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A novel approach has been developed for the fabrication of Fe3O4 decorated multiwalled

carbon nanotubes (MWCNT) for energy storage in negative electrodes of electrochemical

supercapacitors. Synthesis of Fe3O4 was performed in the presence of MWCNT,

dispersed using various cationic and anionic polyaromatic dispersants. The comparison

of experimental results obtained using different dispersants provided an insight into the

influence of the chemical structure of the dispersant molecules on the microstructure

of the Fe3O4-MWCNT materials. It was found that positively charged groups and

chelating catechol ligands of the dispersants facilitated the formation of Fe3O4 decorated

MWCNTwith low agglomeration. The Fe3O4 -MWCNTmaterials, prepared using different

dispersants were used for the fabrication of electrodes with mass loading of 40mg cm−2.

The highest capacitance was obtained in 0.5M Na2SO4 electrolyte for Fe3O4 decorated

MWCNT prepared using cationic celestine blue dye as a dispersant. Improved cyclic

voltammetry profile was obtained using FeOOH as an additive. Asymmetric devices were

fabricated and tested based on the Fe3O4 decorated MWCNT negative electrodes and

MnO2-MWCNT positive electrodes.

Keywords: carbon nanotube, iron oxide, energy, supercapacitor, dispersant

INTRODUCTION

Electrochemical supercapacitors are currently under intensive investigation for energy storage
and capacitive water purification applications (Shi et al., 2014; Zhao and Zheng, 2015; Ding
et al., 2020). Research is focused on the development of new materials and electrolytes (Brousse
and Bélanger, 2003; Shi and Zhitomirsky, 2010; Li et al., 2019), fabrication of nanoparticles of
active materials (Luo et al., 2016; Silva et al., 2018), design and modeling of composite electrodes
and devices (Pavaskar et al., 2018; Xing et al., 2019). New strategies have been designed for the
fabrication of carbon based electrodes with enhanced capacitive performance (Salinas Torres et al.,
2019). Significant interest has been generated in application of carbon nanotubes (CNT) for the
fabrication of composite electrode materials (Lu et al., 2019). The interest in CNT applications for
supercapacitors is related to high electronic conductivity and high surface area of CNT.

It was recognized that CNT can be decorated with other functional materials (Pan et al., 2015;
Hao et al., 2016). With a desire to fabricate new and advanced devices, there is growing interest
in the development of new techniques for the fabrication of functionally decorated CNT, such as
laser ablation (Imbrogno et al., 2017), atomic layer deposition (Ding et al., 2018), polymerization
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(Zhu et al., 2014), magnetron sputtering (Wei et al., 2014),
electrodeposition (Chitturi et al., 2016), and chemical
precipitation (Hong et al., 2013). Decorated CNT are of
particular interest for energy storage and generation devices,
such as supercapacitors, batteries, and fuel cells. The use
of functionally decorated CNT allowed for the fabrication
of advanced batteries with enhanced capacity (Hong et al.,
2013; Wei et al., 2014), good cyclic stability (Chitturi et al.,
2016) and improved conductivity (Wang et al., 2010). It
has been reported that CNT can be decorated with catalysts
for advanced application in fuel cells (Sonkar et al., 2017).
Significant advances have been achieved in applications of
functionally decorated CNT for photovoltaic devices (Mathew
et al., 2011; Tai et al., 2014). It has previously been shown
that carbon nanotubes can be decorated with oxides (Ojha
et al., 2019), polypyrrole (Su and Zhitomirsky, 2015) and
activated carbon (Shi et al., 2014) for energy storage applications
in supercapacitors.

Previous studies highlighted the need in the development
of efficient manufacturing techniques for the fabrication of
functionally decorated CNT. Such techniques need to be based
on the careful selection of dispersing agents, which must
be well adsorbed on the CNT surface. Good dispersion of
CNT is critical for their decoration with functional materials.
The use of networks of decorated CNT is promising for the
fabrication of advanced supercapacitor electrodes with high
active mass.

The objective of this investigation was the fabrication of
Fe3O4 decorated CNT for application in negative electrodes
of asymmetric supercapacitors. Following this objective we
investigated anionic and cationic aromatic dispersants for the
dispersion of CNT. The results presented below indicated that
chemical precipitation of Fe3O4 in the presence of CNT allowed
for the fabrication of Fe3O4 decorated CNT. Testing results
provided an insight into the influence of electric charge and
chelating groups of the dispersants on the Fe3O4 formation
on the CNT surface. The fibrous networks of decorated CNT
were used for the fabrication of negative electrodes with high
active mass of 40mg cm−2. The capacitive behavior was linked
to dispersant structure. Finally, we fabricated and tested an
asymmetric supercapacitor device.

EXPERIMENTAL PROCEDURES

Iron (II) chloride tetrahydrate (FeCl2·4H2O), iron (III) chloride
hexahydrate (FeCl3·6H2O), ammonium hydroxide (NH4OH),
sodium hydroxide (NaOH), sodium sulfate (Na2SO4), palmetic
acid (PA), celestine blue (CB), pyrocatechol violet (PV), azure
A chloride (AA), m-cresol purple (CP), poly (vinyl butyral-co-
vinyl-alcohol-co-vinyl-acetate) (PVB, average MW = 50,000-
80,000), multiwalled carbon nanotubes (MWCNT, purity >

95 %, OD 20-30 nm, and length 1–2µm, US Nanomaterial
Inc, USA), and Ni foam (porosity of 95%, Vale Ltd., Canada)
were used.

For decoration of the MWCNT by Fe3O4 nanoparticles, the
synthesis of the nanoparticles was performed in the presence

of dispersed MWCNT. In this procedure, 1 g L−1 of MWCNT
were dispersed in DI water by ultrasonication for 15min and
then 0.25 g L−1 dispersant was added and suspension was
ultrasonicated again for 15min. A stoichiometric mixture of
Fe2+ and Fe3+ salts dissolved in DI water was added to the
suspension of MWCNT in order to obtain the mass ratio of
Fe3O4 to MWCNT equal to 1.5. The pH was adjusted to 9
by the addition of 1M NH4OH. The obtained suspension was
ultrasonicated for 40min and then filtrated. The materials were
washed with DI water and dried overnight. The magnetite
decorated MWCNT, prepared using CB, PV, AA, and CP were
denoted as M-CB-MWCNT, M-PV-MWCNT, M-AA-MWCNT,
and M-CP-MWCNT, respectively. Non-agglomerated FeOOH
nanoparticles were prepared by a chemical precipitation and
liquid-liquid extraction method (Chen et al., 2019). However,
in contrast to the previous investigation (Chen et al., 2019) PA
was used as a new and efficient extractor. M-FH-CB-MWCNT
material was prepared by mixing of M-CB-MWCNT (80%) and
FeOOH (20%).

M-CB-MWCNT, M-PV-MWCNT, M-AA-MWCNT, M-CP-
MWCNT, and M-FH-CB-MWCNT were dispersed in ethanol,
containing dissolved PVB binder and obtained slurries were
used for the impregnation of Ni foam current collectors
and fabrication of negative electrodes of supercapacitors. The
PVB binder content in the electrodes was 3%. The total
mass of the impregnated material was 40mg cm−2. MnO2-
MWCNT material for positive electrodes was prepared by
the precipitation and liquid-liquid extraction method (Chen
et al., 2017). The asymmetric device was fabricated containing
M-FH-CB-MWCNT negative electrodes with mass loading of
40mg cm−2 and MnO2-MWCNT positive electrodes with
mass loading of 35mg cm−2. At such mass loadings the
capacitance of negative electrodes matched the capacitance of the
positive electrodes.

Transmission electron microscopy was performed (dark field
STEM) using a JEOL 2010F field emission microscope. X-ray
diffraction (XRD) analysis was performed using the Bruker D8
Discover instrument comprising Davinci diffractometer and Co-
Kα radiation. Particle size distribution was done using dynamic
light scattering (DLS) model (DelsaMax Pro- Beckman Coulter).
The analysis was carried out based on testing of 4 sets of each
material with a concentration of 0.4mg L−1 in DI, where every
set consisted of 10 acquisition.

Cyclic voltammetry (CV) and electrochemical impedance
spectroscopy (EIS) studies of single electrodes and asymmetric
device were performed in 0.5 L of 0.5M Na2SO4 electrolyte as
described in prior investigations (Shi and Zhitomirsky, 2013;
Zhu et al., 2014; Chen et al., 2017). EIS measurements were
carried out in the frequency range of 10 mHz−100 kHz with
a sinusoidal signal of 10mV. The components of complex
capacitance (C′s and C′′s) were calculated from the EIS data
as C′s = Z′′ /ω|Z|2A and C′′s = Z′/ω|Z|2A, where ω = 2πf
and f is frequency. Galvanostatic charge–discharge of individual
electrodes at different current densities was performed using
Biologic VMP 300 potentiostat. The charge-discharge behavior
of the asymmetric device was analyzed using battery analyzers
BST8-MA and BST8-3 (MTI Corporation, USA).
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RESULTS AND DISCUSSION

Figures 1A–D shows chemical structures of aromatic dispersants
used for dispersion of MWCNT. The polyaromatic structure
of the dispersants was beneficial (Ata et al., 2018) for their
adsorption on MWCNT. The adsorption mechanism involved
π-π interactions. The adsorbed dispersants imparted a positive
charge (CB, AA) or a negative charge (PV, CP) to MWCNT.
The small size, electric charge and good adsorption of the

dispersants on MWCNT facilitated MWCNT dispersion by
unzipping mechanism (Ata et al., 2018; Figure 1E) and allowed

for the fabrication of stable suspensions. Figures 1F,G illustrates
different types of interactions of the dispersants with Fe3O4

particles. The precipitation of Fe3O4 was achieved at pH = 9,
which is above the isoelectric point (pH = 6.5) (Parks, 1965)
of this material. Therefore, the Fe3O4 particles were negatively
charged. The negative charge of Fe3O4 resulted in electrostatic
repulsion of Fe3O4 and anionic PV or CP, adsorbed on MWCNT
(Figure 1F). In contrast, electrostatic attraction existed between
Fe3O4 and cationic CB or AA molecules, adsorbed on MWCNT
(Figure 1G). Previous investigations (Ata et al., 2014) showed
that molecules, containing a catechol group, strongly adsorbed
on inorganic particles, and facilitated their efficient dispersion.
Therefore, CB and PV can be adsorbed on Fe3O4 particles by
catecholate type bonding. Figure 1F shows bonding of PV to the
Fe atom on the particle surface. A similar mechanism can be
suggested for CB bonding. It is important to note that phenolic
molecules containing single OH groups, such as CP, show poor
adsorption on inorganic molecules (Ata et al., 2014). In contrast,
molecules from the catechol family, such as PV, containing two
adjacent OH groups, show very strong bonding to the inorganic
particles (Ata et al., 2014).

X-ray diffraction studies confirmed the formation of pure
Fe3O4 by precipitation from mixed Fe2+ and Fe3+ salt solutions
(Figure S1). The materials prepared by precipitation from the
same solutions, containing dispersed MWCNT, showed X-
ray diffraction peaks of Fe3O4 and MWCNT (Figure 2). Peak
broadening resulted from the small particle size of Fe3O4.
TEM analysis revealed influence of the dispersants on the
material morphologies. Figure 3 shows TEM images of the
materials at different magnifications. The TEM images of M-CB-
MWCNT showed the formation of Fe3O4 decorated MWCNT.
The size of the Fe3O4 particles adsorbed on the MWCNT
was about 10 nm. It is suggested that electrostatic attraction of
positively charged CB dispersant and negatively charged Fe3O4

as well as chelating bonding of the catechol group facilitated
the formation of the decorated MWCNT. It is important
to note that electrostatic repulsion of the PV dispersant,
adsorbed on the MWCNT surface, and Fe3O4 nanoparticles
was detrimental for the formation of the decorated MWCNT.
On the other hand, the chelating bonding of the catechol
groups of PV promoted Fe3O4 formation on the MWCNT
surface. The chelating bonding was a dominating mechanism,
which allowed for the formation of decorated MWCNT.
However, the TEM studies of M-PV-MWCNT also revealed
the formation of small agglomerates of the Fe3O4 particles as
it is shown in Figure 3F. The analysis of the TEM images

FIGURE 1 | Chemical structures of (A) CB, (B) PV, (C) AA, (D) CP and

schematics, showing (E) unzipping of MWCNT bundles by dispersants, (F)

electrostatic repulsion of PV and Fe3O4 particles and chelating bonding of PV

to Fe atoms on the Fe3O4 particle surface, involving a catechol group of PV,

(G) electrostatic attraction of AA and Fe3O4.

FIGURE 2 | X-ray diffraction patterns of (a) M-CB-MWCNT, (b) M-PV-MWCNT,

(c) M-AA-MWCNT, and (d) M-CP-MWCNT.

for M-AA-MWCNT and M-CP-MWCNT showed enhanced
agglomeration of the Fe3O4 particles. The agglomeration is
especially evident for M-CP-MWCNT samples. In this case the
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FIGURE 3 | TEM images at different magnifications for (A–C) M-CB-MWCNT, (D–F) M-PV-MWCNT, (G–I) M-AA-MWCNT, and (J–L) M-CP-MWCNT.

FIGURE 4 | (A) Average data (40 samples of each composition) for DLS analysis of (a) M-CB-MWCNT, (b) M-PV-MWCNT, (c) M-AA-MWCNT and (d) M-CP-MWCNT,

(B) Typical spectrum for M-CP-MWCNT. The width of the peaks indicates the polydispersity of the aggregate (Pd).

Frontiers in Energy Research | www.frontiersin.org 4 March 2020 | Volume 8 | Article 46

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Nawwar et al. Functionally Decorated CNT Networks

poor coverage of MWCNT resulted from electrostatic repulsion
of CP and Fe3O4.

The effect of different dispersing agents has also been studied
using DLS analysis (Figure 4). The size distribution of the
aggregates in all samples is bimodal with different degree of
polydispersity. The first peak at ∼100 nm is present in all
four dispersions with different intensities. The second peak
was observed in the range of 103-104 nm. The intensity and
polydispersity of the second peak are smallest for M-CB-
MWCNT. The polydispersity of M-PV-MWCNT is broader
than that of M-CB-MWCNT. The analysis of the DLS data
for M-AA-MWCNT and M-CP-MWCNT revealed significant
increase in the relative intensity of the second peak, compared

to the intensity of the first peak. The second peak for M-AA-
MWCNT and M-CP-MWCNT shifted to larger radius numbers,

compared to the second peak for M-CB-MWCNT. The increase
in relative intensity of the second peak for M-AA-MWCNT and

M-CP-MWCNT and peak shifts indicated an increasing number
of agglomerates and increase in the agglomerate size of the

particles. This is in agreement with the TEM data and indicates

the beneficial effect of the catechol groups of CB and PV for

the formation of decorated MWCNT and reduction of Fe3O4

agglomeration. It is important to note that the decoration of

MWCNT resulted from the dispersant mediated adsorption. In

this approach the changes in MWCNT structure, resulting from

chemical reactions and high temperature treatment (Xing et al.,

2015, 2017, 2019) can be avoided.
M-CB-MWCNT, M-PV-MWCNT, M-AA-MWCNT, M-CP-

MWCNT were used for the fabrication of supercapacitor
electrodes with mass loading of 40mg cm−2. Figure 5 shows
cyclic voltammetry data for the electrodes in the potential range
of −0.9 to 0.0V vs. SCE. M-CB-MWCNT electrodes showed

a larger CV area, compared to other electrodes and higher
integral capacitance in the selected potential window. The M-
CP-MWCNT electrodes showed lower capacitance, compared to

FIGURE 6 | (A–D) Frequency dependences of components of complex AC

capacitance, calculated from impedance data for (a) M-CB-MWCNT, (b)

M-FH-CB-MWCNT, (c) M-PV-MWCNT, (d) M-AA-MWCNT and (e)

M-CP-MWCNT electrodes.

FIGURE 5 | (A,C) CVs and (B,D) capacitance vs. scan rate for (a) M-CB-MWCNT, (b) M-FH-CB-MWCNT, (c) M-PV-MWCNT, (d) M-AA-MWCNT and (e)

M-CP-MWCNT electrodes.

Frontiers in Energy Research | www.frontiersin.org 5 March 2020 | Volume 8 | Article 46

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Nawwar et al. Functionally Decorated CNT Networks

other materials. The higher capacitance of M-CB-MWCNT can
result from reduced agglomeration of the Fe3O4 particles and
improved contact of Fe3O4 and MWCNT. However, the CV for
M-CB-MWCNT showed redox peaks and deviated significantly
from the box shape. Significant reduction of the charge and
discharge currents was observed in the potential range of −0.4
to −0.7V. The observed redox peak can result from the redox-
active properties of CB (Noorbakhsh et al., 2008). Such CV shape
is detrimental for the fabrication of asymmetric cells. In order
to improve the CV profile, the M-CB-MWCNT was combined
with FeOOH, which shows good charge storage properties in
the range of −0.4 to −0.7V (Chen et al., 2018). Therefore,
M-FH-CB-MWCNT was prepared and tested. This material
showed improved CV shape, compared to M-CB-MWCNT. The
capacitance of 5.76 F cm−2 (144 F g−1) was obtained at a scan

rate of 2mV s−1. Figure 6 shows frequency dependences of
the components of differential AC capacitance, calculated from
the impedance data. M-CB-MWCNT showed the highest real
part of capacitance C′

S at low frequencies, compared to other
materials. However, the M-FH-CB-MWCNT electrodes showed
lower C′′

S , which indicated lower energy losses. The slightly
higher relaxation frequency, corresponding to maximum of C′′

S ,
indicated better performance. The M-CP-MWCNT electrodes,
showed lower C′

S and lower relaxation frequency, compared
to other materials. The capacitive behavior of the electrodes
has also been analyzed by chronopotentiometry. Figure 7

compares galvanostatic charge-discharge curves for different
electrodes and capacitances, calculated from the discharge data
at different current densities. The charge-discharge curves were
of nearly triangular shape. The highest capacitance at 3mA

FIGURE 7 | (A) Charge-discharge curves at current density of 5mA cm−2, (B) capacitance, calculated from charge-discharge data, vs. current density for (a)

M-CB-MWCNT, (b) M-FH-CB-MWCNT, (c) M-PV-MWCNT, (d) M-AA-MWCNT and (e) M-CP-MWCNT.

FIGURE 8 | (A) CVs at scan rates of (a) 2, (b) 5 and (c) 10mV s−1, (B) CS and Cm calculated from the CV data vs. scan rate, (C) Nyquist plot of complex impedance

and frequency dependences of (D) C′

s and (E) C′′

s for an asymmetric supercapacitor cell, containing M-FH-CB-MWCNT as a negative electrode and MnO2-MWCNT

as a positive electrode.
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cm−2 was achieved using M-CP-MWCNT. However, M-FH-CB-
MWCNT showed benefits of nearly constant capacitance in the
range of 3–10mA cm−2. The M-CP-MWCNT and M-FH-CB-
MWCNT electrodes showed practically the same capacitances
at 5 and 10mA cm−2. The M-CP-MWCNT electrodes showed
significantly lower capacitance, compared to other electrodes in
agreement with CV and impedance spectroscopy data.

M-FH-CB-MWCNT electrodes were used for the fabrication
of the asymmetric supercapacitor cells. One of the problems
related to the fabrication of asymmetric devices with Na2SO4

electrolyte is related to lower capacitance of negative electrodes,
compared to the capacitance of advanced positive electrodes,
such as MnO2-MWCNT (Chen et al., 2017). However, M-FH-
CB-MWCNT electrodes showed relatively high capacitance
and the asymmetric device was fabricated using 40mg cm−2

M-FH-CB-MWCNT negative electrode and 35mg cm−2

MnO2-MWCNT positive electrode. It is known that aqueous
asymmetric devices based on Fe3O4 negative electrodes and
MnO2 positive electrodes (Brousse and Bélanger, 2003) can
operate in a voltage window of 1.8. Water decomposition
can be avoided due to overpotential for oxygen evolution.
Figure 8A shows CVs for the device in a voltage window of
1.6V. The current increased with increasing scan rate. As
expected, the capacitance CS of the device was about 50% of the
capacitance of the individual electrodes (Figure 8B). The device
showed relatively low impedance and relatively high relaxation

frequency (Figures 8C–E). The asymmetric devices showed
ideal triangular shape charge-discharge curves (Figure 9A,
inset). The capacitance slightly decreased (Figure 9A) with
current density in the range of 3-50mA cm−2. The capacitance
retention after 1,000 cycles was 75% (Figure 9B). The Coulombic
efficiency remained about 100% during cycling. The device had
an energy density of about 1 mWh cm−2 which showed relatively
small variations with increasing current density in the range
of 3–50mA cm−2 (Figure 9C). Two cells, connected in series,
allowed for the powering of eleven 20mA LEDs, as it is shown
in Figure 9D.

CONCLUSIONS

Polyaromatic CB, PV, AA, and CP molecules allowed for
efficient dispersion of MWCNT. The chelating catechol groups
of CB and PV as well as electrostatic attraction of cationic
CB and AA with negatively charged Fe3O4 particles were
beneficial for the formation of Fe3O4 decorated MWCNT. M-
CB-MWCNT showed a network of Fe3O4 decorated MWCNT
and low agglomeration of Fe3O4 nanoparticles. M-CB-MWCNT
exhibited higher capacitance, compared to M-PV-MWCNT,
M-AA-MWCNT and M-CP-MWCNT. Compared to M-CB-
MWCNT, the M-FH-CB-MWCNT electrodes showed improved
CV profile, reduced AC energy losses and low variation
of capacitance with increasing charge-discharge current.

FIGURE 9 | (A) CS and Cm vs. current density calculated from discharge data, inset shows charge-discharge curves, and different current densities, (B) (a)

Coulombic efficiency and (b) capacitance retention and vs. cycle number, (C) Ragone plot for an asymmetric supercapacitor cell, containing M-FH-CB-MWCNT as a

negative electrode and MnO2-MWCNT as a positive electrode, (D) LEDs powered by two asymmetric cells.
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M-FH-CB-MWCNT showed good capacitive behavior at mass
loading of 40mg cm−2. Asymmetric devices were fabricated,
containing M-FH-CB-MWCNT negative electrodes and
MnO2-MWCNT positive electrodes, which showed promising
capacitance and power-energy characteristics.
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