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The sustainability and economic feasibility of modern biorefinery depend on the efficient
processing of both carbohydrate and lignin fractions for value-added products. By
mimicking the biomass degradation process in white-rote fungi, a tailored two-step
fractionation process was developed to maximize the sugar release from switchgrass
biomass and to optimize the lignin processability for bioconversion. Biomimicking
biomass processing using Formic Acid: Fenton: Organosolv (F2O) and achieved high
processability for both carbohydrate and lignin. Specifically, switchgrass pretreated
by the F2O process had 99.6% of the theoretical yield for glucose release. The
fractionated lignin was also readily processable by fermentation via Rhodococcus
opacus PD630 with a lipid yield of 1.16 g/L. Scanning electron microscope analysis
confirmed the fragmentation of switchgrass fiber and the cell wall deconstruction by
the F2O process. 2D-HSQC NMR further revealed the cleavage of aryl ether linkages
(β-O-4) in lignin components. These results revealed the mechanisms for efficient sugar
release and lignin bioconversion. The F2O process demonstrated effective mimicking of
natural biomass utilization system and paved a new path for improving the lignin and
carbohydrate processability in next generation lignocellulosic biorefinery.

Keywords: lignocellulosic biomass, lipid, organosolv, Fenton, formic acid, pretreatment, biomimicking processing

Abbreviations: F2O, Formic Acid: two-step Fenton:Organosolv; NMR, nuclear magnetic resonance; FE-SEM, field-emission
scanning electron microscope; AFEX, ammonia fiber expansion; DDG, dried distillers’ grains; 2D-HSQC, 2D-heteronuclear
single quantum coherence; NBUS, natural biomass utilization systems; TSB, tryptic soy broth; TMDP, 2-chloro-4,4,5,5-
tetramethyl-1,3,2-dioxaphospholane; GPC, gel permeation chromatography; RI, refractive index; THF, tetrahydrofuran; CEL,
cellulolytic enzyme lignin; AIL, acid insoluble lignin; ASL, acid soluble lignin; S2/6, syringyl unit; G2, guaiacyl unit; H2/6,
ρ-hydroxyphenyl unit; FA2, ferulate; pCA2/6, ρ-coumarate.
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INTRODUCTION

The demands for renewable energy have become urgent in recent
years due to the increases in greenhouse gas emissions and
various other environmental concerns associated with fossil fuel
consumption (Himmel et al., 2007). Lignocellulosic biomass has
been considered one of the most important sources of renewable
energy (Yuan et al., 2008; Hu and Ragauskas, 2012). Perennial
feedstock, such as switchgrass, could provide environmental
and economic advantages over the current corn-based ethanol,
considering the higher net energy gain and the fact that it
requires only marginal land use (Yuan et al., 2011). Despite
the potential it presents, lignocellulosic biomass conversion is
a more challenging process due to the recalcitrant nature of
biomass and the need to disrupt secondary cell wall structure
to release carbohydrate and lignin (Isikgor and Becer, 2015;
Balch et al., 2017).

To enable the cellulose for efficient hydrolysis, many
pretreatment methods such as steam explosion, diluted acid, hot
water, and organic solvents have been developed to overcome
the recalcitrance (Lau et al., 2009; Zhao et al., 2009; Lima et al.,
2013; Zhang Z. et al., 2016; Zhuang et al., 2016). Despite extensive
research, most of these pretreatment processes were developed
by solely considering the hydrolysis of carbohydrate, while
lignin is considered as a waste stream. Such a strategy poses a
significant challenge in the sustainability and economic feasibility
of lignocellulosic biorefinery. For lignocellulosic biorefinery
to be viable, all cell wall components need to be processed
into value-added products in a similar way to corn ethanol
refinery and petroleum refinery. For example, corn-ethanol
biorefineries produce multiple product streams, including
ethanol, dried distillers’ grains (DDG), and corn oil. Similarly,
petroleum refineries convert the entire crude oil feedstock to
multiple maximum-value products. Thus, a fundamental biomass
processing strategy is required to synergistically improve the
processability for both carbohydrate and lignin, to improve
net energy gain, and thus enhance overall sustainability and
profitability (Liu et al., 2018, 2019a). However, even though lignin
is the main constituent of the plant cell wall and has higher energy
content than cellulose, it has a recalcitrant complex structure with
plentiful aromatic moieties, which present significant challenges
for its potential use as a valuable resource for bioenergy and
biomaterial (Matsakas et al., 2018). As a consequence, efficient
biomass processing could not only improve the fermentable sugar
release but also maximize lignin (Xie et al., 2017b; Xu et al., 2019).

Many natural biomass utilization systems (NBUS) have
already evolved the capacity to co-process lignin and
carbohydrates (Wei et al., 2011; Xie et al., 2014; Wang et al., 2018).
One such system is white-rot fungi for biomass decomposition
(Quinlan et al., 2011; Wei et al., 2011). White-rot fungi have
a strong processing ability to overcome the recalcitrant lignin
barriers, deconstruct both carbohydrate and lignin, and process
all three components (i.e., cellulose, hemicellulose, and lignin)
of the plant cell wall. The strong redox network exploited by
white-rot fungi can effectively break down lignin for downstream
processing, and such a system could be mimicked to maximize
both carbohydrate and lignin processability. During the lignin

biodegradation process (Rouches et al., 2016; Qin et al., 2018),
white-rot fungi produce multiple types of reactive radicals by
both enzymes and Fenton reaction reagents, as well as organic
acid, such as oxalic acid to efficiently disrupt the lignocellulose
matrix (Rudakiya and Gupte, 2017; Kameshwar and Qin, 2018).
The integration of reactive radicals and organic acid can be
exploited to establish a new process for lignocellulosic biomass
conversion (Sun et al., 2016, 2017). The previous pretreatment,
by mimicking the Fenton reaction, was designed to focus on
the enzymatic hydrolysis performance of the lignocellulosic
biomass (Jung et al., 2015), while the lignin processibility
was not discussed. It is also reported that the combination of
sonocatalytic reaction and Fenton reaction exhibited enhanced
hydroxyl (·OH) radical generation and lignin degradation
(Ninomiya et al., 2013). The low molecular weight lignin could
be catabolized to central metabolites (Johnson and Beckham,
2015) and then converted to value-added products by microbial
organisms (Abdelaziz et al., 2016).

Formic acid is an effective reagent to depolymerize lignin into
low molecular-mass aromatics (Feng et al., 2016). As compared to
dilute acid and other leading pretreatment technologies, formic
acid can be used for lignocellulosic biomass treatment under
relatively mild temperature and conditions (Kim et al., 2016;
Zhang K. et al., 2016). Moreover, formic acid can be recycled
throughout the pretreatment process to reduce the reagent cost.
Formic acid can produce several reactive radicals, like HOO· and
·COOH, in the presence of hydrogen peroxide (Vel Leitner and
Dore, 1996; Davies et al., 2011). To mimic the redox environment
with multiple reactive radicals in the aforementioned white-
rot fungi, ferrous was also added with hydrogen peroxide
to produce hydroxyl radical via Fenton reaction, which is
critical for both lignin depolymerization and reduce cellulose
crystallinity (Barr and Aust, 1994; Sun et al., 2016). Therefore,
in this study, a biomimicking system was established by adding
formic acid, hydrogen peroxide, and ferrous to improve the
carbohydrates and lignin processability for bioconversion. The
pretreatment performance of the formic acid together with the
catalysis of low concentrations of Fenton reagent has been
first investigated for switchgrass. The combination of formic
acid and Fenton reaction mimic the natural conversion process
for lignocellulosic biomass by white-rot fungi. The mimicking
process can both guide the advancement of biorefinery design
and elucidate the mechanisms of natural processes. Moreover,
white-rot fungi can utilize both lignin and carbohydrate in
nature. It is critical to evaluate if such a bio-mimicking process
can help to address one of the most challenging issues in
biorefinery, the lignin utilization. We, therefore, extracted the
lignin from the F2O pretreatment using dioxane and evaluate the
potential of valorization by microorganism conversion (Pothiraj
et al., 2006; Lee et al., 2019). The results highlighted that
this biomimicking process can synergistically improve both
carbohydrate and lignin processibility in a similar way to white-
rot fungus. The lignin residues from biomass pretreatment are
always considered as waste (Pothiraj et al., 2006). Overall, the
Formic Acid: Fenton: Organosolv (F2O) pretreatment process
developed in this study could overcome the traditional refinery
challenges of low fermentable sugar yield and inefficient lignin

Frontiers in Energy Research | www.frontiersin.org 2 February 2021 | Volume 8 | Article 194

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/
https://www.frontiersin.org/journals/energy-research#articles


fenrg-08-00194 February 4, 2021 Time: 12:16 # 3

Li et al. Organosolv Biomimicking Biomass Processing

utilization. This study could thus open new avenues for
biorefinery design towards the co-utilization of carbohydrate and
lignin processibility.

MATERIALS AND METHODS

F2O Pretreatment Condition
Switchgrass was air dried and ground to pass through a 20-mesh
sieve, then stored in zip-lock bags before use. The pretreatment
was conducted in a 1 L reactor equipped with a condenser under
normal pressure. The reactor was filled with 10 g switchgrass
and 100 ml formic acid at 100.8◦C for 2 h on a benchtop heater
followed by the addition of 5 mL H2O2 (30%), and 0.5 mL 0.05 M
FeSO4. The mixture was cooked for 1 h and then another addition
of the two Fenton reagents was provided and the mixture was
cooked for a further 1 h.

After the first step pretreatment, formic acid was evaporated
under the rotary evaporator. The solids were filled with 100 mL
dioxane at 101.0◦C for 1 h. The pretreated mixture was cooled
at room temperature and centrifuged at 4000 rpm for 20 min.
The solids were then washed with dioxane three times until the
eluent was clear in color (Saha et al., 2019). The liquid was
evaporated by rotary evaporated until a small volume remained,
and dried up at 101◦C. A scheme of the F2O process is provided
in Supplementary Figure 1.

Enzymatic Hydrolysis
For enzymatic hydrolysis, 300 mg of pretreated solid and raw
material was placed in a 25 mL glass vial. The filter paper activity
(FPU) of Cellic CTec2 was 96 FPU/mL. To each vial we added
10 mL of sodium citrate buffer (pH 4.8), 0.05 mL (16 FPU/g
solid loading) CTec2, and 0.005 mL HTec2. The vials were kept
in a rotary incubator at 50◦C and 60 rpm for 120 h. The sugar
conversions were calculated by following previous studies (Jin
et al., 2012; Alonso et al., 2013; Liu et al., 2019b).

Lipid Fermentation and Lignin Extraction
Using F2O Lignin
Rhodococcus opacus PD630 was purchased from Leibniz Institute
DSMZ-German Collection of Microorganisms and Cell Cultures
(Braunschweig, Germany). Engineered R. opacus PD630_FA was
used in this study. A single colony of R. opacus PD630 was
inoculated in 10ml TSB medium at 28◦C for three days and then
inoculated into 100 mL minimal medium prepared as follows to
an OD600 4.0.

About 1.4g (NH4)2SO4 and 1.0 g MgSO4.7H2O were added
into 922 mL of ddH2O and autoclaved then cooled to room
temperature. Forty milliliter sterilized 50%(w/v) glucose, 1 mL
CaCL2.2H2O, 1 mL trace element solution, 1 mL stock A
solution, 35.2 mL 1.0 M phosphate buffer were added to the
solution and finalized to 1 L. Trace element and stock A solutions
were prepared according to the methods used in previous studies
by He Y. et al. (2017).

Formic Acid: Fenton: Organosolv lignin medium was dried
and dissolved in minimal medium (without glucose) with a solid

concentration of 30 g/L. The medium was autoclaved and then
the PH was adjusted to 7.0 for three times. R. opacus PD630
was cultured in the F2O lignin medium with an initial OD600
5 for 3 days with an additional fed batch for another 3 days. The
cells were harvested and lipid was purified through the hexane
extraction method described by Xie et al. (2017b).

Cellulolytic Enzyme Lignin Isolation
Extractives-free untreated switchgrass and F2O pretreated
switchgrass were balled milled in a dioxide vessel (50 mL)
containing ZrO2 ball bearings (10 mm × 10) for 2 h (5 min
grinding and 5 min break). The ball-milled biomass was
then hydrolyzed by enzyme mixtures composed of cellulase,
hemicellulase, and β-glucosidase [Cellic R© CTec2 (0.1 mL/g
biomass) and HTec2 (0.1 mL/g biomass) from Novozymes]
following NREL’s standard procedure “enzymatic saccharification
of lignocellulosic biomass” (Selig et al., 2008). The supernatants
were removed by centrifugation, and the solid residues were
hydrolyzed again under the same conditions with fresh
enzyme mixtures. The residue was extracted by 96% dioxane
at ambient temperature for 48 h. The cellulolytic enzyme
lignin (CEL) was recovered from the dioxane extracts using
a rotary evaporator, freeze-dried, and vacuum dried for
further analysis.

Nuclear Magnetic Resonance Analysis of
Lignin Fraction
The ball milled lignin samples (∼50 mg) were dissolved
in a mixture of DMSO-d6 and HMPA-d18 (v/v = 4:1) for
the 2D HSQC NMR analysis. A two-dimensional (2D) 1H–
13C heteronuclear single quantum coherence (HSQC) nuclear
magnetic resonance (NMR) experiment was performed at 300 K
using a Bruker Avance-III 500 MHz spectrometer equipped with
a 5 mm cryogenically cooled probe. The spectra were measured
with a spectral width of 11 ppm in F2 (1H, 2048 data points) and
190 ppm in F1 (13C, 256 data points). 64 scans and 1 s delay was
used for each sample (Yoo et al., 2017).

A stock solution of pyridine/CDCl3 (v/v = 1.6/1) was
prepared first. The chromium acetylacetonate (relaxation
reagent) and endo-N-hydroxy-5-norbornene-2,3-dicarboximide
(internal standard) were then added to the stock solution.
Lignin samples (25 mg) were dissolved in the solution mixture,
and then derivatized using 2-chloro-4,4,5,5-tetramethyl-1,3,2-
dioxaphospholane (TMDP). The 31P NMR spectra were acquired
using a Bruker Avance-III 500 MHz spectrometer. The following
parameters were employed in the NMR experiments: inverse-
gated decoupling pulse sequence, 1.2 s acquisition time, 25 s
pulse delay, 90◦ pulse angle, and 64 scans. The data were analyzed
using Mestrenova software (Hao et al., 2018).

Gel-Permeation Chromatography
The lignin samples (dried under vacuum at 40◦C overnight)
were acetylated with acetic anhydride/pyridine (1/1, v/v) at
ambient temperature for 24 h in a sealed flask under an inert
atmosphere. The concentration of the lignin in the solution was
approximately 2 mg/mL. After 24 h, the solution was diluted
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with ∼20 mL of ethanol and stirred for an additional 30 min,
after which the solvents were removed with a rotary evaporator
followed by rotary evaporation at 40 ◦C. Before gel-permeation
chromatography (GPC) analysis, the acetylated lignin samples
were dissolved in tetrahydrofuran (THF, 1.0 mg/mL), filtered
through a 0.45 µm filter, and placed in a 1 mL auto-sampler
vial. The molecular weight distributions of the acetylated lignin
samples were then analyzed on an Agilent GPC SECurity 1200
system equipped with four Waters Styragel columns (HR1, HR2,
HR4, HR6), an Agilent refractive index (RI) detector, and an
Agilent UV detector (270 nm), using THF as the mobile phase
(1.0 mL/min), with an injection volume of 20.0 µL. A standard
polystyrene sample was used for calibration. The number-average
molecular weight (Mn) and weight-average molecular weight
(Mw) was determined by GPC.

Field-Emission Scanning Electron
Microscope
The morphologies of the switchgrass biomass before and after
the F2O pretreatment were observed by an FEI Quanta 600F
Field-Emission Scanning Electron Microscope (FE-SEM; FEI
Company, Hillsboro, OR). The samples were prepared as
previously reported (Li et al., 2017). Briefly, the biomass was
firstly mounted on a sample stands and then coated with 10 nm
gold-The FE-SEM was operated at 5 kV accelerating voltage and
10 mm working distances.

Biomass Compositional Analysis
The cellulose, hemicellulose and lignin contents of the raw
and F2O treated switchgrass were determined following NREL
Laboratory Analytical Procedure (Sluiter et al., 2012). For
composition analysis, switchgrass was dried to the moisture
content of 5–10% (w/w). The sugars were analyzed by HPLC
(HPLC 1260 Infinity; Agilent Technologies, CA, United States)
equipped with an Aminex HPX-87P carbohydrate analysis
column (Bio-Rad Laboratories, CA, United States) and a RI
detector at 85◦C with HPLC grade water as the mobile phase at
a flow rate of 0.6 mL/min. The composition analysis was done in
three replicates. For all significance tests, a student t.test was used,
requiring a probability p-value < 0.05 to be significant.

RESULTS

Chemical Composition Changes in the
Solid Fraction
The pretreatment conditions have a significant impact on the
chemical component in biomass and thus further conversion
performance. The chemical composition changes in the solid
fraction from different pretreatment were first analyzed. As
shown in Figure 1A, for the hemicellulose, there were no
significant changes in pretreated biomass composition after only
dioxane treatment (organosolv) or combined dioxane and Fenton
reaction treatment (organosolv and Fenton) as compared to the
untreated biomass. However, when the switchgrass was treated
with formic acid and dioxane, the hemicellulose content reduced

to about 6.38%, indicating that the hemicellulose was almost
removed from switchgrass biomass (Figure 1A). A slightly more
efficient hemicellulose removal can be achieved with complete
F2O pretreatment comparting to only the formic acid and
dioxane treated group.

As for lignin, the results highlighted the same pattern as the
hemicellulose (Figure 1B). Efficient lignin removal was achieved
when the switchgrass was pretreated with formic acid and then
extracted with dioxane, with the solid fraction containing only
about 5% lignin (Figure 1B and Supplementary Figure 2).
Formic acid has been reported as an organosolv pretreatment
to remove 90% hemicellulose and 70% lignin from corn cob
feedstock through an 8 h reaction at 60◦C (Huang et al.,
2008). In the present study, the F2O process removed more
than 88% of the hemicellulose and 71% of the lignin. Overall,
the combination of formic acid with organosolv pretreatment
with or without Fenton reagents can effectively remove most
of hemicellulose and lignin and enrich the cellulose content
in the solid fraction. It is critical to evaluate the hydrolysis
efficiency of the solid fraction to determine the most effective
pretreatment conditions.

Fermentable Sugar Released From the
Solid Fraction
The enzymatic hydrolysis performance of the pretreated biomass
was evaluated as shown in Figure 1C. Compared to the
untreated biomass, the dioxane-only treated or Fenton-dioxane
treated biomass showed a very ineffective sugar release. The
poor performance of enzymatic hydrolysis could be caused
by the recalcitrance of lignocellulosic biomass, which indicates
that the Fenton reagent alone is not sufficient to release
the cellulose and hemicellulose from the lignin. Interestingly,
the glucan conversion of biomass treated with F2O is two-
fold higher than that treated with Formic acid-dioxane even
though their compositions were very similar, as mentioned
earlier (Figure 1C). Previous studies confirmed that formic
acid could cause cellulose to formulate, which decreases the
enzyme hydrolysis (Zhao et al., 2009). The higher enzymatic
hydrolysis efficiency of F2O pretreated switchgrass indicates
that radicals produced from the Fenton reagent might play
an essential role in reducing the crystallization of cellulose
and the inhibition of cellulose formylation, which increased
the processability of the cellulose by enzymes. Moreover,
enzymatic hydrolysis is also related to the cellulose crystallinity,
the degree of polymerization, and accessible surface area by
enzyme (Zhu et al., 2008). The efficient radicals from the
reaction between formic acid and Fenton reagents could have
impacted these factors, thus enhancing the performance of
enzymatic hydrolysis. Besides glucose release, F2O pretreatment
degraded most of the hemicellulose (Supplementary Figure 2).
As previously reported, in pretreatment the hemicellulose can
release into xylose and may be further degraded to furfural.
Formic acid may be formed when furfural are broken down
under high pretreatment severity (Dunlop, 1948). It should
be noted that the hemicellulose-derived compounds did not
seem to inhibit cellulose hydrolysis, considering the high
hydrolysis efficiency.
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FIGURE 1 | Removal of lignin and hemicellulose after different pretreatment methods. (A) hemicellulose; (B) acid insoluble lignin; (C) hydrolysis performance by
different pretreatment method. The error bars in the hemicellulose and hemicellulose composition analysis represent the standard deviation from three replicates. The
paired t test showed a significant difference between F2O and Raw with a p-value < 0.05 in the composition of hemicellulose, acid insoluble lignin, and hydrolysis
rate.

Lipid Fermentation Using F2O
Switchgrass Treated Lignin Residue as a
Carbon Source by R. opacus PD630
Rhodococcus opacus could accumulate lipid using suitable lignin
as substrates. Moreover, R. opacus can tolerate inhibitory
compounds from lignocellulosic biomass depolymerization and
degradation such as furfural and phenolics (Kurosawa et al.,
2015). To evaluate the efficacy of co-optimization of both
carbohydrate and lignin processability, bioconversion of lignin
residues from F2O pretreatment was carried out to produce lipids
using R. opacus. As shown in Supplementary Table 2, by the fed
batch fermentation, 6.02 g/L cell dry biomass and 1.16 g/L lipid
were achieved, while 19.20% lipid content (per cell dry weight)
was obtained. As reported by others studies, the lipid yield was
0.5 g/L by alkali-extracted lignin (He Y. et al., 2017), 72 mg/L
by Kraft lignin (Mycroft et al., 2015), and 32 mg/L by AFEX
lignin (Wang et al., 2019) through R. opacus fermentation. The
F2O lignin from the F2O process yielded 1.16 g/L lipid which
suggested easier processability of lignin by microorganisms, as
reflected in the study on from natural white-rot fungi which
originally inspired this examination of biomass utilization. This
higher lipid yield suggests that the F2O pretreatment process
delivered an easier digestibility of lignin for microorganism
utilization. Overall, F2O pretreatment has co-optimized both
lignin and carbohydrate processability and the efficient lignin
conversion could be due to the effective lignin depolymerization
by F2O pretreatment (Figure 4).

Biomass Morphology Change After F2O
Pretreatment
Field-emission scanning electron microscope was carried out
to evaluate the deconstruction of switchgrass biomass by F2O
pretreatment. Previous SEM analysis of formic acid treated

sugarcane bagasse showed a rough surface and increased the
enzyme accessibility (Sindhu et al., 2010). However, the cell
wall of switchgrass treated by diluted acid did not show that
obvious disruption compared to treated by the ionic liquid,
which also showed lower hydrolysis rate and performance
(Li et al., 2010). These results indicate that the sufficient
disruption of the cell wall is essential for the next step in
enzymatic hydrolysis. To evaluate the cell wall deconstruction,
FE-SEM was carried out to compare the switchgrass before
and after F2O pretreatment. As shown in Figure 2A, the
raw switchgrass biomass before the F2O pretreatment was
rod-like with smooth surfaces and suggested intact structures.
After the F2O pretreatment, the fibrils in the biomass were
found to be exposed toward the outer side (Figure 2B)
which indicated that the biomass has been deconstructed with
severe surface erosions. These visible changes in the biomass
structure could be caused by removal of hemicellulose and
lignin from the cell wall as well as the release of cellulose
fiber during the pretreatment (Jönsson and Martín, 2016).
The deconstructed structure after pretreatment could result
in an increase in the surface area, which could contribute
to the enhanced enzymatic hydrolysis of pretreated solids
(Kumar and Sharma, 2017).

Lignin Molecular Weight Decrease After
F2O Pretreatment
The changes in lignin molecular weight can both elucidate
the biomass deconstruction mechanisms and be indicative of
the residue’s capacity in bioconversion. Considering that the
microorganism could effectively utilize smaller lignin molecules,
effective lignin fractionation plays an important role in the
lignin fermentation performance. First, the molecular weight
from the lignin fraction after F2O pretreatment was measured.
As shown in Figure 3, the CEL isolated from raw switchgrass
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FIGURE 2 | SEM image for raw (A) and F2O pretreated (B) switchgrass.

feedstock showed Mn of 3617.9 g/mol and Mw of 8142.7 g/mol.
However, lignin collected from F2O pretreatment had a
number-average molecular weight (Mn) of 977.3 g/mol and
weight-average molecular weight (Mw) of 1564.8 g/mol. The
significantly decreased molecular weight confirmed that F2O
treatment can effectively depolymerize lignin from switchgrass.
Such efficient depolymerization contributed to the improved
hydrolysis efficiency and also enhanced lignin processability.
Correspondently, lignin from F2O pretreatment also has a
decreased polydispersity index 1.595 as compared to that of
CEL 2.275, which indicated a more uniform lignin fraction
(Figure 3). Detailed information from the GPC chromatograph
(Supplementary Figure 1) indicated that lignin residue collected
from F2O pretreatment has lower molecular weight fractions,
which was consistent with the improved lignin bioconversion.
The changes in molecular weight provide important insights into
lignin fragmentation. Previous organosolv pretreatment showed
high purity and low molecular weight sulfur-free lignin (Zhao
et al., 2009), which would provide high quality lignin for next step
engineering. Therefore, the lignin obtained from F2O has a low
molecular weight, which could be used as the optimal substrates
for bioconversion and would be used as a potential substrate for
lignin valorization to other products.

FIGURE 3 | GPC reveals the lignin depolymerization after F2O pretreatment.
Error bars in the figures represented the standard deviation of three replicates.

NMR Analysis Revealed Efficient
Depolymerization of Lignin After F2O
Pretreatment
2D HSQC NMR analysis was carried out to evaluate the
breakage of lignin interunitary linkages and changes in
lignin composition. Figure 4A showed the aromatic regions
of the HSQC NMR spectra including lignin subunits and
hydroxycinnamates. C-H signals in syringyl unit (S2/6), guaiacyl
unit (G2), ρ-hydroxyphenyl unit (H2/6), ferulate (FA2), and ρ-
coumarate (pCA2/6) observed at δC/δH 103.8/6.70 ppm, δC/δH
110.9/6.95 ppm, δC/δH 127.8/7.16 ppm, δC/δH 111.2/7.28 ppm,
and δC/δH 130.1/7.46 ppm, respectively, were used for the
semi-quantitative analysis. The semi-quantitative result of
each aromatic unit and inter-unit linkages are presented in
Supplementary Table 3. Fractionated lignin from switchgrass by
F2O pretreatment had a lower S/G ratio (0.11) as compared to
that of CEL from untreated switchgrass (S/G ratio 0.45). The
contents of S units were reduced by F2O pretreatment, while
the content of the H unit was increased after the pretreatment.
This result could be because the H units have higher β-O-
4 linkages and more easily cleaved during pretreatment, and
the small molecular weight molecules are extracted to the solid
fraction after first step pretreatment. The increased H- type
lignin could facilitate lignin consumption and thus promote the
lipid formation. A previous study has reported that the strong
oxidation activity of reactive radicals means they can decompose
the phenolate group (He W. et al., 2017). The opening of the
benzene ring within lignin would also be a reasonable way of
decreasing S units. The lignin in the pretreated solid residues
had lower pCA units than the CEL of switchgrass. As pCA is
involved in lignification, it has links within lignin monomers and
the formation of lignin-carbohydrate complexes (Wang et al.,
2013). The lower pCA in F2O treated switchgrass confirmed the
biomass fractionation.

Besides the aromatic units, lignin inter-unit linkages were
observed in the aliphatic HSQC regions. Major lignin inter-unit
linkages including β-O-4, β-5, and β-β were shown in Figure 4B.
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FIGURE 4 | 2D HSQC NMR spectra for (a) the ball milled lignin from raw switchgrass and (b) lignin from F2O processed switchgrass. (A) Aromatic regions. S,
syringyl; G, guaiacyl; H, p-hydroxyphenyl; FA, ferulate; pCA, p-coumarate. (B) Aliphatic regions.

The three inter-unit linkages (β-O-4, β-5, and β-β) were all
largely reduced by the F2O pretreatment. It indicated that F2O
pretreatment significantly decomposed the lignin structures by
cleaving these linkages. Overall, the effective linkage cleavage
accounted for efficient lignin depolymerization and co-optimized
carbohydrate and lignin processability. The increased H-unit
lignin, the fractionation of pCA, and the cleavage of lignin
interlinkages could contribute to the improved processability of
lignin and thus improved lipid fermentation performance.

31P-NMR Analysis Revealed Efficient
Deconstruction of Lignin After F2O
Pretreatment
The contents of the hydroxyl group in each lignin fraction
were determined by lignin phosphitylation followed by 31P
NMR analysis. Supplementary Table 4 shows the results of the
hydroxyl groups in the F2O fractionated lignin and the CEL
lignin from the raw switchgrass. The chemical shift regions
of the aliphatic OH, C5 substituted phenolic OH, guaiacyl
OH, p-hydroxy phenyl OH, and acid OH were assigned at
150.0–145.4, 140.0–141.5, 141.0–139.2, 139.2–138.0, and 136.5–
134.0 ppm, respectively (Pu et al., 2011). As presented in
Supplementary Table 4, the F2O pretreatment significantly
reduced the aliphatic OH groups in the lignin residue from
F2O pretreatment, compared with the 4.18 mmol/g aliphatic
OH in the control native lignin. Lower aliphatic OH content
would increase the cellulase adsorption affinity and binding
strength to lignin (Li et al., 2016), which is important during the
enzymatic hydrolysis. Guaiacyl and p-hydroxyphenyl hydroxyl
groups were largely reduced, while the C5 substituted phenolic
hydroxyl groups remained constant. In most studies, the

reduced aliphatic OH content is accompanied by an increased
phenolic hydroxyl group (Li et al., 2016). However, the phenolic
hydroxyl group decreased after F2O pretreatment (0.50 mmol/g)
compared to the raw switchgrass (1.15 mmol/g). As mentioned
before, the decreased phenolic hydroxyl could be caused by
oxidation of phenoxy groups which is consistent with the
significant decrease of S units. These changes also indicated the
depolymerization and destruction of lignin in switchgrass and
account for the improved lignin processability for bioconversion
by R. opacus.

DISCUSSION

By mimicking the natural lignocellulosic biomass degradation
of white-rot fungi, the present study developed a two-step
organosolv pretreatment (F2O) to achieve high processability of
both carbohydrates and lignin. Although biological processing
is used as an effective approach for lignocellulosic biomass
utilization, it takes a long time with ambient temperature,
reducing the pretreatment efficiency. To improve both efficiency
and reaction rate, we mimicked the mechanism of natural
lignocellulosic biomass degradation by white-rot fungi in a
way that stronger reagents and conditions were employed to
enhance the processability of biomass within a short period.
These reagents can be recovered and reused, which will reduce
processing costs.

The chemical composition, enzymatic hydrolysis, and lignin
conversion analyses were conducted to evaluate the performance
of the F2O process in a holistic way. The carbohydrate yield
in enzymatic hydrolysis is affected by the lignin content
in pretreated solid, and the accessibility of enzymes to the
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carbohydrate (Palonen et al., 2004). Acid insoluble lignin (AIL)
has been confirmed as a major inhibitor during the enzymatic
hydrolysis process (Zhai et al., 2018). After F2O pretreatment, the
AIL was almost entirely removed, enabling improved enzymatic
hydrolysis efficiency. Moreover, by mimicking the mechanism of
natural lignocellulosic biomass degradation of white-rot fungi,
the radicals produced during the pretreatment, such as HOO·

and ·COOH, could account for the improved deconstruction of
switchgrass fiber and increased porosity for better accessibility
of the enzyme, which would further enhance the performance of
enzymatic hydrolysis.

Lignin is considered an important renewable carbon source
for bioconversion into valuable bioproducts. However, the
complexity of lignin polymers and the inhibitors produced in
pretreatment makes it difficult for microorganisms to utilize
(Kumar et al., 2009). Biomimicking the natural degradation
process could be an effective approach to enhance the lignin
processability by tuning the lignin chemistry. Using F2O treated
lignin, efficient conversion from lignin to lipid were achieved
by fermentation using R. opacus PD630. The mechanisms
for improved lignin processability were illustrated through
GPC and NMR analysis. Results showed that F2O produced
lignin with a decreased molecular weight and improved
uniformity in molecular weight distribution, suggesting efficient
depolymerization of lignin by breaking the linkages. Further
31P NMR confirmed the breakdown of lignin polymers. Because
aliphatic and phenolic OH content indicate the presence of
condensed aromatic units (El Hage et al., 2009; Pu et al.,
2011), F2O pretreated lignin showed a decreased OH content,
indicating efficient lignin deconstruction. 2D NMR characterized
the structural changes of the F2O pretreated lignin. The
breakdown of β-O-4 linkages and decreased content of S unit
confirm the efficient lignin degradation, which is essential for
improved bioconversion.

Overall, by mimicking the biomass degradation mechanism
of white-rot fungi, the present study provided a new path
to enhance both the carbohydrates and lignin processability
by deconstructing the lignin-carbohydrate complex and
depolymerizing lignin. F2O pretreatment could be further
optimized by fine-tuning reaction conditions and reagent

usage to achieve complete utilization of carbohydrate and
lignin. Considering the more uniform lignin structure and
the fractionation, the lignin from the F2O process could also
be used to manufacture carbon fiber, asphalt binder modifier,
lignin nanoparticle, and other value-added materials (Li et al.,
2017; Xie et al., 2017a; Liu et al., 2019a). This biomimicking
strategy could have broad applicability for future research into
the bioconversion of lignocellulosic biomass to bioproducts.
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