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With the characteristics of high-speed calculation and high-accuracy prediction, artificial
intelligence (AI) which also known as machine intelligence, including deep learning,
machine learning, etc., have shown great advantages in cross-field applications.
In material science field, AI can be used to discover new materials and predict
corresponding critical properties. At present, AI has been used in the exploitation
of energy conversion materials and other energy-related materials. In this review, we
summary the current achievements of AI applications in energy conversions, analyze
the advantages and disadvantages of AI techniques in material researches and point
out future development prospects.
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INTRODUCTION

The development of materials can be divided into four stages. “Material 1.0” begins from
the Bronze Age in 3500 BC to the Iron Age and Steel Age. With the in-depth study of
material physics and chemistry, we establish and develop electrodynamics, the quantum theory,
Maxwell’s equations etc. Thus, materials entered the period called “Material 2.0.” “Materials 3.0” is
calculating and computerized material science. In this period, material with target functionalities
is computationally designed based on employing principles of physics and quantum chemistry (Li,
2008; Lefkidis and Hübner, 2015; Dildar, 2018; Muhammad, 2018; Chen D. et al., 2019). In the
above stages, the cycle of a new material from research and development to market is long, which
usually takes years or decades. To shorten the development cycle, material scientists start to apply
artificial intelligence (AI) techniques to accelerate material discovery, which means we are entering
the age of “Material 4.0” (Butler et al., 2018) “Materials 4.0,” also known as Materials Big Data
Informatics (Xue, 2014; Xu Y., 2018), enables the research of new materials, including prototype
project, performance testing, verification, and lifecycle assessment to be carried out in a virtual lab.
Thus, we can hugely shorten the time that a new material need to manufacture and promote the
application of new materials.

Artificial intelligence can be regarded as machines (with different algorithms) with the
capacity to simulate “cognitive” functions of mankind, for example solving problems and
learning (Alexander, 1998; du Boulay, 2001; Russell and Norvig, 2002; Legg and Hutter, 2007;
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Kaplan and Haenlein, 2018). The algorithm is a set of clear
instructions that a machine or computer can execute (Anderson
et al., 1984; Hasperue, 2015). Traits or capabilities that researchers
expect an intelligent system to display includes knowledge
representation, reasoning and problem solving, planning (Luger,
2005), perception, natural language processing, learning, motion,
and manipulation (Russell and Norvig, 2002), social intelligence
(Scassellati, 2002), and general intelligence (Pennachin and
Goertzel, 2007). According to the type and amount of available
data, AI can be divided into three types, namely the supervised,
semi-supervised and unsupervised (Vluymans et al., 2015). The
basic workflow and development process are shown in Figure 1.
The input and output data used for training supervised learning
are known and massive, whose purpose is developing a function
that reflects the relationship between the input and output data.

Artificial intelligence is actually a simulation of the
information process of human consciousness and thinking.
The characteristics required for an intelligent system are shown
in Figure 2. As we know, AI can solve problems basically because
three processions. AI has sensory elements, which are used
to recognize the state of the surrounding environment. It has
motion elements, which react to the outside world. It also has
thinking elements, which can think about what actions to adopt
based on the information obtained by the sensory elements. This
makes AI act like a human with excellent learning ability and
huge knowledge and data. Thus, it can be used in various fields
like security, healthy, finance, and research.

Due to excessive use of fossil fuels, energy crisis and
environmental problems are growing worse and worse. New
reusable energy substitutions are required, such as solar energy
and tidal energy. Effective and clean energy conversion materials
(Chen Z. et al., 2019; Zhang et al., 2020) are critical to boost
the development of new energy sources. However, developing
high-efficiency energy conversion materials (Zong et al., 2019)
is labor-intensive and time-consuming. It is hard for materials
researchers to explore exhaustively (Cheng et al., 2020). Recently
rising AI techniques can be applied to discover various materials
and boost the development of novel energy conversion materials.
AI technologies influence material science mainly through
automating specific research tasks via ML algorithms. Knowledge
discovery in materials science can be hugely accelerated by
integration of numerous and complementary AI techniques,
such as Maximum Likelihood, planning, reasoning, search, and
knowledge representation (Gomes et al., 2019).

Artificial intelligence can not only predict the performance
of materials, but also has many applications in energy use. At
present, AI has been successfully applied to the smart grid.
AI technology can collect and integrate real-time information
from different sensors and computers, and learn autonomously
from patterns and anomalies in large data sets, so that it can
make timely and effective decisions, Rationally allocate resources.
Google ’s recent application of AI technology has been proven
to improve the efficiency of electricity management. It estimates
the efficiency of the data center, improves the cooling system,
and manages the equipment more effectively according to its
machine learning (ML) algorithm estimates. Electricity reduction
by 15% has saved Google hundreds of millions of dollars in a

few years. AI can also be used for the prediction of clean energy
(Zhang, 2016). IBM plans to launch a new product called “Deep
Thunder.” This product will provide accurate weather forecasts
with a resolution of 0.2 miles to 1.2 miles. It integrates a variety
of predictions. The model collects a large number of data sources
related to weather, environment, atmospheric conditions, and the
operation of solar power plants and power grids, thereby using AI
to optimize clean energy applications. AI will bring an all-round
revolution in the energy field.

In this review, we first briefly survey the broad application
of AI techniques. Then we review the current achievements of
AI applications in energy conversion. At the end of the review,
the advantages and disadvantages of AI techniques in materials
research are analyzed, as well as the prospects on challenges
and opportunities.

AI APPLICATION IN ENERGY
CONVERSION MATERIALS

AI in Optoelectronic Materials
In recent years, AI has made continuous progress in the
prediction of energy conversion materials such as solar energy
conversion. There are many methods of converting solar energy
and one is the thermal effect of light. The volt effect of light
can also be used to convert solar radiation into electricity
directly. The photovoltaic use of solar energy has become the
fastest-growing research area in recent years. The research
and development of solar cells has also increased rapidly.
How to determine the most effective optoelectronic material
is always a big problem that need to be solved urgently.
Considering the huge amount of possible materials, it is very
complicated to comprehensively assess all candidate materials
and complete screening. However, the emergence of ML provides
such an opportunity to use the existing database for virtual
material screening and use the power of AI to accelerate the
identification of materials with required characteristics. Applying
AI approaches can increase the efficiency of the material
processing via modeling and optimization (Figure 3). In the
following part, we take the application of AI techniques in the
field of energy catalysis as an example.

In 2016, Taylor Moot’s team (Moot et al., 2016) discovered
that perovskite-type lead titanate (PbTiO3) is the most promising
new photocathode material after virtually screening 50,000 types
of known inorganic compounds through a material information-
driven way. They has designed a new photocathode material for
dye-sensitized solar cells (DSSC). The resulting PbTiO3 has great
differences with the traditional photocathodes. It has excellent
performance in aqueous solution, and its filling factor is very high
when comparing with the typical photocathode system.

In this study, his team used the known p-type photocathode,
such as NiO, Co3O4 etc., as reference materials, and used
the chemical similarity measurement formula to calculate the
similarity coefficient (Tc) between the chemical substances A and
B. And the chemical similarity is proposed based on the theory of
“similarity principle.” We can learn from it that molecules with
similar structure may possess similar characteristics. Only based
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FIGURE 1 | Evolution of the research workflow in computational chemistry from Butler et al. (2018).

FIGURE 2 | Traits that an intelligent system need to possess.

on structural similarity is far less-sufficient for the identification
of materials. So Taylor et al. have improved the method of
identifying materials. They believe that the structural similarity
of electronic bands can identify new materials with required
characteristics better. They compared materials that of known
materials to find materials with similar crystal structures through
knowledge-driven method.

Secondly, an important work to be done during the searching
for materials with the same characteristics using knowledge-
driven approach is the quantification of similarity. A unique
descriptor is needed to define material characteristics. Taylor’s
team discretized the band diagram of the material and used a 32-
bit vector as representation. Each Brillouin area has a particular
set of highly symmetrical points which collectively generate
a B-fingerprint based on the symmetry. Firstly, the energy
band structure of known materials is calculated using density
functional theory and converted into the material descriptor (B
fingerprint). It is believed that materials with good property can

be implicitly encoded in the B fingerprint descriptor. The band
structure data of over 40000 kinds of material were extracted
from the AFLOWLIB database, and ML was used to determine
the material that has the highest goodness of fit with the target
characteristics.

The experimental results indicate that using virtual
screening, we can identify the materials that have analogical
electronic band structures and different crystal structures
or elemental compositions. The team analyzed the
performance of PbTiO3 DSSC. The test of PbTiO3 is a
good representation to demonstrate how a non-obvious but
promising new material can be identified through materials
informatics successfully.

Training ML models to predict material properties directly
can not only improve the screening process, but also design the
relevant components of the material directly. Thus, materials
that haven’t been explored previously can be preferentially used
for experimental research. This team’s experiments validated the
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FIGURE 3 | Classification of molecular modeling methods and its applications in the field of catalysis.

FIGURE 4 | (A) Distribution of PCE molecules in the database. (B) Schematic representation of molecules. (C) Testing of the deep learning model using images as
input. (D–F) Testing results of different ML models using descriptors as input. Reproduced from Sun et al. (2019) with permission from Copyright Scientific Publishers.

powerful usages of descriptors, which makes it possible to apply
virtual screening methods to identify various materials in large
databases quickly and efficiently.

The experimental results indicate that using virtual screening,
we can identify the materials that have analogical electronic

band structures and different crystal structures or elemental
compositions. The team analyzed the performance of PbTiO3
DSSC. The test of PbTiO3 is a good representation to demonstrate
how a non-obvious but promising new material can be identified
through materials informatics successfully.
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FIGURE 5 | (A,C) Correlations of FF and PCE versus 1H. (B,D) Correlations of FF and PCE versus 1L. Theoretically predicted versus experimental PCE for the
testing set (30 molecules) (E) and all data points using the leave one out cross validation technique (F) for the GB model. It describes the importance of descriptors
for GB (G) and RF (H) models. (I) and LUMO (J) to the most important electronic transition versus 1H and 1L, respectively. Percentage of donor molecules
(PDonor) versus POrb in cases of occupied (K) and unoccupied (L) orbitals are depicted. Reproduced from Sahu et al. (2018) with permission from Copyright
WILEY-VCH Verlag GmbH & Co., KGaA, Weinheim.

Training ML models to predict material properties directly
can not only improve the screening process, but also design the
relevant components of the material directly. Thus, materials
that haven’t been explored previously can be preferentially used
for experimental research. This team’s experiments validated the
powerful usages of descriptors, which makes it possible to apply
virtual screening methods to identify various materials in large
databases quickly and efficiently.

Another application example in the field of solar energy
transformation with the help of ML was completed by Sun et al.
(2019). This team also focuses on the research and development
of organic photovoltaic (OPV) cells. The most important part
of this research and development process is still the design and
synthesis of photovoltaic materials. Besides, the characterization,
assembly and optimization of photovoltaic cells also matter.
However, a large number of experimental cycles are needed while
using traditional methods. The tedious experimental steps and
strict synthesis conditions make the development efficiency of
OPV extremely slow.

Basically, same as Taylor team’s research and development
ideas, this team use computing tools provided by ML to
extensively predict material properties. which can provide a
large database and extract the relationships between various
elements based on similarity search. Therefore, there is no need
to have a basic understanding of the chemical and physical

knowledge related to the characteristics, which saves a lot of
resources and time.

This team collected 1,719 kinds of materials that can be used
as OPV from existing literature as a database, including both
polymers and small molecules, which can make the obtained
models more versatile. Using deep learning in advanced ML
algorithms can extract features from the images of chemical
structures. The distribution of database information related to
the OPV donor material database is shown in Figure 4A, and
the schematic diagram of molecular expression is shown in
Figure 4B. However, the accuracy of experiment results is not
ideal. The main reason is that the number of samples in the
database is too small, which means it is too difficult to get enough
information to achieve high accuracy. Thus, it’s impossible to
achieve fully trained deep learning models. In addition, the input
of ML also includes two descriptors with different data sizes
and seven types of molecular fingerprints, which is easy for the
machine to access and predict PCE.

In summary, this team used four ML methods to screen
donor materials from a large amount of data to effectively
predict PCE of materials. Figure 4C is the test of the deep
learning model in which the image is used as input. After that,
the team conducted further experimental research on materials
with excellent characteristics. Figures 4D–F shows the results of
testing different ML models using SMILES, PaDEL, and RDKIt
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FIGURE 6 | (A) Variations of 1G(O*) and 1G(OOH*) on the 31 studied SACs. (B) and OOH* (C) adsorption. (D) The proportional relationships between the 1G(O*)
and BM-O. (E) The proportional relationships between the 1G(OOH*) and COOH*. (F) Comparison between DFT and predicted 1G(O*) values. (G) Random forest
model‘s feature importance for 1G(O*). Reproduced from Guo et al. (2019) with permission from Copyright (2019) American Chemical Society.

descriptors as inputs, respectively. Also, the research of the
connection between the molecular chemical structure of OPV
and PCE can speed up the design of new donor materials. Thus,
the development of high PCE and OPV can be accelerated.

Sahu et al. (2018) used AI to build a model in a similar
way, which can effectively predict the efficiency of organic
photovoltaic (OPV) based on its composition. They construct

PCE prediction model with using 13 important microscopic
properties of organic materials as descriptors. The experimental
data obtained is shown in Figure 5, among them, (a,c) show
that correlations of FF and PCE versus 1H, (b,d) show that
correlations of FF and PCE versus 1L, (e,f) verified the
theoretically predicted relationship between the PCE of the test
set (30 molecules) and the experimental PCE, and all data points
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FIGURE 7 | (A) Schematic diagram of the heterostructure configurations for overall water splitting. (B,C) The linear relationships between adsorption free energies.
(D,E) The relationships of the rotational angle with ηHER and ηOER for each system. Reproduced from Ge et al. (2020) with permission from Copyright (2020)
American Chemical Society.

using the leave-one-out cross-validation technique for the GB
model. It describes the importance of descriptors for GB (g)
and RF (h) models. (i) and LUMO (j) to the most important
electronic transition versus 1H and 1L, respectively. Percentage
of donor molecules (PDonor) versus POrb in cases of occupied
(k) and unoccupied (l) orbitals are depicted. The above results in
Figure 5 indicate that it can be applied to high-throughput virtual
screening of excellent new donor molecules for high-efficiency
OPVs, and greatly saves calculation and time.

The combination of AI and experimental methods makes AI
an effective auxiliary tool to guide experiments. AI has very
promising development prospects in evaluating large quantities
of materials and predicting material properties quickly.

AI in Hydrogen Peroxidation Catalysts
The electrochemical method which partially reduces O2 to
H2O2 (O2 + 2H/e− → H2O2) is an effective way to produce
hydrogen peroxide. However, since different proportions of the
adsorption reaction intermediate can affect the balance between
the activity and selectivity of the catalyst. High activity tend
to occur the four-electron oxygen reduction reaction (ORR),
which resulted in low selectivity. Therefore, we urgently need to
develop an electrocatalyst with both high activity and selectivity
for hydrogen peroxide. Guo et al. (2019) screened a single-atom
catalyst (SAC), and further used ML technology to explore the

activity and selectivity of SAC (Figures 6A–E). The proportional
relationships between the 1G(O∗) and BM-O is shown in
Figure 6D, and the proportional relationships between the
1G(OOH∗) and COOH∗ is shown in Figure 6E. Figure 6A
shows the variations of 1G(O∗) and 1G(OOH∗) on the 31
studied SACs. And Figures 6B,C show the weight of four
variables in O∗ (b) and OOH∗ (c) adsorption, respectively.
They spin-polarized DFT computations were performed using
the Vienna ab initio simulation package (VASP) and built a
ML model, selected eight feature descriptors, including d/p
orbital electron number (edp′ ), oxide formation enthalpy (Hf.ox)
(O’Connor et al., 2018), electronegativity (Nm), electron affinity
(Am) and the first ionization energy (Im) of the central atom,
the number of coordinated N atoms (Nn), the electrons negative
sum (SNm) and distance ratio (Rd) of adjacent C and N
atoms to explore the relationship between 1G (O∗) and the
intrinsic descriptor of the SAC catalyst. The comparison between
DFT and predicted 1G(O∗) values is shown in Figure 6F,
and random forest model’s feature importance for 1G(O∗)
is shown in Figure 6G. ML reveals the reasons for the
difference between selectivity and activity of SAC and guides
the discovery of a more stable and efficient SAC for the
production of hydrogen peroxide. It can be seen that ML
can greatly help to establish the relationship between material
structure and properties.
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FIGURE 8 | (A–K) Stable adsorption sites with bridge NiNi. (L) the relationship between the bond number of Ni and 1GH. Reproduced from Hu et al. (2019) with
permission from Copyright Frontiers Media S.A.

Transition metal sulfide (TMDC) has been widely used in
solar batteries, lithium ion batteries and catalysts (Wang et al.,
2012), which have good electrical conductivity and catalytic
performance. But they do not perform well in the electrocatalytic
process of OER\HER. Ge et al. (2020) tried to predict the
structure of new materials by optimizing the descriptor and
combining density functional theory.

Ge et al. (2020) used LASSO algorithm to select characteristic
descriptors and proposed the prediction equation of catalytic
performance. That dramatically improved performance
may be achieved by combining two independent TMDC
while optimizing such descriptors as rotational angle, bond
length, distance between layers, and the ratio of the bandgaps
of two component materials can provide. Thereby, they
avoided complex experiments or expensive DFT calculations.
Subsequently, it becomes easier to predict the catalytic
performance of HER/OER in TMDC heterostructures.
Relying on ML technology, we could save a lot of time
and cost for material performance prediction and structure
modification. Figure 7A is Schematic diagram of the 0◦-
rotated heterostructure MoS2/WS2 configurations for overall
water splitting. Purple represents the atom of Mo, yellow
represents the atom S, and blue represents the atom W,
respectively. Figures 7B,C shows the linear relationship
between adsorption free energy (b)1G∗OH and (c)1G∗O
and 1G∗OH. Figures 7D,E shows the HER and OER
overpotential between different materials. The team found

that, by rotating the heterojunction structure, the catalytic
performance can be significantly improved. When the rotation
angle is 300◦, both ηHER and ηOER will reach their optimal
state. This is the best performance of water catalyst they
discovered so far.

Similarly, in order to develop a highly active and highly
selective electrocatalyst for oxygen reduction and oxygen release,
Liu et al. (2020) summarized the method of designing accurate
descriptors, and found varieties of Descriptors can improve the
ability to predict material properties by ML and high throughput
computing to develop new and different catalytic materials.

AI in Water Electrolysis Catalysts
The energy crisis and environmental problems are getting worse
and worse, fossil fuel storage is decreasing. Thus, hydrogen
plays an increasingly important role as the cleanest renewable
energy source. At present, water electrolysis is the most effective
method to produce hydrogen. But the cathode materials
require mostly expensive metals, which are not suitable for
large-scale applications. This promotes people to look for
other cathode materials with rare earth-rich elements. NixPy
with good stability and high activity has excellent hydrogen
release reaction potential and has great development prospects.
However, its crystal surfaces have diverse active sites, resulting
in the difficulty to understand the reactions at the atomic
level. Hu et al. (2019) used Artificial Neural Networks and
Support Vector Machine to explore the properties at the
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FIGURE 9 | (A) The operation mode of artificial neural network. (B) Unsupervised visualization of the data sets features with k-means clustering (right) and
t-distributed stochastic neighbor embedding (left). (C,D) Loss and mean absolute error metrics of the used ANN plotted over the calculated epochs for the training
set (black) and the validation set (magenta). (E) Metrics overview for all methods. Reproduced from Palkovits and Palkovits (2019) with permission from Copyright
(2019) American Chemical Society.

atomic level, and established a clear relationship between
the active site and the bond length properties at the atomic
scale. During the calculations, self-consistent periodic DFT
was adopted by generalized gradient approximation with
Perdew-Burke-Ernzerhof exchange-correlation functional. The
plane-wave ultrasoft pseudopotential method, describing the
ionic cores of Ni-3d84s2and P-3s33p2, were represented the
electron-ion interaction in reciprocal space. The Broyden–
Fletcher–Goldfarb–Shanno (BFGS) scheme was selected as the
minimization algorithm. The results shown in the Figure 8
provide guidance for the synthesis of NixPy, greatly reducing
the calculation cost and providing approaches to develop highly
catalytically active materials.

In this study of Prof. Regina Palkovits (Palkovits and Palkovits,
2019) on water oxidation catalysts, AI has also performed well.
In their study, the integrated use of artificial neural networks
(ANNs, which is a kind of imitation animal neural network
behavior characteristics, the algorithm of distributed parallel
information processing mathematical model) and other kinds
of AI algorithms, and adopt the method of ML to evaluate
performance and to predict (Figure 9A), and using Pandas
package implements visualization processing of experimental

data from the data graph, an unsupervised algorithm is adopted
for data (Figure 9B) is used to reveal some of the structure of the
data set. Figures 9C,D shows the outcome of the training.

Then, they used three different ML models (Figure 9E) to train
and predict the electrochemical data set, arrange and transform
the data, apply them to supervise the learning algorithm, and
evaluate the three methods based on the test data. Their
experimental work shows that using more complex models does
not necessarily lead to more accurate prediction results, and the
accuracy of the models is related to the data itself.

AI in Microbial Fuel Cells
The increasingly serious environmental problems have caused
harm to human health and survival, so the research and
development in the field of biotechnology has become the
focus. Among them, the development of cheap, simple and
efficient biosensors is the key difficulty. Mathematical models
can be used to describe the MFC biofilm formation process
and the physicochemical effects, but when simulating complex
environments such as mixed microbial communities, the
parameters involved cannot achieve the expected results. With
the development of AI, ML, which can quickly process data and
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accurately build models, is increasingly used in MFCS. Lesnik’s
(Lesnik and Liu, 2017) team used artificial neural networks to
predict microbial fuel cell biofilm communities and bioreactor
performance. The Shi’s (Xu G., 2018) team used a stacked
denoising automatic encoder (SDAE) deep learning network to
predict the performance of a two-stage biofilm system based on
traditional anaerobic/aerobic processes. Cai’s (Cai et al., 2019)
team used GLMNET, RF, XGBOOST, NNET, KNN, and radial
kernel support vector machine algorithms to classify substrate
types from genomic datasets. The Mostafa Ghasemi’s (Ghasemi
et al., 2020) team uses fuzzy modeling techniques as modeling
techniques and particle swarm optimization (PSO) algorithms
to determine the best operating parameters to improve the
performance of MFC. It can be seen that the role of ML
technology in the field of biotechnology will become more
and more important.

CONCLUSION AND PERSPECTIVE

The application of AI in the field of materials, first of all,
overcomes the requirements of high experimental conditions to
a certain extent and makes up for the weakness of the existing
theoretical foundation. It can directly analyze and predict the
properties and microstructures of materials and discover new
types of material. AI can make up for the limitations of human
ability to analyze and process materials. Secondly, AI can reduce
the material development cycle and shorten the time required
for commercialization (Jose and Ramakrishna, 2018; Wang et al.,
2019). In the past, researchers need to read through hundreds and
thousands of relevant papers to adjust and improve experimental
parameters. They can only rely on manual classification and
summary to screen materials with required characteristics, which
consumes a lot of labor and time. Applying AI approaches
increase the efficiency via modeling and optimization without
increasing the cost (Zalesny, 2017; Bin Janai et al., 2018; Kaneko
et al., 2019). Hence, AI technology plays a significant role in
energy conversion and other fields.

The main challenges for the application of AI in the field of
materials prediction lies in the following aspects:

(1) In the development of AI application for materials
prediction, how can we choose appropriate features to
promote the further application efficiency of AI.

(2) Since the principle of AI is computational iteration,
experimental results can be more accurate with more
iterations. With more adequate the database, the model
accuracy can also be enhanced. Technologies such as 3D
printing or ultra-fast nanoparticle synthesis (Chen et al.,
2016a,c; Chen Y. et al., 2019) can accelerate the synthesis
of materials, and supply more effective data within a
certain period of time (Chen et al., 2016b, 2017). This can
accelerate the design and development of materials.

(3) The sources of the data are wide, heterogeneous and
complex. The unwarranted quality, incompleteness and
uncertainty of the information present difficulties and
challenges. How to properly handle the problem of

uncertainty, solve the problem of introducing noise
and bias, aggregate data from multiple sources and
different data sets into simplified searchable data, and
manage/analyze unstructured data are vital to simplify the
database of materials.

(4) In addition, current ML can only passively analyze the
potential relationship of data. Active learning will become
one of the future directions of ML (Wang et al., 2019),
through the collection and analysis of data, the optimal
hypothesis is simulated independently.

As a conclusion, AI is promising in material prediction.
Although, there are still multiple challenges to be overcome.
Summarize the above in the table below.

Difficulties Solution

In the development of material
prediction applications, AI could
predict too much. If only a rough
target is given, he will waste a lot of
time on unnecessary predictions

We need to think of a specific prediction
direction, prediction route, prediction
performance, etc. for the target material,
rather than giving a general concept

Because the principle of AI is
computational iteration, there are
many experiments, sometimes one
prediction is very slow

As the number of experiments increases,
the experimental results will become
more and more accurate. Using a more
adequate database can not only reduce
unnecessary trouble, but also improve the
accuracy of the model. We can increase
the speed of material processing after
prediction. Technologies such as 3D
printing or ultra-fast nanoparticle
synthesis can accelerate the synthesis of
materials and provide more effective data
within a certain period of time, which can
accelerate material design and
development

The data sources are wide,
heterogeneous and complex. The
unnecessary quality,
incompleteness and uncertainty of
the information bring difficulties and
challenges

In order to deal with such problems, to
solve the problem of introducing noise
and deviations, the aggregation of data
from multiple sources and different data
sets into simplified searchable data and
the management/analysis of unstructured
data are essential to simplify the material
database

ML can only be passive at present Through the collection and analysis of
data, the optimal hypothesis is simulated
independently, AI will have active learning

Lack of experience, the theoretical
basis is relatively weak

This is both an opportunity and a
challenge, we need a creative attitude,
we can gain experience from practice
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