptions of linear potential flow theory. For
floating bodies, the infinite matrices in the solution must be
truncated, and the method is semi-exact. The method was
later combined with the single-body diffraction solution of
Garrett (1971) and Yılmaz and Incecik (1998) and extended to
independent radiation by Siddorn and Eatock Taylor (2008).
Recently, the analytical multiple-scattering method was coupled
by McNatt et al. (2015) to a numerical method to allow for
arbitrary geometry (see Figure 1) and used to study the park
interaction and existence of trapped wave modes by Flavià
et al. (2018). Semi-analytical methods were also developed for
oscillating wave surge converters (OWSCs) and used to study
wave energy parks by Renzi and Dias (2012, 2013), and Noad and
Porter (2015). To improve the computational speed and allow
for the optimization of large arrays, methods using resonant
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FIGURE 1 | (Left) The analytical multiple-scattering method was extended by McNatt et al. (2015) to allow for arbitrary geometry and used to study array interactions

of attenuator WECs. The figure shows wave fields produced with the BEM software WAMIT and the analytical method (denoted IT in the figure). (Right) Wave

propagation in a nine-WEC array in regular (top) and irregular (bottom) waves computed using NEMOH (Verao Fernández et al., 2018).

modes (De Chowdhury and Manasseh, 2017; Wolgamot et al.,
2017), interaction distance cut-off (Göteman et al., 2015a), a
nearest neighbor approach (Sarkar et al., 2016), and Haskind’s
relation (Flavià and Clément, 2017) have been introduced. Both
the iterative and non-iterative versions of the multiple scattering
theory have been further developed and used to model the
hydrodynamics of wave energy parks (Ji et al., 2015; Konispoliatis
and Mavrakos, 2016; Göteman, 2017; Ruiz et al., 2017; Fang
et al., 2018; Giassi and Göteman, 2018; Zheng et al., 2018,
2019; Liu et al., 2019). Several other analytical methods have
been developed and used for wave energy park applications,
including matched asymptotic expansions (McIver and Evans,
1988), multipole expansions (Linton and Evans, 1993), and Bragg
scattering (Li and Mei, 2007).

2.1.2. Numerical Methods
Hydrodynamic modeling in offshore engineering is most often
performed using numerical methods. The most commonly used
approach is the boundary element method (BEM). At the
EWTEC conference in 2015, over 37% of the papers in the wave
energy tracks explicitly stated that a BEM software had been used
(Penalba et al., 2017). In BEM, the boundaries of the fluid domain
are discretized and the integral representation of the fluid velocity
potential is used. The boundary condition on the body and free

surface are applied and the fluid potential can then be determined
using Green’s functions anywhere in the fluid domain. Several
commercial (Lee, 1995; AQWA, 2013) and open-source BEM
software packages (Babarit and Delhommeau, 2015) exist. BEM
software has also been coupled to wave propagation models such
as MILDwave or OceanWave3D to study the perturbed wave
field in a larger ocean area with varying bathymetry (Verbrugghe
et al., 2017; Verao Fernández et al., 2018, 2019) and are further
developed and used extensively to model the hydrodynamical
interaction in wave energy parks (Sinha et al., 2016; Ruiz et al.,
2017; Tay and Venugopal, 2017; Bosma et al., 2019; Lyu et al.,
2019).

In the above-mentioned methods, the underlying theory
is based on potential flow, to linear or second non-linear
order. When steep waves are considered, the assumptions of
linearization are no longer valid, and in addition, viscosity
may have a large impact on the dynamics of floating bodies.
Computational fluid dynamics (CFD) methods solve the full
Navier-Stokes equations using numerical methods. Different
commercial and open-source CFD software packages are used
increasingly to study the hydrodynamic properties of WECs, but
the computational cost is still too high to allow for wave park
optimization studies, even if Devolder et al. (2017, 2018) have
recently studied interaction between a few WECs with CFD.

Frontiers in Energy Research | www.frontiersin.org 3 March 2020 | Volume 8 | Article 26

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Göteman et al. Wave Energy Park Optimization—A Review

2.2. Motion and PTO Modeling
The dynamics of WECs differ fundamentally from those of
traditional offshore structures, mainly due to the small scale of
theWEC structures, the existence of a PTO, and the aim to absorb
energy from the waves, which often requires large-amplitude
motion at resonance with the waves. Many different PTO systems
and methods of modeling them exist in the literature (see Folley
et al., 2013; Day et al., 2015; Forehand et al., 2015; Penalba
and Ringwood, 2016). For instance, the PTO can be a hydraulic
system driving a rotating generator, a hydro- or air-turbine, or
a linear direct-driven generator. The PTO extracts energy from
the system, which can then be converted into electricity and
connected to the grid. This extraction of energy affects themotion
of the device, which again affects the hydrodynamical damping
and the dynamics. Thus, the modeling of WECs requires that
both the hydrodynamics and the PTO and the coupling between
them are modeled in a realistic way. The PTO is often modeled
as a spring-damper system, but it is only the damping part
of the force that is responsible for power take-off, FPTO(t) =

γ (t)ẋ(t), where γ (t) can be the pressure differential of a hydraulic
system or the generator damping of a direct-driven generator,
and x(t) is the dynamical part of the PTO. In simple cases, the
damping γ can be approximated as constant. For oscillating
water columns (OWCs), the PTO is typically an enclosed air
chamber with air flow driving an air turbine, which can be
modeled as a thermodynamic pressure model but has also been
modeled successfully as a point-absorber by Sharp et al. (2017).

The equations of motion for a system of floating bodies can
be described by Cummins’ equation (Cummins, 1962), which
includes a convolution term between the radiation impulse
response function and the velocity of the float. A standard
approach when optimizing wave energy parks is to solve the
equations ofmotion in the frequency domain, which dramatically
reduces the computational cost but excludes the possibility of
modeling non-linear and time-dependent PTO systems. With
the growing field of control algorithms to steer the WEC
dynamics, the complexity of PTO modeling is growing with
advanced time-domain models and wave-to-wire models. Real-
time simulations of WECs are computationally demanding
due to the radiation convolution integral, and real-time array
simulations have therefore been restricted to small arrays or have
been realized by approximating the radiation convolution term
with a state-space model (Forehand et al., 2015). WEC-Sim is
an open-source MATLAB/Simulink software package that solves
the dynamics of WECs in the time domain. Hydrodynamical
force parameters are required as input and can be computed
with numerical BEM software such as the one described above.
WEC-Sim has been used recently by Bosma et al. (2019) to
study the performance of an array of five OWC devices and by
Mankle et al. (2019) to study an array of five pitching WaveStar
WECs in a staggered layout. The SESAM package developed by
DNV-GL was used to model the hydrodynamic and structural
response of arrays of 10 WECs by Yang et al. (2019). Real-time
simulation was carried out by Balitsky et al. (2014) to model
the optimal configuration for a six-body array using measured
wave data from the west coast of Ireland. Control models have
been introduced both in experiments and numerical modeling

of arrays (Bacelli and Ringwood, 2013; Bacelli et al., 2013; Li
and Belmont, 2014; Mercadé Ruiz et al., 2017; Nader et al., 2017;
Thomas et al., 2018a), but it is beyond the scope of the current
paper to go into the details of advanced generator simulations
or wave-to-wire models. Instead, we refer to reviews such as
Penalba and Ringwood (2016) and Wang et al. (2018) and focus
on the most commonly used PTO models used in wave energy
park optimization.

The WEC dynamics can also be affected by the mooring
system. For floating WECs, the main purpose of the mooring
system is station-keeping. For several wave energy concepts,
however, the mooring system is integrated into the PTO. This
is the case, for example, when the WEC consists of a buoy
connected to a direct-driven linear generator or when the buoy
is tethered to pumps driving the PTO. The mooring system of
WEC arrays is most commonly modeled as linear springs, as in
the works by Vicente et al. (2009), Konispoliatis and Mavrakos
(2014), and Yang et al. (2019). Some examples of non-linear
mooring models for wave energy parks exist. A coupled time-
domain method was used by Gao and Moan (2009) to solve
the WEC motion and mooring line tension simultaneously for a
system of nine WECs. Vicente et al. (2010) modeled the mooring
cables as catenary lines in a quasi-static analysis, and a finite
element cable model was used by Bailey et al. (2015) to study
arrays of different WECs with a stochastic method, focusing
on power variations. For a comprehensive review of modeling
methods forWECmooring systems, see Davidson and Ringwood
(2017). In section 4.1, we will return to the numerical models
of WEC arrays and discuss how well they represent the physical
systems studied.

By solving the equations of motion and obtaining
the dynamics of the system, the absorbed power can be
computed. Once the absorbed power has been computed,
the hydrodynamical interaction can be evaluated using the
interaction factor, or q-factor. This is usually defined as the ratio
between the time-averaged absorbed power of the full farm,
Ptot, and the power that would have been absorbed by the same
number N of isolated WECs, Pi

isolated
,

q = Ptot

/

N
∑

i=1

Piisolated. (1)

An interaction factor q > 1 implies that the hydrodynamical
interaction in the park is constructive, i.e., the gain is larger than
the destructive interactions. The interaction factor is often used
to evaluate the total performance of the park, although this is a
rather restrictive measure, as will be discussed in section 4.3.

2.3. Physical Experiments
Both analytical and numerical modeling are always connected
with some approximations and uncertainty, and for an accurate
understanding of the systems and for reliable results, physical
experiments are required. However, experiments with wave
energy arrays are both expensive and complex to carry out,
and it is only in recent years that several large-scale physical
experiments have been conducted and their results published.
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Numerical predictions of the response of an array of five
heaving floats in regular waves were compared to experimental
measurements by Thomas et al. (2008) and in irregular waves
by Weller et al. (2010). Magagna et al. (2011) measured the
interaction factor in an array of OWCs experimentally. Trapped
modes within an array of eight fixed truncated cylinders were
demonstrated experimentally by Wolgamot et al. (2016), and
near-trapping was also observed in an array of fixed cylinders in
short-crested waves by Ji et al. (2015). A triangular array of three
spar-buoy WECs at a scale of 1:32 was studied experimentally
by Correia da Fonseca et al. (2016), and it was found that, in
wave climates with large energy periods, the array performed
better than three isolated devices, i.e., an interaction factor larger
than one was observed. Two layouts of five fixed OWCs were
modeled experimentally and numerically in regular and irregular
waves by Bosma et al. (2019). The layouts were chosen based
on earlier layout optimization, and a maximal power increase
of 12% from the non-optimal to optimal layout was found.
However, when taking the average, only a modest increase could
be established.

Recently, experiments with more units and increased
complexity in terms of multiple degrees of freedom dynamics
or with advanced control algorithms have been conducted. An
experimental campaign of large arrays of up to 25 heaving point-
absorber WECs was carried out in the shallow water wave basin
of DHI in Denmark in the WECwakes project and has been
presented by Troch et al. (2013) and Stratigaki et al. (2014); see
Figure 2. The PTO was modeled as friction damping, and both
long-crested and short-crested waves were studied. It was found
that the wave height was reduced after the park by up to 18%
due to park interactions (Stratigaki et al., 2014) and that it could
be increased by up to 11% up-wave of the array due to radiated
waves (Troch et al., 2013). Similarly, experiments with arrays
of up to 24 point-absorber WECs were conducted at Queen’s
University Belfast, and hydrodynamical array interactions were

found experimentally to cause losses of up to 26% in energy yield
compared to WECs in isolation (Child and Laporte Weywada,
2013). Arrays of five WaveStar 1:20 scale models equipped
with linear control PTO systems were studied experimentally
by Mercadé Ruiz et al. (2017) (Figure 2), and the data were

used to validate the hydrodynamics tool implemented in the
DTOcean software.

Arrays of up to six point-absorber WECs, each moving
in six degrees of freedom were carried out both at the
Australian Maritime College by Nader et al. (2017) and at
the COAST laboratory at the University of Plymouth, UK, by
Thomas et al. (2018a) and Giassi et al. (2019b). In the former
experiment, the surface elevation was tracked by videogrammic
measurements, and the experimentally measured interaction
factor was presented for 1–2 floats moving in heave and surge
(Nader et al., 2017). In the latter, both a linear damping and
an advanced control algorithm based on machine learning and
artificial neural networks were used as PTO systems (Thomas
et al., 2018b). The collaborative control algorithm required no
previous knowledge of the incident waves but still increased the
energy absorption through communication between the WECs
(Thomas et al., 2018a), and the performance of the WECs with
linear damping was compared for three array layouts by Giassi
et al. (2019b).

The experimental works discussed above were all carried
out in wave tanks. Experimental results from real sea tests of
arrays of WECs are even more rare. Three fullscale WECs were
deployed by Uppsala University at the Lysekil offshore site in
2009, and array interactions were studied (Rahm et al., 2012).
Several commercial developers have claimed to have deployed
and grid-connected arrays of WECs, but no data have been made
publicly available.

3. OPTIMIZATION METHODS

3.1. Comparing Distinctive Configurations
Most studies on designing optimal wave energy parks have been
based on comparisons of a few different configurations (Babarit,
2013), often with little or no arguments as to why these particular
configurations were chosen for the study. Whereas these works
were not optimizations per se, they lay the grounds for the current
optimization strategies.

Several layouts and parameter settings of arrays of heaving
cylinders and surging barges were studied by Borgarino et al.
(2012), and it was concluded that grouping of WECs into

FIGURE 2 | (Left) Wave tank experiments with a park of 25 heaving buoys in irregular waves conducted at the DHI Shallow Water Basin, Denmark (Stratigaki et al.,

2014). (Right) Experimental setup of five WaveStar models connected to linear control PTO systems (Mercadé Ruiz et al., 2017).
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arrays had a constructive effect in general. Vicente et al. (2013)
compared different park layouts consisting of 12 WECs each
with three different numerical methods, and separation distances
between the WECs were identified that led to constructive
interactions between the units. Similarly, Engström et al. (2013)
compared circular, rectangular, and randomized array layouts of

32 point-absorbers for power production and power fluctuations.

Three different array layouts and three different separation
distances were analyzed for life-cycle performance by López-
Ruiz et al. (2018a) (see Figure 3). Five different array layouts
consisting of 12 WECs were compared by Sinha et al. (2016)
(see Figure 4), and their performance in sea states with different
incident wave directions was studied. Several array layouts
were compared for two-body heaving WECs by De Andrés
et al. (2014). Triangular arrays were found to be optimal for
multidirectional wave regimes, whereas square arrays were better

for unidirectional waves, and tuning the separation distance
was found to be important to reach higher interaction factors.
Different array layouts such as linear, rectangular, and staggered
arrays were studied for Oyster and Pelamis WECs in 10-
year wave spectra by Gorr-Pozzi et al. (2019) and for point-
absorber WECs at four Italian sites by Bozzi et al. (2017). Power
production, costs, and mooring fatigue were compared for four
array layouts of 10 WECs by Yang et al. (2019) (see Figure 4).

3.2. Parameter Sweep
The next step after comparing distinctive configurations is to
vary one parameter to find the optimal value, keeping all
other parameters constant. Tissandier et al. (2008), Borgarino
et al. (2012), Babarit (2013), Vicente et al. (2013), De Andrés
et al. (2014), and Göteman et al. (2015b) all studied the power
fluctuations and power output of arrays as a function of the

FIGURE 3 | Average absorbed power for aligned, staggered, and arrow arrays with three different separation distances (López-Ruiz et al., 2018a). The arrow layouts

(bottom row) perform better than the other two, with an average power per WEC of 11–12 kW/m.
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FIGURE 4 | (Left) Array layouts of cone-cylinder floats studied by Sinha et al. (2016) using WAMIT. (Right) Array layouts of 10 WaveEL devices compared by Yang

et al. (2019) for performance and mooring fatigue.

number of devices in the array. Layout optimization by sweeping
over parameters such as separation distance and angles between
devices was performed by Snyder and Moarefdoost (2015) and
Göteman et al. (2015a). The power production of arrays of 12
OWSCs was studied in both regular, long-crested, and short-
crested waves by Tay and Venugopal (2017), and the interaction
function was evaluated as a function of the separation distance
between devices. Also, parameter sweeps to determine the impact
of wave parameters such as wave number, wave direction, and
significant wave height has also been conducted in a number of
works, including Konispoliatis and Mavrakos (2016), Sinha et al.
(2016), Mercadé Ruiz et al. (2017), Tay and Venugopal (2017),
Nader et al. (2017), Wu et al. (2017), Flavià et al. (2018), Zheng
et al. (2018), López-Ruiz et al. (2018a), and McGuinness and
Thomas (2019).

3.3. Global Optimization Algorithms
As has been discussed above, many parameters may affect the
performance of a wave energy park: the layout of the park, the
separation distance between devices, the number and size of
the devices in the park, the individual PTO settings of each
unit, mooring configurations, control strategies, wave climate

and wave direction, etc. Simple sweeps over single parameters are
not sufficient to find optima in the broad and complex solution
space of wave energy parks, and more advanced optimization
algorithms are needed.

3.3.1. Non-linear Programming Optimization
Non-linear programming optimization is useful for handling
optimization problems that cannot be handled by simple
parameter sweeps but which require optimization across a
moderately large parameter space. These methods can also be
adapted to handle non-linear constraints on the WEC motion,
which was applied already in early works by Evans (1981)
and Pizer (1993) on wave energy optimization. The efficiency
and accuracy of the solution to the constrained optimization
problem depend on the number of constraints and design
variables and on the characteristics of the objective function
and constraints. When constraints are linear and the objective
function is quadratic or linear, reliable solutions are readily
available. If instead the objective function and the constraints
are both non-linear, the problem can be transformed into a sub-
problem that can be solved and used as the core of an iterative
process to find the full solution to the optimization problem.
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Optimization of the array layout for point-absorber, spherical
WECs operating in heave only was performed by McGuinness
and Thomas (2015, 2016). To simplify the optimization, the
WECs were constrained to be positioned on a straight line or
along a circle, and no other constraints on the motion were
imposed. More generally, the optimization problem for five
WECs without restrictions on the array layout was studied by
McGuinness and Thomas (2019). In these papers, the layout
optimization algorithm identified the minimal value of an
objective function using a sequential quadratic programming
method, which resulted in the optimal layouts shown in Figure 5.

Optimization in terms of maximizing the energy absorption
under WEC motion constraints was considered by Bacelli and
Ringwood (2013) and Bacelli et al. (2013) for three arrays of
2–3 WECs. Similarly, an iterative quasi-Newton optimization
algorithm was applied by Wu et al. (2017) to identify the
maximum captured power of an array of Duck WECs under
motion constraints. Optimization of the absorbed power for
point-absorbers operating in heave in a fixed array layout but
with individually chosen constant damping of the WECs was
considered by Wang et al. (2016a,b). The impact of motion
constraints of the individual WECs was also taken into account
for different scenarios. An improvement in power absorption of
up to 18% was found with individual control of the damping
compared to a situation with optimal but same damping for
all WECs. Here, the non-linear problem was transformed into
quadratic programming using a penalty function for constraints
near the constraint boundary, implemented in MATLAB in the
“fmincon” function. Optimization of arrays with individually
chosen time-varying damping was attempted by Wang et al.
(2016c) but for arrays consisting of two units only due to the
heavy computational requirements. Moarefdoost et al. (2017)
used an iterative quadratic programming to optimize farm layout

for up to 15 point-absorbers; see Figure 5. However, theirmethod
also used a metaheuristic algorithm (see section 3.3.2) to choose
the starting points of the optimization process.

More examples of array optimizations coupled to WEC
control algorithms exist (Garcia-Rosa et al., 2015; Sharp et al.,
2017). Advanced control methods fall outside the scope of the
current paper, and the reader is referred to review papers such
as Penalba and Ringwood (2016) and Faedo et al. (2017) for
further details.

3.3.2. Metaheuristic Algorithms
Metaheuristic optimization methods search the solution space
for sufficiently good solutions, given specified constraints and
convergence criteria. They are useful when the optimization
problem is too large for all solutions to be evaluated and
when the solution space is multi-peaked, and several different
algorithms have been developed and applied to wave energy
park optimization.

Genetic algorithms. Genetic algorithms (GAs) originate from
the theory of evolution studies but have since been applied in a
variety of areas, ranging from string theory to pharmaceutical
research (Holland, 1992). The algorithm mimics the process
of natural selection and incorporates inheritance, mutation,
and selection among states in the solution space to find the
global minima of stated problems. Several versions of GAs
exist, but the idea is the same: a certain percentage of the best
performing solutions is kept in each generation based on a
specified fitness value. In the next generation, the surviving
solutions (parents) are combined two and two to generate new
solutions (children), using different crossover mechanisms. As
the population evolves, individuals with better and better fitness
values are generated. In addition, mutation introduces random

FIGURE 5 | (Left) Optimal layout for arrays of 3–7 WECs, obtained through sequential quadratic programming where the starting point for the layout has been

chosen based on a heuristic optimization algorithm (Moarefdoost et al., 2017). (Right) Optimal layouts for arrays with five WECs with constrained motion amplitude δ

(McGuinness and Thomas, 2019). In the upper figure, the incident waves propagate in directions close to the y-axis, and in the lower figure, the incident waves

propagate in a wider range of directions. All layouts have a WEC at the origin.
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solutions in the population and helps avoid local minima in
the solution space. A flowchart of the algorithm is shown
in Figure 6.
Covariance matrix adaptation. The covariance matrix gives
a geometric interpretation of the solution distribution in a
generation. Covariance matrix adaptation (CMA) is a stochastic
metaheuristic evolution strategy that adaptively increases or
decreases the search space for the next generation based
on the shape of the covariance matrix (Hansen, 2006).
A large search space is used when the solutions are far
from the global minima but is automatically reduced when
we are close to a minimum and the solution space just
needs fine-tuning.
Differential evolution. Differential evolution algorithms also
belong to the family of evolutionary optimization algorithms.
Like the GAs, they allow solutions to evolve by inheriting
strengths from previous generations. The main difference from
GAs is that real-valued vectors are used to represent the
individuals in the population. Mutation/crossover is performed
by adding the weighted difference between two solutions to
a third solution. This difference vector can be used with a
scaling factor to traverse the search space (Storn and Price,
1997).
Particle swarm algorithms. A particle swarm algorithm
mimics swarm behavior in birds flocking and fish schooling to
guide the particles to search for global optimal solutions
(Eberhart and Kennedy, 1995). Based on the fitness
values of all particles in the swarm, the velocities and
positions of the particles are updated, and the swarm
propagates toward optimal solutions. In the related
glowworm optimization algorithm (Krishnanand and

Ghose, 2009), the particles are equipped with a luciferin
level, depending on their fitness values. Each glowworm
is attracted by the brighter glow of other neighboring
glowworms, bringing the swarm toward the optimal
solutions.
Other. Several other global and metaheuristic algorithms

have been used for wave energy park optimization, for

instance, the gray wolf algorithm, another optimization

strategy inspired by animals living in groups (Mirjalili

et al., 2014). The parabolic intersection method was
designed to optimize layouts by placing WECs iteratively
on the parabolic scattered wave fields produced by
existing WECs in the array (Child and Venugopal,
2010).

GAs were first applied for the layout of wave energy arrays in

Child and Venugopal (2010) and further developed by Child

et al. (2011) to obtain optimal layouts and PTO settings for

point-absorber arrays. The GA toolbox from MATLAB was used

and was compared to a parabolic intersection method. Giassi

and Göteman (2017) coupled the analytical multiple scattering

method of Göteman et al. (2015a) to a GA optimization tool,

and Giassi et al. (2017) used it to find optimal layouts of arrays
with WECs of different sizes. This work was further continued
by Giassi and Göteman (2018) to obtain optimal arrays with 4
to 14 WECs where the interaction factor was larger than one.
The layout of five point-absorber WECs was optimized with a
binary GA by Sharp and DuPont (2018), and constraints in terms
of minimal distance between theWECs implied different optimal
layouts, although the general trend was to align perpendicular to
the wave direction. Sharp et al. (2017) coupled the array layout

FIGURE 6 | (Left) A flowchart of the genetic algorithm used by Sharp and DuPont (2018). (Right) The neuro-surrogate model of Neshat et al. (2019a) used to

estimate the power production in wave energy parks.
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optimization to active device control. An adaptive mutation
factor was introduced by Fang et al. (2018) to improve the
convergence rate of the array optimization. Faraggiana et al.
(2019) used a GA to optimize the separation distance between
devices, the PTO tuning, and the rated power of a system of three
WaveSub WECs.

To evaluate the reliability and efficiency of different
metaheuristic optimization strategies for wave energy
applications, several recent works have carried out array
optimizations using different algorithms and compared their
results. A particle swarm optimization was compared to a GA
by Faraggiana et al. (2019) and was found to outperform the
latter for two WECs, but not for larger arrays. In the research
project DTOcean (optimal design tools for ocean energy arrays),
a set of optimization tools for ocean energy systems have been
developed (DTOcean, 2017). Ruiz et al. (2017) compared the
CMA evolution optimization algorithm of the DTOcean tool to
a GA and a particle swarm optimization algorithm. The yearly
absorbed power was maximized as a function of the number of
WECs and the park layout, under the constraints of minimal
interaction factor q ≥ 0.9, minimal separation distance 65
m, and maximal ocean area 500 × 500 m. It was found that
the GA and the particle swarm algorithms performed slightly
better than the CMA algorithm but that the latter had lower
computational cost. Similarly, the accuracy and computational
cost of the GA in the DTOcean modeling tool were compared

to a meta-model optimization method by Ferri (2017), with the
conclusion that the former was more accurate, but with a higher
computational cost. A GA was compared to a Monte-Carlo
method to obtain optimal arrangements of 40 OWSCs by Sarkar
et al. (2016) (see Figure 7). The hydrodynamical interaction
was restricted between nearest neighbors of WECs to allow for
fast evaluations, and a machine learning approach was used to
identify optimal three-WEC clusters, after which the GA was
applied to optimize the full park layout. With the same number
of 16 million evaluations, the GA was able to find more optimal
layouts than the Monte-Carlo simulations.

Neshat et al. (2018, 2019a,b,c,d) compared many different
metaheuristic optimization algorithms for wave energy park
applications; see Figure 6. Neshat et al. (2018, 2019a,c) optimized
the coordinates of the WECs to achieve maximal absorbed
power under the constraints of maximal ocean area and a
minimal separation distance between the units. The parks
consisted of 4 and 16 submerged CETO WECs, and the
wave climates at several Australian sites were considered.
Neshat et al. (2019b,d) extended the optimization problem
to include the individual PTO parameters as well. Several
optimization strategies were compared: either all parameters
were optimized simultaneously, using several algorithms such as
the CMA strategy, differential evolution, gray wolf optimization,
or particle swarm optimization, or the WEC coordinates and
PTO parameters were optimized in an alternated fashion, or

FIGURE 7 | (Left) Optimal layouts of 40 OWSCs obtained with a GA coupled to a machine learning approach for five different bathymetry constraints (shown with

blue and pink curves) (Sarkar et al., 2016). (Right) Wave power around optimal arrays with 4 and 16 WECs at a site with waves incident from many directions, found

by Neshat et al. (2019b) by a symmetric local search combined with a Nelder-Mead algorithm.
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the WECs were positioned one-by-one and a local search was
applied to find the best coordinates for the nextWEC. In terms of
convergence speed, the last approach outperformed the former,
but possible limitations were that no backtracking was allowed
to further optimize WEC positions once they had been placed,
which was, however, not believed to provide any large gain
in the power absorption (Neshat et al., 2019c). Metaheuristic
evolutionary algorithms were also applied by Arbonès et al.
(2016, 2018) for multi-objective optimization and were seen to
outperform single-objective algorithms; see further details in
section 4.3.

4. CURRENT STATE OF THE ART

The research area of wave energy park optimization is still young,
with many important developments in the past few years. But
as the wave energy industry is currently moving toward ocean
deployments and fullscale systems, it is important to identify the
state of the art and where to focus future work. In this section, we
return to the technical aspects of wave energy park modeling and
optimization reviewed in sections 2, 3 and analyze how realistic,
reliable, and relevant the methods and results are. These aspects
are discussed in sections 4.1–4.3, respectively.

4.1. Realistic Representation
In this section, we analyze howwell theWECs and environmental
systems are modeled, i.e., whether the models are realistic
representations of the studied physical systems.

4.1.1. Realistic Waves
As discussed before, most results on wave energy parks
have been obtained under the assumption of potential flow
theory, where the viscosity and the rotational behavior of
the fluid have been neglected. Whereas some advances have
recently been presented tomodel the hydrodynamical interaction
between WECs with CFD methods (see section 2.1), it is
still unthinkable to carry out optimization of large wave
energy systems using high-fidelity viscous and rotational fluid
models. Instead, physical experiments will have to be used
to validate the analytical/numerical methods used for wave-
structure modeling, which will be further discussed in section
4.2. But even within the assumptions of potential flow theory,
further simplifications on the waves have often been assumed,
and most arrays have been studied in a few sea states
with long-crested waves. To study the performance in more
realistic wave conditions, wave directionality and long-term
wave spectra have been incorporated in recent works on
park optimization.

4.1.1.1. Wave directionality and short-crested waves
The impact of the wave directionality on wave energy park
performance has been studied in a number of works. As
could be expected, the park performance of array layouts with
rotational symmetry is less affected by wave directions than
that of corresponding parks with rectangular or linear layouts
(De Andrés et al., 2014; Göteman et al., 2015a). Yang et al.
(2019) considered two sea states and included wind and water

current velocity aligned in the same directions as the waves.
McGuinness and Thomas (2019) performed layout optimization
over an interval of incident wave directions for unidirectional
waves. Not surprisingly, it was found that better performance
could be obtained for narrow-banded wave directionality, as
the layout could then be tuned for those particular wave
directions. The directional wave spectra at two Australian sites
were represented by seven wave directions by Neshat et al.
(2019a,b,c). The identified optimal layouts were different for
different sites: at one of the sites, where the directional wave
spread was small, the WECs were placed roughly perpendicular
to the predominant wave direction (see Figures 11, 12), whereas
no obvious geometric arrangement was found at another site with
a larger interval of incident wave directions (Neshat et al., 2019b)
(see Figure 7, right).

In reality, ocean waves are usually not long-crested but
short-crested, i.e., they consist of many waves traveling in
different directions simultaneously. Recently, some works have
considered the performance and optimization of wave energy
arrays in short-crested, or omni-directional, waves. Wave run-
up and trapped wave modes were studied both experimentally
and analytically in an array of bottom-mounted cylinders by
Ji et al. (2015). The computed and experimentally obtained
results agreed well, and it was seen that unidirectional wave
modeling would overpredict the normal force and underpredict
the transversal force on the cylinders. An array of 25 WEC
models was studied experimentally in short-crested waves by
Stratigaki et al. (2014), and it was found that the wave height
decrease occurred earlier than in corresponding long-crested
waves. Tay and Venugopal (2017) studied the interaction factor
of a park of 12 OWSCs in short-crested wave spectra, and it
was found to be slightly lower than in long-crested waves. The
performance of an array of 16 WECs in short-crested waves
was studied by Göteman et al. (2018), and it was concluded
that the energy absorption was comparable to the situation
in long-crested waves, whereas the power fluctuations were
considerably lower.

4.1.1.2. Long-term and large domain wave propagation
Most array optimization studies have focused on optimization
in one or a few wave conditions. The relevant objective should
rather be the full life-cycle performance of the arrays, which
requires a long-term assessment. However, the wave propagation
models that are typically used to model waves over long time
period or large domains cannot be used directly to model
the dynamics and instant power of the WECs, and simplified
estimations of the absorbed energy have previously been used to
assess the potential of arrays over large domains (Defne et al.,
2009; Arinaga and Cheung, 2012; Akpınar and Kömürcü, 2013;
Vicinanza et al., 2013; Soomere and Eelsalu, 2014).

The wave climate over 25 years, comparable to the life-time of
the devices, was used by López-Ruiz et al. (2018a,b) to compare
layouts and separation distances for arrays with nine floating
overtopping WECs; see Figure 3. The sea states were obtained
from a hindcast SWAM model by López-Ruiz et al. (2018a) and
with a forecast approach by López-Ruiz et al. (2018b). Engström
et al. (2019) used 16-year wave data generated by aWAMCycle 4
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model as the basis for waves to calculate the instant and average
absorbed energy from a park of 200 generic point-absorbers in a
1 km2 grid over the Swedish exclusive zone. A ten-year hindcast
model was used by Gorr-Pozzi et al. (2019) to study three wave
parks with 5–25 WECs and their impact on the near-shore
environment in long-term wave spectra.

Efforts to couple accurate hydrodynamic modeling close to
the WEC with wave propagation models a distance away from
the WEC have been made both for potential flow (McNatt
et al., 2015; Verbrugghe et al., 2017; Verao Fernández et al.,
2018, 2019) and CFD models (Paulsen et al., 2014; Verbrugghe
et al., 2018). Comparison of the predicted wave height from
a coupled MILDwave-NEMOH model with experimental data
was presented by Verao Fernández et al. (2019) (see Figure 8).
Decomposition of the fluid domain into connected volumes that
require different modeling techniques can be a useful approach
both when non-linear effects should be studied in an array, when
studying the far-field effects of parks, and when large-scale parks
over several kilometers are designed.

4.1.2. Realistic WEC Systems
A wave energy system consists of many parts, often including
multi-body floats, moorings, power take-off systems,
foundations, and electrical systems in generators, substations,
sea cables, and grid connection points. Each of the subsystems
is complex, and it is impossible to include all of the complexity
of each subsystem in the optimization of a full wave energy
park. But as the obtained results can be misleading if important
aspects of the full system are neglected, proper attention must be
given to the approximations made and how well they reflect the
realistic wave energy system.

4.1.2.1. Power take-off and electrical subsystems
As discussed in section 2.2, the standard approach when
optimizing wave energy parks is to model the PTO as a
linear spring-damper system, where the power absorption
is proportional to the Coulomb damping. In addition, the

dynamical degrees of freedom are usually restricted; for
example, point-absorbers are considered to move in heave only.
Comparison of numerical PTO models to experimental data of
scaledmodels (with simplified PTO systems) has been carried out
in a number of works. Linear and non-linear PTOmodels for the
WavepistonWEC were compared in frequency and time domain
by Read and Bingham (2018), both with and without viscosity.
The overall agreement was good, although the frequency domain
model predicted slightly higher energy absorption when the
PTO was non-linear. Similarly, experimental data for a two-body
floating WEC with eddy current brake PTO was compared to a
frequency and time domain model in Kurniawan et al. (2019).
Although the general agreement was good, the time domain
model was able to predict non-linear instability behavior that
the frequency model was not able to capture. In the WECwakes
project (Troch et al., 2013; Stratigaki et al., 2014), the predicted
total power from a linear time-domain model overestimated
the measured total power for single WECs by around 20%
(Troch et al., 2013). Mankle et al. (2019) compared WEC-Sim
with experimental data from five pitching WaveStar WECs in a
staggered layout.

Comparisons of numerical PTO models to fullscale, realistic
WECs in offshore operations are rarer. Almost all tests with
fullscale WECs have been conducted by companies and are kept
within the company, but a few exceptions exist. A linear time-
domain model for a single point-absorber WEC was validated
against experimental data from a fullscale WEC by Eriksson
et al. (2007). The PTO in the numerical model consisted of a
realistic circuit with generator, sea cable, and resistive load. The
comparison showed good agreement for time-averaged energy
absorption. However, the PTO model had a time-dependent
damping coefficient, in contrast to the constant damping usually
used in wave energy park modeling. A different approach was
used byUlvgård et al. (2016), where onshore tests were conducted
on a fullscale WEC of point-absorber type by simply pulling the
translator of the direct-driven generator with a crane. It was seen
that the generator damping coefficient was indeed approximately

FIGURE 8 | Comparison of the wave height obtained experimentally and numerically with a coupled MILDwave-NEMOH model (Verao Fernández et al., 2019). The Kd
coefficient is defined as the ratio between the numerically calculated and the target significant wave height, and the wave height has been recorded by wave gauges

(WG) in an array of nine heaving damped WECs.
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constant when the translator was fully within the stator and
reduced with decreasing active area for the translator.

4.1.2.2. Mooring
Mooring lines of floating wave energy systems may exhibit non-
linear dynamics and snap loads, which will affect both the
absorbed power and the life-time of the energy system. Whereas
numerical models exist to study this dynamical behavior for
isolated WECs (Bhinder et al., 2015; Palm et al., 2016), the
common assumption in wave park optimization is to model
the mooring as linear springs, as discussed in section 2.2. In
many cases of wave energy park optimization, the mooring
dynamics are simply neglected. The performance of a system
of two WECs was found to be significantly affected by the
presence of themooring lines by Vicente et al. (2009). A system of
three floating OWCs was studied by Konispoliatis and Mavrakos
(2014), and it was concluded that the power absorption was
higher in the case when mooring was considered than for freely
floating OWCs. The time-domain method used by Gao and
Moan (2009) to model the mooring of nine WECs showed that
in certain situations, large mooring line tension was observed
in the array. Vicente et al. (2010) found that the performance
of the array was significantly affected by the mooring system,
as the occurrence of low-frequency horizontal oscillations of
large amplitude was observed. The discussed results show that
mooring dynamicsmay play an important role in the dynamics of
wave energy parks and that careful consideration must be taken
before assumptions on the mooring system are made.

4.2. Reliability of the Results
As for all sound science, the methods and the results
must be reliable; the methods should produce stable and
consistent results. Methods should be validated by, for example,
experimental data, and methods applied on the same object a
number of times should produce the same results, i.e., the results
should be repeatable. Also, the methods and studied systems
should be chosen without bias to make sure that the research
questions and methods are thoughtfully chosen. In addition, the
modeling errors and how they manifest in the results should be
quantified with adequate methods.

4.2.1. Validation With Experiments
With the physical experiments of wave energy parks carried
out in the past few years, validation of analytical or numerical
modeling methods has become possible. An analytical multiple
scattering method was compared to experimental data for an
array of bottom-mounted cylinders in short-crested waves by Ji
et al. (2015), and the agreement on wave run-up was generally
good, but the computations underpredicted the wave forces.
Simulations using BEM software and analytical methods were
compared to experimental data for five WaveStar models at a
scale of 1:20 by Mercadé Ruiz et al. (2017). The power take-off
wasmodeled as constant damping, and the predicted results from
the simulations were in good agreement with the experimental
results (see Figure 9). The largest deviations occurred at
resonance with 40% deviation, or 20% for panchromatic waves.
The agreement between prediction and measurement was shown

to be dependent on the floats’ position in the array, which was
identified to be caused by the difficulty of reproducing two-
dimensional plane parallel waves in the physical models due to
undesired three-dimensional wave effects. Mankle et al. (2019)
validated that the float response computed by WEC-Sim for five
floats moving in pitch with experimental data had an acceptable
error of 11% or less, although there was a larger variability in
the experimental results, and only results from three regular
waves were presented. When comparing the frequency domain
solver and the spectral domain solver with experimental data of
24 point-absorber WECs, Child and Laporte Weywada (2013)
found that the frequency domain solver was better at predicting
the hydrodynamic interactions alone (ignoring absolute WEC
performance) than the spectral solver, while the spectral solver
was better at predicting long-term average power due to its
ability to use non-linear WEC characteristics, and the spectral-
domain method was expected to improve when more realistic
array definitions would be considered.

Physical tank tests and numerical modeling using WAMIT
for OWCs were compared by Sharp et al. (2017) to validate the
numerical model used in wave park optimizations. In the physical
models, a butterfly was used as PTO instead of the turbine used in
fullscale devices, and in the numerical model, the mass of water
moving inside the OWC was modeled as a point-absorber. The
response amplitude operators obtained by the experimental and
numerical methods agreed rather well; see Figure 10. The work
was extended by Bosma et al. (2019), who compared a numerical
model based on WAMIT and WEC-Sim to experimental results.
The numerical predictions agreed well with the experimental,
although the phase and amplitude were off in a few of the tested
cases; see Figure 10.

Most of the experiments on arrays have been carried out
using heaving buoys (Nader et al., 2017), despite the fact that
the fullscale WECs may be designed for operation in more
degrees of freedom. Several experimental works with wave-
activated WECs free to move in multiple degrees of freedom
have reported motion instabilities (Tarrant and Meskell, 2016;
Gomes et al., 2017), which can often be attributed to the PTO
settings and large amplitude motions and can be understood in
terms of Mathieu equations (Orszaghova et al., 2019). Whereas
experimental results in recent years have enabled validation of
numerical models used to model and optimize wave energy
parks, more work remains to be done in terms of quantifying
the uncertainties in the numerical models, and with experiments
using more realistic and advanced PTO and WEC dynamics.

4.2.2. Repeatability
Sinha et al. (2016) compared several different park layouts, and it
was found that the circular layout gave the most uniform power
output and better power quality compared to linear and grid
arrays. Similar studies with similar results had been presented
before by Engström et al. (2013) andGöteman et al. (2014), which
shows consistency in the results. A circular array is less dependent
on wave direction, although it should be kept in mind that these
simulations were carried out with long-crested waves, and the
benefits of circular layouts as compared to linear and grid layouts
should be less in omnidirectional waves.
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FIGURE 9 | Predicted and measured capture factor for the power absorption of an array of five WaveStar models at a scale of 1:20 in irregular waves (Mercadé Ruiz

et al., 2017); see Figure 2 for the experimental set-up.

FIGURE 10 | Experimental and numerical results for an array of five fixed OWCs. (Left) Response amplitude operator from WAMIT compared to experimental data

(Sharp et al., 2017). (Right) Power absorption computed by a WEC-Sim model compared to experimental results (Bosma et al., 2019).
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Arrays with WECs of different dimensions were studied by
Göteman (2017), Giassi et al. (2017), and Lyu et al. (2019),
where Giassi et al. (2017) and Lyu et al. (2019) optimized
both array layout and buoy dimensions using GAs. In all
three works, it was concluded that the full park performance
can be improved if the park contains WECs of different
individual dimensions.

Many wave energy park optimization algorithms have started
from prescribed layouts and optimized parameters such as
separation distance between devices. A more unbiased approach
was taken by McGuinness and Thomas (2019), where the
layout of arrays with five point-absorber devices was optimized
with the only constraint that the devices should be located
within a half-sphere of a given area. Similar optimization routes
with few a priori constraints on the park configuration have
been enabled by the global optimization methods described
in section 3.3, and some comparison of their results will be
presented here.

Optimal configurations through single- or multi-objective
optimization routines such as evolutionary algorithms were
studied by Child and Venugopal (2010), Sharp and DuPont
(2018), Giassi and Göteman (2018), Child et al. (2011), Ruiz
et al. (2017), Fang et al. (2018), Arbonès et al. (2018), and Neshat
et al. (2019b). All studies, although based on different devices,
assumptions, parameters, models, and optimization algorithms,

show similar layouts trends, withWECs aligned perpendicular to
the incident wave field; see Figures 11–13. It also appears that, if
physically possible, the WECs align in a single row perpendicular
to the wave field direction, while they are staggered in two rows
when the area or the separation distance constraints do not
permit full alignment, as shown in Figure 12. The results are
comparable, as all the authors model waves that are long-crested
or, in the case of real wave climates, incoming mostly from one
predominant direction. In some publications, the WECs were
not aligned perpendicular to the wave direction but along a line
with a small offset angle; see Figure 13. In wave climates where
waves have a larger directional spread, the optimal layouts have
been found to take less intuitive form (Neshat et al., 2019b); see
Figure 7 (right).

4.3. Relevance of the Results
It is of little value that the methods and results are realistic and
reliable if the results are not relevant for the wave energy industry.
In other words—are we optimizing the correct quantities? If
the optimization algorithm maximizes the power output of a
park, but this produces power peaks that are too large for any
realistic electrical system or grid connection, the results are of
little use for the development of large-scale wave energy systems.
Or, if a relevant objective function is being optimized but at the
expense of immensely increased costs, this again will not be a

FIGURE 11 | Wave energy park optimization with metaheuristic optimization methods has produced similar results for small arrays at sites where the waves

propagate within a narrow interval of predominant wave directions. The waves are propagating from left to right in all figure parts except (D), where the waves

propagate along a narrow interval around 240◦. If the area of the park allows, the WECs tend to align perpendicular to the wave direction. The top row contains results

for arrays with four WECs and the bottom row for five WECs. (A,B,E,F) GA optimization in long-crested waves with a gridded (A,E) and continuous (B,F) layout

(Giassi and Göteman, 2018). (C) Multi-objective optimization using an evolutionary algorithm (Arbonès et al., 2018). (D) Optimal layout of four WECs obtained with a

symmetric local search combined with a Nelder-Mead algorithm (Neshat et al., 2019b). (G) Optimal layout obtained with a GA in Sharp and DuPont (2018) for the

case of a 4-m minimum separation distance.
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FIGURE 12 | Corresponding optimization as in Figure 11 but for the case when the allowed area for the park does not allow for the WECs to all align perpendicular to

the predominant wave direction. The waves are propagating along the x-direction in all figure parts except for (C), where the wave direction is a narrow interval around

240◦. (A,B) GA optimization in long-crested waves with a gridded and continuous layout, respectively (Giassi and Göteman, 2018). (C) Optimal layout of 16 WECs

(Neshat et al., 2019b). (D) GA optimization for the case of a 3-m minimum separation distance (Sharp and DuPont, 2018). (E) Optimal eight-WEC array layout

obtained in Fang et al. (2018) with an evolutionary algorithm and regular waves. (F) Multi-objective optimization of array with nine WECs (Arbonès et al., 2018).

FIGURE 13 | (A) Optimal five-WEC array layout obtained by Fang et al. (2018) with an evolutionary algorithm and regular waves. (B) Optimal layout of five WECs in

regular waves by a GA optimization (Child and Venugopal, 2010). (C) Optimal layout of 10 WECs in irregular waves propagating along the x-direction, obtained with

the array design tool in WaveFarmer (Child et al., 2011).

relevant option for the industry. In order to compete with other
energy technologies, the objective function should maximize
the total revenue over the lifetime of the devices within given
constraints, such as maximal ocean area that can be used or

maximal allowed power fluctuations. Many of the constraints
can also be connected to economic values, for example, that
increased separation distance between WECs requires more use
of sea cable in the park, which increases the costs. Although most
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array optimization works have mainly focused on maximizing
the absorbed power or the interaction factor, recent works have
started to include more comprehensive objective functions.

4.3.1. Delivering Grid-Compatible Electricity
Rapidly varying voltage magnitudes, known as flicker, is a major
problem when integrating the produced electricity into the grid.
Different voltage levels define different flicker severity over the
short term (10 min) and long term (over 2 h) (Penalba and
Ringwood, 2016). Flicker evaluation, or electricity quality, is
therefore a crucial aspect to consider when designing wave energy
parks. Smoothing of the power from wave energy arrays was
studied in Tissandier et al. (2008). As expected, it was concluded
that the power peaks reduce with increased number of devices,
which was later also found in other wave park simulations by
Engström et al. (2013), Vicente et al. (2013), Göteman et al.
(2014), and Bailey et al. (2015) and in offshore experiments by
Rahm et al. (2012). By arranging the park layout such that the
WECs are not excited simultaneously by the incident waves,
the power output can be further smoothened (Engström et al.,
2013; Sjolte et al., 2013; Göteman et al., 2014). Armstrong
et al. (2015), Kovaltchouk et al. (2016), and Blavette et al.
(2016) used approximate methods for hydrodynamics and power
production in the array to study flicker severity with a focus on
transmission and grid aspects. The impact of a park consisting
of ten OWCs and ten heaving buoys on the transmission system
was studied by Armstrong et al. (2015), and it was concluded
that the transformers and transmission lines would remain
below 45% capacity. Kovaltchouk et al. (2016) studied limits
to voltage fluctuations for arrays of different WEC types, and
compensatory actions were proposed to allow grid integration.
Blavette et al. (2016) estimated the flicker level as a function
of grid impedance angle. Hydrodynamics and electro-mechanic
aspects were included in the works by Tedeschi and Santos-
Mugica (2013) and Parwal et al. (2018). A 20-MW park at the
Bimet facility was chosen as a test case by Tedeschi and Santos-
Mugica (2013), and a control strategy and simplified short-
term energy storage system were proposed to reduce the power
variability. Parwal et al. (2018) proposed an energy management
system in terms of a combined battery and supercapacitor to
minimize the power fluctuations from a wave energy park to the
grid. Other dedicated power electronics and filtering equipment
can also be used to reduce flicker and obtain acceptably smooth
electricity output, but these methods fall outside the scope of
this paper.

4.3.2. Economical Objective Functions
Simplified economic cost functions have been implemented
in wave energy park optimizations in several recent works.
Sharp and DuPont (2018) defined the objective function as the
ratio of the “costs” and the produced power, where the costs
were approximated by a simple formula obtained from Sandia
National Lab’s reference model project (Previsic, 2012),

Cost = 3(10)7 · N0.6735 (2)

where N is the number of WECs in the park. Giassi et al. (2017)
defined and evaluated different objective functions in a GA to

optimize park layouts withWECs of different sizes. The functions
were defined as ratios of the total absorbed power and the total
mass of the units, as this is often used as a crude estimate of
the cost of the technology, and MWh/tons is commonly used as
a measure to compare different wave energy concepts (Babarit
et al., 2012).

Sea cables and electrical subsystems contribute significantly
to the costs of the park, both in terms of installed capital costs
and costs due to energy losses (Henfridsson et al., 2007; Sharkey
et al., 2011, 2013; Engström et al., 2019). Cable dimensions
and lengths, distance from grid connection point, number of
substations and related infrastructure all affect the total revenue.
Sharkey et al. (2011, 2013) studied how the costs related to the
electrical network can be reduced by optimizing the spacing and
capacity factors of the individual WECs. Optimization of parks
with respect to cable length and costs was done by Arbonès et al.
(2016) and Giassi et al. (2019a) (see Figure 14). The cable length
was minimized by Arbonès et al. (2016) by means of multi-
objective optimization algorithms. As can be seen in Figure 14,
the cable costs will increase with the number of WECs, but the
increase is not linear due to the increased number of electrical
substations that must be installed in the park at discrete intervals
(Giassi et al., 2019a).

The levelized cost of electricity (LCOE) computes the cost to
generate electricity over the life-time of an energy system and is
a useful measurement to compare different energy sources (IEA
and NEA, 2015). It is calculated by taking the ratio between
the total capital (CAPEX) and operational (OPEX) costs of
the device, discounted to present day value, and the amount
of electricity Eout delivered to the grid throughout the device’s
lifetime (Short et al., 1995),

LCOE =
CAPEX+

∑n
t=1

OPEX
(r+1)t

∑n
t=1

Eout,t
(r+1)t

, (3)

where t = 1, . . . n is the years of the lifespan, and r is the
discount rate.

However, identifying economic parameters and values for a
technology that has not yet reached full maturity is difficult, both
because very little data is available and because it is expected
that the costs and uncertainties will be reduced as the technology
matures (Astariz and Iglesias, 2015; Farrell et al., 2015; Ocean
Energy Systems, 2015; De Andres et al., 2016). As discussed by
Piscopo et al. (2018), the EU Strategic Energy Technology Plan
expects the LCOE of wave energy to decrease to 0.15 EUR/kWh
by 2030 and 0.10 EUR/kWh by 2035.

Despite these challenges, some authors have attempted to
include economic parameters in their optimization algorithms.
Teillant et al. (2012) modeled a wave farm of 100 units at the
AMETS test site on the west coast of Ireland, and an economic
assessment based on production, location, and maintenance
strategies was presented. Rinaldi et al. (2016b) presented a
computational tool focused on maintenance operations that
computes key performance indicators such as annual electricity
generation and total gross revenue, with inputs such as the failure
rates, wave climate, and power matrix of the device. A reliability
and financial model was developed by Macadré et al. (2015)
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FIGURE 14 | Wave energy park optimization from the perspective of minimizing cable costs. (Left) Arbonès et al. (2016) performed both the minimization of cable

length and park area and the maximization of power output in a multi-objective optimization. The figure shows the minimization of cable length, computed as a

Euclidean minimum spanning tree, with three different optimization algorithms. (Right) Cable length as a function of the number of WECs and associated costs for a

park of point-absorbers up to 100 WECs. The sharp increase in cable lengths and costs corresponds with the additional number of electrical substations that must be

installed in the park with an increasing number of WECs (Giassi et al., 2019a).

and used to study a combined wind and wave power plant with
respect to availability and maintenance. An LCOE optimization
in terms of the device dimensions was carried out by Piscopo
et al. (2018). Faraggiana et al. (2019) minimized the LCOE for
a system of three WaveSub WECs. The LCOE was computed
based on a formula from Marine Power Systems Ltd, but the
input values were not stated explicitly in the paper. The LCOE
of four parks of 10 WaveEL WECs each were compared for two
wave climates by Yang et al. (2019). It was concluded that the
LCOE values could be reduced or increased by drastic amounts if
the hydrodynamical andmechanical coupling between theWECs
was taken into account. The LCOE of wave energy parks of up
to 50 WECs was optimized using a GA by Giassi et al. (2019a).
Results from Faraggiana et al. (2019), Giassi et al. (2019a), and
Teillant et al. (2012) are shown in Figure 15. As can be seen from
the figure, the LCOE decreases with the number of generations
in the optimization algorithm (Faraggiana et al., 2019). The net
present value (NPV) increases in a park with an increase in the
number of units (Teillant et al., 2012) unless the shadowing effect
in the park is too large, in which case the NPV decreases (Giassi
et al., 2019a).

4.3.3. Multi-objective Functions
In the works above, the economic optimization of the full system
with the LCOE as the objective function is still performed
as a single-objective optimization. To the authors’ knowledge,
the only attempt to study the park optimization problem in
a pure multi-objective way was presented by Arbonès et al.
(2016, 2018) for a submerged three-tether heaving buoy. Arbonès
et al. (2016) optimized three competing objectives (the total
energy production, the cable length, and the marine area
needed to place the buoys) in long-crested waves with two
different evolutionary multi-objective optimization algorithms

(SMS-EMOA, MO-CMA-ES). The results showed that the multi-
objective method improved the power output of a single-
objective optimization by 3.8%. Arbonès et al. (2018) extended
the work by considering realistic wave conditions and incoming
waves frommultiple directions. Improvements in terms of power
output, minimized cable length, and marine area were achieved
through the methodology for parks of up to 36 converters.

5. CHALLENGES AND FUTURE WORK

The state of the art of wave energy array modeling was reviewed
by Babarit (2013). He concluded that most of the work concerned
small arrays and that more research should be carried out
for large arrays to increase the reliability of the results. Since
then, many important steps have been taken to achieve reliable,
realistic, and relevant optimizations of large wave energy parks,
as has been discussed in the previous sections. In this section, we
will discuss some challenges and constraints to this work and list
some ideas for future directions in the research area.

5.1. Computational Costs
As the wave energy systems increase in size, so do the
computational costs. Both with an increased number of WECs
and an increased number of parameters to optimize, the time
required for the optimization algorithms to converge quickly
grows out of hand. Evaluation of each configuration is expensive,
and the search space is non-convex and multi-modal (Neshat
et al., 2019c). Run times of 1–3 days on 20 parallel processors
were reported by Faraggiana et al. (2019) to optimize several
parameters of an array of three WECs. The approach of Neshat
et al. (2018, 2019a,b,c,d) was to compare different modeling
and optimization methods and constrain the computational
budget to three days on a moderately high-performance shared-
memory platform, using 12 processors in parallel; see Figure 16.
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FIGURE 15 | Optimization of wave energy parks based on economic considerations. The economic measures change with number of iterations and with number of

devices in the park. (Left) LCOE for arrays of three WaveSub devices optimized with two genetic algorithms and one particle swarm algorithm (Faraggiana et al.,

2019). (A,B) show results for different device configurations, showing the dependence on the input values. Upper right: Variation and sensitivity of the net present

value (NPV) with the renewable energy feed-in-tariff (REFIT) (Teillant et al., 2012). Lower right: Comparison of the NPV for different park sizes up to 25 WECs when

assuming no vs. full hydrodynamic interactions among the devices. The incoming wave directions are either perpendicular to the array layout (“y-waves”) or along the

direction of the array layout (“x-waves”) (Giassi et al., 2019a).

A method able to find optimal solutions within this time frame
would enable developers to analyze and evaluate two scenarios
per week.

Much work has been carried out to speed up the optimization
process. Ruiz et al. (2017) reported that the optimization time
could be reduced if the hydrodynamical interactions were
evaluated with an analytical method instead of BEM software.
Also, a comparison was made on the computational cost for
three global optimization algorithms, where the CMA method
achieved convergence much faster than GAs or particle swarm
optimization. Several developments to enable modeling of large
arrays have been reported where the hydrodynamical interaction
is restricted to nearest neighboring WECs (Sarkar et al., 2016)
or within a specified interaction distance (Göteman et al., 2015a).
Reducing the computational cost of optimizing large wave energy
parks was one of the main objectives of Wu et al. (2016), where
an approximation in the buoy interactions model resulted in

a 350-fold computational speed-up, enabling optimization of
parks with 100 WECs with acceptable accuracy. Two global
optimization algorithms were compared by Ferri (2017) with
respect to computational time and accuracy. The separation
distance and skew-angle in the array layout were studied, and
it was found that the meta-model-based optimization was 3–5
times faster than the studied GA but not as accurate.

Neshat et al. (2019a) equipped the optimization method
with an adaptive neural-surrogate model based on a machine
learning approach, which estimated the absorbed power of the
park instead of carrying out time-consuming exact computation.
This resulted in faster convergence compared to the off-the-shelf
evolutionary algorithms. A different strategy was introduced
by Neshat et al. (2019d) in terms of a combined symmetric
local search, a Nelder-Mead and a cooperative co-evolution
algorithm, which improved the convergence rate and resulted in
significantly increased absorbed power by the parks.
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FIGURE 16 | (Left) Convergence rates of three optimization algorithms (CMA, GA and particle swarm, GSO) for the optimization of the number of WECs and their

positions in a park, showing that the CMA requires fewer iterations to converge but results in slightly lower park performance (Ruiz et al., 2017). (Right) Convergence

rate for many algorithms to optimize the layout and PTO parameters for a system of four WECs (Neshat et al., 2019d).

It can be expected that future works will continue to
investigate and develop methods based on machine learning or
other advanced algorithms to enable faster optimization of large
parks. To ensure that the models are still realistic representations
of the wave energy systems, the same systems should be modeled
with several methods and the impact of approximations or
constraints thoroughly evaluated.

5.2. Reliable Data
Lack of available realistic data is a problem for the full wave
energy sector, not only in the optimization of wave energy
parks (Michelez et al., 2010; Sharp and DuPont, 2018). Data are
required regarding performance, failure rates, power ratings, life-
time expectancy, capital and operational costs, and so on. In the
traditional offshore oil and gas industry, the OREDA (Offshore
REliability DAta) database was developed as a collaboration
between global oil and gas companies with the purpose of
collecting and exchanging reliability data among the participating
companies (OREDA, 1984). The entries in the database were
anonymous and could not be tracked back to the companies, and
the process developed was then formalized in the international
standard ISO 14224. Similar approaches have also been taken
for offshore wind in the System Performance, Availability and
Reliability Trend Analysis database (SPARTA, 2014) and also
recently for tidal current turbines (ORE Catapult, 2015). For
wave energy, similar initiatives have not yet been taken, mainly
due to a lack of convergence on the technological concept, lack of
experimental data (in particular long-term offshore data), and the
competitive nature of the wave energy industry in its early stage
of technology development.

For completeness, in addition to the papers discussed above,
economic values regarding wave energy systems can be found
in Teillant et al. (2012), O’Connor et al. (2013), Chozas et al.

(2014), Macadré et al. (2015), Guanche et al. (2015), Rinaldi
et al. (2016a,b), De Andres et al. (2017), Collin et al. (2017), and
Piscopo et al. (2018), although these papers and reports are not
primarily focused on wave energy park optimizations but rather
on risk assessments and reliability.

5.3. Repeatable and Unbiased Studies
To reduce the uncertainty in numerical simulations of wave
energy systems using CFD, several blind test workshops and
paper series have recently been presented under the name
CCP-WSI Blind Test Series (CCP-WSI, 2019). The aim of
the series has been to invite the research community to use
their numerical codes to simulate a series of specific wave
structure interaction problems, using only relevant input data,
and where the key outputs can be compared to experimental
results only after the community have submitted its numerical
results. Similar blind test programs with the aim of reducing
biases and achieving repeatability in the results produced by
different research groups would be of high value for wave energy
park optimization research.

6. CONCLUSIONS

In this paper, we have reviewed the state of the art of wave energy
park optimization, with a focus on developments in the last five
years. After discussing the different modeling and optimization
methods that are used, we have analyzed whether the methods
and results are realistic, reliable, and relevant.

It is not feasible to include all aspects of the waves when
modeling wave energy parks. Whereas viscosity and rotation
are important fluid properties when considering the detailed
response and loads of single WECs, potential flow theory is
the dominant assumption for large arrays of WECs. However,
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wave directionality, waves propagating in several directions
simultaneously, and waves propagating over a long period of time
should be considered when designing parks, and important steps
have been taken in the last five years on realistic representation
of the waves. Also, coupling high-fidelity fluid models close to
the WECs to low-fidelity wave models further away from the
bodies is a promising direction for a more realistic representation
of the fluid-structure interactions. Optimization of large wave
energy parks is still often carried out in the frequency domain
with linear spring-damper systems as PTO. Some validation of
this assumption has been carried out, but several works have also
shown that linear frequency domain analysis cannot capture the
non-linearities that are inherent in the system. Also, mooring
dynamics have been shown to significantly affect the performance
of parks and should not be neglected, and several important
contributions have been published lately.

Straightforward comparison of different research groups’
results is challenging, since the wave energy parks studied by
the groups usually differ in terms of significant characteristics.
However, some tendencies can be seen when comparing
similar works.

• Optimal layouts will position the WECs along lines
perpendicular to wave direction at sites with a narrow
interval of incident wave directions, but less obvious optimal
layouts will emerge at sites where waves are coming from
multiple directions. If there is not sufficient ocean area for
perpendicular lines, the WECs will align along several lines,
where the separation distance will depend on the predominant
wave conditions.

• However, these “perpendicular” layouts were in general
obtained using single-objective functions, optimizing only the
power output or interaction factor. Other optimal solutions
might emerge when economic or multi-objective functions are
considered, for example, when also minimizing the cable costs
and losses.

• Several works have shown that the total performance might
be improved if devices of different individual dimensions are
installed in the park.

• The performance of large parks might be slightly lower in
short-crested waves as compared to long-crested but with
desired lower power fluctuations.

• Some results have been published in recent years that have
provided experimental data on large arrays and/or arrays
with complex dynamics or PTO systems, but there are
still very few publications with validation of park modeling
and optimization. Although reasonable agreement has been
shown, some works have also reported non-linear dynamics
or deviations between numerical and experimental results.

As discussed above, the large, non-convex, and multimodal

optimization problem of wave energy parks might be too large

for conventional population-based optimization algorithms, and

new approximate or machine learning methods might be
useful complements for the evaluation of park performance, in

particular for large parks. Simultaneously, careful consideration
must be taken when making simplifying assumptions, as it
has been shown that non-linear dynamics, mooring systems,
and other complexities cannot be neglected. Validation of wave
energy park modeling and optimization is still only in its initial
phases. To increase reliability, more systems with increasing
complexity should be validated, and the modeling uncertainties
should be adequately quantified. In addition, biases are reduced
and the reliability improved when different methods or systems
are compared and shown to give similar results.

The relevance of the modeling results increases when
the correct quantities are optimized. Multi-objective and/or
economic cost functions should be used to provide useful
guidelines on how wave energy parks should be designed, given
a site and other constraints. If the research area is to move
from developing methods for wave park optimization to actually
making useful predictions that can guide developers, it is of
crucial importance that data and economic figures are made
available and are used in the optimization. In recent years, several
important contributions have been made that not only optimize
the power output or interaction factor but also consider grid
connection, cost and length of installed cables, and life-time costs
and revenue. This is a direction in which we will hopefully see
more work in the future.
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