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In this study, the microwave-assisted solution combustion method was utilized for the

fabrication of Ca12Al14O33 as support and the amount of urea was assessed as an

important parameter during synthesis of the sample. Synthesized Ca12Al14O33 with

different fuel amounts was impregnated by KOH and used in the biodiesel production

process with canola oil under microwave irradiation. The results presented that the

crystallinity, crystalline size, specific surface area, and elemental composition of the

final nanocatalysts are affected by the fuel amount. Moreover, during impregnation of

potassium components, the structure of support was interestingly transformed from

CaAl2O4 to Ca12Al14O33 structure due to the incorporation of potassium in an alumina

lattice and more diffusion of calcium cations into a support lattice. On the other hand,

when the amount of fuel passed the optimum amount (2 times the stoichiometric

amount), the crystallinity was reduced due to the formation of high amounts of smoke

during combustion and prevention of the entry of air (oxygen) into the system. The

results of the microwave-enhanced transesterification reaction confirmed the results of

the analyses that the conversion of 94.5% was obtained using an optimum sample

at 450W, 12 molar ratios of methanol/oil, 4 wt.% catalyst, and 60min reaction time.

According to the stability of the optimum sample [at least three times (>75%)], along

with its unique mesoporous structure, uniform dispersion of potassium components,

and high basicity sites, it can be considered as a comparable solid base nanocatalyst for

biodiesel production.
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INTRODUCTION

Nowadays, the production of renewable, non-toxic, eco-friendly,
and environmentally friendly fuels has been of great concern
to scientists and governments. Extensive research has been
performed on alternative fuels, among which biodiesel has
shown its high potential due to its biodegradability, similar
properties to petroleum fuel, low emission profiles, excellent
lubrication of the engine system, and suitability for industrial
production (Mardhiah et al., 2017). Biodiesel, otherwise called
fatty acid methyl ester (FAME), is commonly produced via the
transesterification of vegetable oil or animal fats with methanol
(Dehghani and Haghigh, 2017; Veillette et al., 2017). In fact, the
viscosity of feedstocks, which has some drawbacks for engine
and injection systems, is reduced by the reaction. The catalyst
has an important role in the transesterification reaction, where
homogeneous catalysts such as NaOH and KOH are usually
utilized (Avhad and Marchetti, 2015). This reaction is carried out
in a short time (about 1.5 h), while the separation process for
producing the final biodiesel with an appropriate quality takes a
long time (Tangy et al., 2016).

Microwave irradiation as a novel technology has been widely
considered in chemical reactions (Ajamein and Haghighi, 2016;
Rezaee and Haghighi, 2016) and it has been extensively studied
in the field of biodiesel production in order to reduce production
and separation times. Refaat et al. reported that, in addition

to the reduction of the transesterification reaction time (from
75 to 4min), the separation time was also reduced (from 60

to 3min) (Refaat and El Sheltawy, 2008). Although microwave
irradiation eases the production and separation processes,
the major drawback of homogeneous catalysts is that they
produce soap, and thus several separation and purification steps
are required to obtain pure biodiesel. These processes could
cause significant environmental problems, since wastewater is
produced by the washing of biodiesel with water several times for
the elimination of the soap. Therefore, heterogeneous catalysts
have been suggested for biodiesel production, although they
have not been meaningfully studied in the microwave system as
compared to the conventional heating system (Li et al., 2013;
Allami et al., 2019).

Heterogeneous base catalysts have extensively been proposed
for biodiesel production; KOH and CaO are often used as
an active phase for increasing the basicity of catalysts. Liao
and Chung (2013) studied the performance of KOH/CaO
in microwave-assisted biodiesel production. However, the low
specific surface area and lower stability of CaO as support or
during the active phase, due to a simple reaction with H2O and
CO2 in the air, are among the issues challenging scientists (de
Sousa et al., 2016; Ye et al., 2016). The application of stable basic
support was suggested to overcome this problem. Alkali earth
aluminates with a general formulaMxAl2yOx+3y (M=Mg, Ba, Sr,
and Ca) have some unique properties, such as high stability and
thermal resistance (Quirino et al., 2016; Naderi and Nayebzadeh,
2019). It seems that calcium sources such as carbonate, nitrate,
etc., due to their low prices, are a sufficient component for the
preparation of alkali earth aluminate (Gupta and Agarwal, 2016;
Roschat et al., 2016).

In previous studies, conventional catalyst preparation
methods such as co-precipitation (Meng et al., 2013; Lu et al.,
2015) and sol-gel (Selyunina et al., 2013; Mandić and Kurajica,
2015) were utilized for the fabrication of calcium aluminate.
Against these long time catalyst preparation processes, the
combustion method as a self-propagating high-temperature
synthesis (SHS) method shows itself to be a suitable procedure
for the preparation of refractory materials with high purity and
significantly lower energy and time consumption (González-
Cortés and Imbert, 2013; Chang et al., 2014). This method,
unlike other catalyst preparation methods, does not require
the annealing of final powder at high temperatures (sometimes
over 1,000◦C) for extended periods of time (Varma et al., 2016;
Nayebzadeh et al., 2019). A primary heat is required to initiate
the oxidation/reduction reactions, where microwave irradiation
has shown to have efficient external heating due to its uniform
heating, fast heating rates, and hot spots, as well as selective
absorption of radiation by polar substances. This is why it is
called microwave combustion synthesis (MCS) (Specchia et al.,
2017; Deganello and Tyagi, 2018).

Although the effect of fuel type and other variables on the
structure and properties of calcium aluminate fabricated by
the MCS method has been studied with our previous work
(Nayebzadeh et al., 2016, 2017a,b), further studies can be
performed to obtain a sample with the highest activity and
stability. Other parameters such as fuel-to-oxidizer, or fuel
ratio (FR), microwave irradiation output power, water content
in precursor, and pH of the solution have influence on the
properties of the final product synthesized by the MCS method
(Rosa et al., 2013; Hashemzehi et al., 2020a). Hashemzehi et al.
reported that, for preparation of a nanocatalyst with good
crystallinity and high activity for biodiesel production, high
microwave power must be used (Hashemzehi et al., 2016).
Furthermore, it was reported that FR has the greatest influence
on the properties and performance of the final powder due
to its effect on the temperature of the exothermic combustion
reaction during catalyst preparation (Nasiri et al., 2012; Khoshbin
et al., 2016) that has not been studied previously. Therefore,
in this study, the effect of FR was assessed on the properties
of calcium aluminate as support prepared by the MCS method.
After impregnation of the potassium component on the surface
of supports, their activity was examined in the microwave-
enhanced transesterification of canola oil. The samples were
characterized using X-ray Diffraction (XRD), Fourier-transform
infrared spectroscopy (FTIR), Brunauer–Emmett–Teller (BET),
Thermogravimetric (TG), Energy-dispersive X-ray spectroscopy
(EDX), Field Emission Scanning Electron Microscopy (FESEM)
analyses, and basicity using Hammett indicator. The level of
reusability as an optimum aim for industrial use using a catalyst
was evaluated for KOH/Ca12Al14O33 nanocatalyst fabricated at
optimum FR in the biodiesel production process.

MATERIALS AND METHODS

Materials
Chemical grades of aluminum nitrate (Al(NO3)3.9H2O), calcium
nitrate (Ca(NO3)2.4H2O), potassium hydroxide (KOH), urea
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(CH4N2O), and methanol (CH3OH) were purchased from
Merck. All the materials were used as received without any
further purification. The canola oil was supplied from a
local store.

Nanocatalyst Synthesis Procedure
In the MCS method, metal salts such as nitrates are mixed
with water and soluble carbohydrates as fuel. In our study,
Al(NO3)3.9H2O (20 mmole) and Ca(NO3)2.6H2O (10 mmole)
were mixed with 30mL of deionized water in a beaker and
then a desirable amount of urea with 1, 1.5, 2, or 2.5 times of
stoichiometric compositions was added. According to propellant
chemistry, stoichiometric compositions of the fuel-to-oxidizer
ratio were calculated using the total oxidizing and reducing
valences of the components (Nayebzadeh et al., 2016). The
corresponding chemical reaction for preparation of calcium
aluminate with different FRs is shown as follows:

Ca(NO3)2.4H2O+ 2Al(NO3)3.9H2O+ 6.67XCH4N2O →

CaAl2O4 + (22+ 13.34X)H2O+ 6.67XCO2+(4+ 6.67X)N2,

X = (1.0, 1.5, 2.0, 2.5) (1)

After gelling the mixture by heating at 80◦C, the beaker was
transformed in the domestic microwave oven (Daewoo, Model
No. KOC9N2TB, 900 watts, 2.45 GHz) and irradiated for 10min.
After exhausting the huge amount of gases, the combustion
reaction started and the foamy catalyst was produced. The
samples were labeled as CA(FR = 1), CA(FR = 1.5), CA(FR =

2), and CA(FR= 2.5).
Potassium components as active phases were impregnated by

mixing the supports with the KOH aqueous solution (35 wt.%)
and refluxing at 80◦C for 2 h. After aging the mixture for 12 h,
it was placed in an oven at 110◦C overnight to dry. Finally, the
powders were calcined at 700◦C for 4 h to obtain KCA(FR = 1),
KCA(FR= 1.5), KCA(FR= 2), and KCA(FR= 2.5) (Nayebzadeh
et al., 2017a). The nanocatalysts synthesis method is shown in
Figure 1.

Nanocatalysts Characterization
Techniques
XRD analysis was performed to determine the crystalline phase
of the samples, where a UNISANTIS/XMD 300 apparatus
operating at 45 kV and 80mA with scanning range of 10–
60◦ by means of Cu Kα radiation was utilized. The textural
properties of the sample containing a specific surface area, mean
pore size, and pore volume were determined using a PHS-1020
(PHSCHINA, China) apparatus by N2 adsorption/desorption
method. TG analysis was utilized for assessing the decomposition
of raw materials during catalyst preparation. The phenomenon
of microwave combustion reaction was evaluated by TG analysis
under air flow in the range of 50–800◦C at a heating rate
of 20◦C/min performed by on an Evolution STA (SETARAm,
France) instrument. Using FESEM analysis performed byMIRA3
FEG-SEM (TESCAN, Czech Republic), the morphology and
surface structure of the nanocatalysts were assessed. The surface
elemental distribution of the samples was depicted by the
EDX technique using VEGA II Detector (Czech Republic,

TESCAN). The surface functional groups of the nanocatalysts
were assayed by FTIR spectra in the range of 400–4,000 cm−1

using a SHIMADZU 4300 (Japan) spectrometer. The Hammett
indicators method was used to determine the basic strength
(H_) of the samples where bromothymol blue (H_ = 7.2),
phenolphthalein (H_ = 9.8), and 2,4-dinitroaniline (H_ =

15.0) were utilized as indicators. By titration of each color
changed mixture containing 0.2 g catalyst, 10mL methanol,
and 1mL Hammett indicator solution via 0.02 mole benzene
carboxylic acid/L anhydrous ethanol solution, the basicity of the
nanocatalysts was measured (Ye et al., 2014).

Experimental Setup for Catalytic
Performance Test
The microwave-enhanced transesterification reaction of canola
oil was carried out in a 100mL glass reactor equipped with a
water-cooled condenser for assessment of the catalytic activity
of the samples. A modified domestic microwave with a hole
of 20mm at its top was utilized to carry out the reaction at
microwave output power of 450W for 1 h. For each reaction, the
glass reactor was loaded by 20 g canola oil, 12mL methanol (12
methanol/oil molar ratios), and 0.8 g catalyst (4 wt.%). Although
the reaction was not performed at the optimum conditions, it
can provide a suitable conversion for comparing the catalysts.
At the end of the reaction, the biodiesel layer mixture was
separated from glycerol and used as a catalyst by centrifuging the
mixture at 2,500 rpm for 25min. Its layer was heated to remove
excess methanol and obtain pure biodiesel. The conversion of
the reaction was determined based on the FAME content of
the produced biodiesel. The FAME content of biodiesel was
calculated by the following equation:

Conversion (%) =

[(area of all FAME×weight of reference)/(area of reference

×weight of biodiesel sample)]×100 (2)

where reference is assigned to methyl non-adecanoate as an
internal standard. Area of FAME and reference were mentioned
to the area of gas chromatographic (GC; Teif Gostar Faraz co.,
Iran) peaks of produced biodiesel equipped with FID detector
and SUPRAWAX-280 capillary column (30m × 0.25mm ×

0.25 µm).

RESULTS AND DISCUSSION

Nanostructured Catalysts Characterization
XRD Analysis
The effect of FR on the crystalline structure of calcium aluminate
is illustrated in Figure 2. All the samples show the monoclinic
phase of the monocalcium aluminate structure (CaAl2O4 as
called CA) in accordance with the Joint Committee on Powder
Diffraction Standards (JCPDS No. 70-0134) database with
different peak intensities. In the CaO andAl2O3 system,mayenite
(Ca12Al14O33 as called C12A7) forms as the first structure of
calcium aluminate, which quickly reacts with Al2O3 to form CA
when sintering temperature and time increase (Nayebzadeh et al.,
2017b). Janakova et al. reported that CA is formed at reaction
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FIGURE 1 | Microwave assisted combustion synthesis of KOH/Ca12Al14O33 nanostructured catalysts with various fuel ratios. (A) Precursor preparation. (B)

Combustion synthesis of support. (C) Impregnation synthesis. (D) Post treatment.

temperatures up to 1,050◦C and higher temperatures are required
to have a full crystallinity (Janáková et al., 2007).

The theoretical combustion temperature can be obtained
using enthalpy of the reaction and a specific heat capacity of
the product when the combustion process assumes adiabatic
(Hashemzehi et al., 2020b). If it is assumed that only CaAl2O4

was formed, the adiabatic combustion temperature obtains
923, 1,263, 1,444, and 1,557◦C for a fuel ratio of 1–2.5
(see Supplementary Material). It shows that the combustion
temperature increased sharply by loading higher amounts of fuel
while the rate of temperature increasing reduced at a higher fuel
ratio. Moreover, less crystallinity of the sample fabricated at a fuel
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FIGURE 2 | XRD patterns of synthesized CaAl2O4 supports with various fuel

ratios: (A) CA (FR = 1), (B) CA (FR = 1.5), (C) CA (FR = 2), and (D)

CA (FR = 2.5).

ratio of 1 can be proven by the calculated temperature which
was under the minimum temperature needed to obtain well
crystalline structure of CaAl2O4 (1,050

◦C). Thus, it is proven that
the temperature of combustion reaction medium is extremely
high (Rodríguez et al., 2012). Therefore, the nanocatalysts at the
FR above 1.5 contain CaO, C12A7, CA, and Al2O3, with CA being
the dominant phase (Rivas Mercury et al., 2005; Ruszak et al.,
2011). The diffraction peaks of Al2O3 (JCPDS No. 76-0144) and
C12A7 (JCPDS No. 78-0910) can be, respectively, observed at 2θ
= 25.4◦ and 18.1◦, especially at CA(FR= 2) nanocatalyst.

When the amount of urea increased in the mixture, the
burning flame continued from seconds to minutes. An increase
of combustion duration caused the formation of the well-
defined crystalline structure of CA. The relative crystallinity
of the as-prepared CA nanocatalyst, calculated based on the
peak at 2θ = 30.1◦, clearly proves the effect of fuel increase
on the formation of CA (shown in Table 1). However, the
relative crystallinity decreased at a FR of 2.5. Rapid oxygen
transport from air to reaction medium is significantly necessary
for complete combustion, as in fuel-rich conditions. However,

oxygen diffusion limitations result in incomplete combustion
for the CA(FR = 2.5) nanocatalyst (Ghosh et al., 2010). The
effect of reaction temperature can be significantly observed in
the crystalline size of CA, as the CA(FR = 2) shows the lowest
crystalline size (Table 1).

The XRD patterns of the KOH/Ca12Al14O33 nanocatalyst are
shown in Figure 3. It can be clearly observed that the samples
were transformed from CA structure to C12A7 phases due to the
additional heat treatment and dopant concentration (Avci et al.,
2012). The phase transformation is related to the diffusion of
Ca2+ ions through the CA layer to react with Al2O3 in order to
form Ca3Al2O6 (C3A) and C12A7, as the stable phase is finally
formed at the expense of CA and C3A (Tao et al., 2012). In
addition, the K2O (JCPDS No. 22-0493) and K2CO3 (JCPDS
No. 73-0470) phases can be recognized in the XRD patterns
of the samples, especially at the KCA(FR = 2) and KCA(FR
= 2.5) nanocatalysts. Less amorphous structures in the samples
with high crystallinity may allow the potassium component to
make individual phases. This phase has a significant effect on
the activity of the catalyst in the transesterification reaction
(Nayebzadeh et al., 2016).

The relative crystallinity and crystalline size of the samples
are also listed in Table 1. The KCA(FR = 2) and KCA(FR =

2.5) nanocatalysts show the highest relative crystallinity and the
largest crystalline size, respectively, which might be due to the
greater formation of large crystals of C12A7.

FTIR Analysis
The FTIR spectra of the KOH/Ca12Al14O33 nanocatalysts are
illustrated in Figure 4. The spectra of all the samples exhibit
a bond between 3,200 and 3,400 cm−1, which is related to
O-H stretching vibration of absorbed water molecules on the
surface of the nanocatalysts. Moreover, a peak at 1670 cm−1

is also assigned to the bending vibration of water molecules
(Khoshbin and Haghighi, 2014; Kazemifard et al., 2019). The
characteristic bond in the range of 3,400–3,600 cm−1 can be
assigned to Ca/Al-OH groups (Chang et al., 2014). In addition,
stretching vibration of Al-O-K groups, due to the attachment of
K+ ions to alumina, is also observed around 3,600 and 1,100
cm−1. The bonds at 1,470, 1,395, 1,020, and 935 cm−1 may be
associated with the characteristic vibrations of the Al-OH or
Al-O-K bonding (Hashemzehi et al., 2016). The characteristic
absorption regions of Al-O stretching vibrations for tetrahedral
(AlO4) and octahedral (AlO6) are, respectively, observed in the
700–850 cm−1 and 500–700 cm−1 (Kazemifard et al., 2018).
The tetrahedral bonds of Al-O confirm the formation of C12A7

structure (Lu et al., 2012). The Ca-O bond is observed around
470 cm−1 (Alba-Rubio et al., 2010; Hojjat et al., 2016).

BET and Basicity Analysis
The BET properties of the samples are listed in Table 1. The
specific surface area of the samples sequentially increased from
58.14 to 95.40 m2/g by increasing the FR. This could be due to
an increase of the amounts of exhausted gas and combustion
time during catalyst preparation. A similar phenomenon was also
detected for pore volume and mean pore size of the samples,
whereas these decreased by increasing the FR from 2 to 2.5.
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TABLE 1 | Physicochemical properties of synthesized CaAl2O4 supports and KOH/Ca12Al14O33 nanostructured catalysts.

Nanocatalyst BET

(m2/g)

PV

(cm3)

Pd

(nm)

Basicity Relative Crystallinitya Crystallite sizeb (nm)

H_ Strength (mmol/g) CaAl2O4 Ca12Al14O33 CaAl2O
c
4 Ca12Al14O

d
33

CA(FR = 1) – – – <7.2 – 42.4 – 25.9 –

CA(FR = 1.5) – – – <7.2 – 71.2 – 24.9 –

CA(FR = 2) – – – <7.2 – 100 – 18.5 –

CA(FR = 2.5) – – – <7.2 – 80.8 – 22.1 –

KCA(FR = 1) 58.14 0.142 5.43 9.8–15 0.392 – 67.4 – 23.3

KCA(FR = 1.5) 62.52 0.304 6.03 9.8–15 0.400 – 92.7 – 25.8

KCA(FR = 2) 64.20 0.441 7.40 9.8–15 0.404 – 100 – 27.5

KCA(FR = 2.5) 95.43 0.314 5.99 9.8–15 0.404 – 100 – 26.9

aRelative crystallinity: XRD relative peak intensity at 2θ = 30.1◦ for CaAl2O4 and 18.1
◦ for Ca12Al14O33.

bCrystallite size estimated by Scherre’s equation at 2θ = 30.1◦ for CaAl2O4 and 18.1
◦ for Ca12Al14O33.

cCrystallite phase: Monoclinic (JCPDS: 01-070-0134, 2θ = 19.0, 22.0, 23.9, 27.9, 30.1, 35.7, 37.4, 47.2).
dCrystallite phase: Cubic (JCPDS: 01-078-910, 2θ = 18.1, 27.8, 29.8, 33.4, 36.7, 41.2, 46.7, 55.2, 57.5).

FIGURE 3 | XRD patterns of synthesized KOH/Ca12Al14O33 nanostructured

catalysts with various fuel ratios: (A) KCA(FR = 1), (B) KCA(FR = 1.5), (C)

KCA(FR = 2), and (D) KCA(FR = 2.5).

In the biodiesel production process, porosity of the catalyst can
even play a larger role than the surface area. The diffusion of
triglycerides molecules into catalyst pores contains seven stages,
including: (1) passing through the external film of the catalyst,
(2) diffusing into the pores, (3) adsorbing on the active surface,
(4) reacting the reactants, (5) disposing the products (biodiesel
and glycerol) from the catalyst surface, (6) diffusing toward
the outside through the pores, and (7) passing through the
external film (Ebadinezhad and Haghighi, 2020). Therefore, the
pore size must be insufficient in order to perform the stages
3–7. It was mentioned that the pores must be at least 6 nm in
diameter for easy permeation of triglycerides macromolecules
(Jacobson et al., 2008). A number of studies have emphasized that
restricted diffusion transpires when reactant molecules and pores
have comparable dimensions (Lukić et al., 2010). Therefore,
triglycerides molecules can easily diffuse through the pores of
the major part of the KCA(FR = 2) nanocatalyst, leading to an
efficient contact to be established between the reactant and active
site. In addition, the KCA(FR = 2) nanocatalyst also shows the
largest pores volume.

As shown in Table 1, the basicity of the as-prepared catalysts
was not meaningfully changed by an increased FR. The basicity
is defined as a basic site for a catalyst where KOH plays the
most important role in increasing the basic strength. Here,
the support (CA) showed insignificant basicity strength in the
studied region. Since the amount of impregnated potassium
compounds on the catalysts is constant, the samples showed a
similar basicity strength.

TG Analysis
The TG plots of the monocalcium aluminate prepared by
different FRs, which explain the level of completing the
combustion reaction, are illustrated in Figure 5. The weight
loss below 150◦C is assigned to the elimination of water
from the surface of supports and/or in raw material structure
where the CA(FR = 1) showed the highest weight loss (5.5%)
(Nayebzadeh et al., 2016). The second reduction in weight in
the range of 150–500◦C is owed to pyrolysis of organic groups
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FIGURE 4 | FTIR spectra of synthesized KOH/Ca12Al14O33 nanostructured

catalysts with various fuel ratios: (A) KCA(FR = 1), (B) KCA(FR = 1.5), (C)

KCA(FR = 2), and (D) KCA(FR = 2.5).

and/or nitrate precursors, which exhibit incomplete combustion
reaction (Chen et al., 2014). CA(FR = 1) and CA(FR =

2.5) have high weight loss (around 15%), which is in good
agreement with the results of relative crystallinity obtained
from the XRD patterns. It confirms that the optimization of
the FR in the combustion method is important for obtaining
the highest combustion temperature to synthesize the catalyst
with a good structure and high crystallinity (Rahmani Vahid
and Haghighi, 2016). The last reduction in weight occurred
in the range of 500–600◦C, which could correspond to the
incorporation of calcium components in the alumina lattice to

form CaAl2O4. Moreover, such a reduction could be attributed
to the transition of alumina from the amorphous to crystalline
phase, where the CA(FR = 1) illustrates the highest amount of
amorphous phases followed by the CA(FR = 1.5) and CA(FR
= 2.5) samples with 3.7 and 5.2% weight loss, respectively
(Yousefi et al., 2019). The CA(FR = 2) nanocatalyst with 2.5%
weight loss confirms that the fuel-to-oxidizer ratio of 2 is
an appropriate amount for the preparation of monocalcium
aluminate (CaAl2O4) as support.

EDX Analysis
The EDX analysis results of the KOH/Ca12Al14O33 nanocatalysts
(KCAs) are depicted in Figure 6. It can be seen that all the
samples contain Al, Ca, K, and O elements and no impurity
was observed. The KCAs nanocatalysts show similar element
distribution percentages of Al, Ca, and K to the parent solution
(35.1, 31.8, and 33.1% for Al, Ca, and K, respectively). Due
to the increased combustion reaction and increased alumina
in the structure with an increasing fuel ratio, the amount
of Al element subsequently increased from 29.4% for the
KCA(FR = 1) to 40.3% for the KCA(FR = 2.5). Moreover,
the potassium component increased with an increase of the
FR from 1 to 2 and then was decreased by more fuel
loading. This can be related to the extreme increase of the
KCA(FR = 2.5) specific surface area that caused the potassium
components’ distribution to decrease (as seen in Figure 6D).
The dot-mapping of the samples clearly exhibited that the
potassium components were homogeneously dispersed on the
surface of support, especially in the KCA(FR = 2) nanocatalyst
(Figure 6C), which can result in an appropriate activity of
the sample.

FESEM Analysis
The FESEM images of the CA(FR = 2) and KCA(FR = 2)
nanocatalysts are illustrated in Figure 7. The combustion cavities
as external gates provided during the CA(FR = 2) preparation
show large diameters in the range of 300–600 nm, and cause
the penetration resistance to be reduced for permeation of the
reactant (especially large molecules of triglycerides) (Rahmani
Vahid and Haghighi, 2016). Moreover, the morphology of the
sample shows that the temperature of the combustion reaction
was appropriate, such that the particle size with good distribution
sizes can be observed. According to a surface particle size
distribution histogram, the CA(FR = 2) nanocatalyst shows the
size of the particles to be in the range of 5–17 nm with an
average size of 11 nm, where the particles with 10–12 nm have
the highest frequency.

The KCA(FR = 2) nanocatalyst is shown in the right side
of Figure 7, in which the morphology of the CA(FR = 2)
was not clearly changed by potassium loading. However, the
surface particles size distribution was changed; accordingly, the
average particle size increased from 11 nm to 12 nm by potassium
loading. The results can be proved by the XRD analysis, where
the crystalline size increased due to phase transformation from
CA to C12A7. The phase transformation effect on the particle size
is due to the increased bond length between Ca, Al, and O in
the mayenite structure as compared to monocalcium aluminate.
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FIGURE 5 | TG analysis of synthesized CaAl2O4 supports with various fuel ratios: (A) CA(FR = 1), (B) CA(FR = 1.5), (C) CA(FR = 2), and (D) CA(FR = 2.5).

Minimum and maximum particle sizes of the KCA(FR = 2)
nanocatalyst are, respectively, 7.4 and 18.9 nm.

Catalytic Performance Study Toward
Biodiesel Production
The activity of the KOH/Ca12Al14O33 nanocatalysts is illustrated
in Figure 8. As expected, the KCA(FR = 2) and KCA(FR =

2.5) nanocatalysts showed higher activity in the conversion of
canola oil to biodiesel. The samples showed a high specific surface
area and mean pore size, which led to unimpeded permeation
of reactants through the porosity of the catalysts, making more
contact with their active phases. Moreover, the crystallinity and
basicity of these samples were much more than those of the other
samples, proving their higher activity. Therefore, the KCA(FR =

2) nanocatalyst was selected as the optimum catalyst and the FR
of 2 seemed to be the best ratio for the preparation of calcium
aluminate supported by the potassium components.

Dall’Oglio et al. (2014) have conducted a study on the
aluminum, calcium, manganese, titanium, and magnesium
oxides as support for biodiesel production under microwave
irradiation. The results exhibited that alumina was the best
support where K2CO3/Al2O3 showed the highest activity
(98%) at the reaction conditions of methanol/oil molar ratio
of 16 and 10 wt.% of the catalyst and reaction time of
30min. The other potassium precursor showed an intermediate
biodiesel conversion. The yield of 60 and 40% was, respectively,
obtained using the KOH/Al2O3 and KI/Al2O3 catalyst in the
microwave-assisted biodiesel production. At these conditions,
the CaO/Al2O3, CaO/TiO2, and CaO/MnO2 catalysts converted
46.2, 36.6, and 49.2% of soybean oil to biodiesel, respectively. This
means that the Ca12Al14O33 might be one of the best supports for
the loading of active phases for biodiesel production.

Reusability of KCA(FR = 2) Nanocatalyst in
the Biodiesel Production
The reusability of catalysts is an important element in the
industrial application of catalysts (Nayebzadeh et al., 2014). To
assess the stability of KCA(FR = 2) as an optimum nanocatalyst,
it was separated from the reaction mixture after each run by
centrifuging the mixture at 6,000 rpm for 20min and washed
with methanol twice time to eliminate the reactants and products
from porosities. Then it was dried and calcined at 700◦C for
1 h and reused. The results are presented in Figure 9. It can
be seen that the catalytic activity of KCA(FR = 2) nanocatalyst
decreased from 94.5 to 80.7%, which can be related to leaching
and/or poisoning of active phases (potassium components), that
can be proven by the brown color of glycerol. However, in
the third use, the activity of the catalyst did not meaningfully
change and a yield of 76.4% was obtained. The yield slightly
decreased with further uses, as a yield of 70.6% was obtained
in the fifth run. The results signify that some potassium
components have weak bonds with the surface of calcium
aluminate as support. The results confirm that the calcium
aluminate as support protects its stability during the reaction
and could be an appropriate support among those reported so
far for loading species for industrial application in the biodiesel
production process.

Comparing the Results With Other Studies
The activity of the samples was compared with other studies
as illustrated in Table 2. KOH/calcium aluminate presents good
activity in the transesterification reaction as high as CaO [used
in conventional (Ye et al., 2016) or microwave (Hsiao et al.,
2011) heating systems]. However, CaO can react to methanol
to form calcium methoxide in reaction mediums, reduce the
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FIGURE 6 | EDX analysis of synthesized KOH/Ca12Al14O33 nanostructured catalysts with various fuel ratios: (A) KCA(FR = 1), (B) KCA(FR = 1.5), (C) KCA(FR = 2),

and (D) KCA(FR = 2.5).

Frontiers in Energy Research | www.frontiersin.org 9 June 2020 | Volume 8 | Article 106

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Nayebzadeh et al. Heterogeneous Catalyst for Biodiesel Production

FIGURE 7 | FESEM images of synthesized CaAl2O4 support and KOH/Ca12Al14O33 nanostructured catalyst: (A) CA(FR = 2) and (B) KCA(FR = 2).

reaction conversion, and cause high leaching due to the solubility
of methanol in a biodiesel layer (de Sousa et al., 2016). Although
eggshell as a catalyst, which contains CaO as major material,
shows high activity, it was obtained at a high microwave power
and duration, or at a high methanol and catalyst concentration
(Khemthong et al., 2012; Peng et al., 2018).

The prepared nanocatalyst also presented good activity when
the reaction conditions were milder than in other studies.
Doping the calcium into an alumina structure can enhance
the basicity of the support along with improving the leaching
problem of Ca ions reported in previous studies. In addition, the
calcium aluminate has different structures that can be studied
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FIGURE 8 | Influence of fuel ratio on the catalytic performance of synthesized

KOH/Ca12Al14O33 nanostructured catalysts with various fuel ratios.

FIGURE 9 | Reusability of KOH/Ca12Al14O33 nanostructured catalysts toward

biodiesel production from canola oil.

to obtain the most active and stable structure for the biodiesel
production process.

Moreover, the production procedure is so simple to set
up on an industrial scale to reduce the catalyst preparation
cost. However, bonding the potassium ions with the surface
of the calcium aluminate can be a challenge for enhancing
its reusability. It seems that utilizing other types of potassium
precursors and the optimization of impregnation conditions may
facilitate bonding of K ions with Ca and Al ions, which will be
studied in our future work. Therefore, it seems that KOH/calcium
aluminate can be further studied to assess its ability to be used for
industrial application.

CONCLUSIONS

CaAl2O4 as alkali calcium aluminate was successfully synthesized
by the MCS method, and the effect of fuel amount during
the catalyst preparation was assessed. Furthermore, the samples
were impregnated by the potassium components to improve
their catalytic activity for the transesterification of canola oil to
biodiesel through microwave irradiation. The characterization
results revealed that the monocalcium aluminate prepared
by urea as fuel with twice the stoichiometric amount has a
high crystallinity and good precursor decomposition during
combustion. This structure was transformed to Ca12Al14O33

structure during potassium loading and calcination due to
the diffusion of Ca2+ ions in a monocalcium aluminate
lattice and/or reaction of the potassium component with
alumina to form potassium aluminate. KOH/Ca12Al14O33

showed nanoscale particles where the potassium components
were uniformly dispersed on the surface of support. The
nanocatalyst, due to its high specific surface area, mean pore
size, crystallinity, and basicity, converted high amounts of canola
oil to biodiesel through microwave irradiation. The microwave-
enhanced biodiesel production was performed under conditions
of 450 watts, 12 molar ratio of methanol/oil, 4 wt.% of catalyst,
and 1 h reaction time, where a yield of 94.5% was obtained. The
nanocatalyst presented a suitable reusability although it required
optimizing amounts of the potassium components.

TABLE 2 | Comparison of catalytic performance of various catalysts in biodiesel production process under microwave irradiation.

Catalyst Feedstock Transesterification condition Yield (%) References

Mw. P (W) MORb Cc (wt.%) td (min)

KOH/calcium aluminate Soybean 450 12 4 60 94.5 This study

CaO Soybean 300 (60◦C) 7 3 60 96.6 Hsiao et al., 2011

Eggshells (CaO) WCO 900 (65◦C) 9 5 165 Peng et al., 2018

Eggshells (CaO) Palm 900 18 15 4 96.7 Khemthong et al., 2012

NaOH/ZnO Soybean 180◦C 20 2 180 77.82 Quirino et al., 2017

Ca(OH)2/Fe3O4 Jatropha-Castor 900 (65◦C) 12 2 35 95 Chang et al., 2017

CaO Palm 150 9 5 60 89.9 Ye et al., 2016

SO3H–ZnAl2O4 Palm (esterification) 800 (60◦C) 9 1.5 20 94.6 Soltani et al., 2017

Sulfonated activated carbon Soybean 600 (75 ◦C) 6 20 20 88.7 Rocha et al., 2019

ZrO2/Bamboo ash Soybean 900 (60◦C) 15 12 60 96 Fatimah et al., 2019
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