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This paper presents an effective approach for the modeling and optimization of a smart
building integrated microgrid (BIM). The main objective is the development of a smart
building energy management system (BEMS) which is in charge of optimally controlling the
operation of a building-integrated-microgrid. More specifically, we consider a BIM
consisting of a roof-top solar photovoltaic, wind turbine, energy storage unit, electric
vehicle, micro-CHP, metering infrastructure, and loads. The BIM loads are used to satisfy
the electric needs of occupants, while operating flexibility of thermal loads, which include
building heating and hot water demand, are also considered. Emphasis is given to the
optimal performance of the BIM, where the objective is to ensure the power balance
between production and loads in the microgrid (electric and thermal). A centralized
algorithm is implemented for the power management of all components as well as
power exchanges with the electrical grid. The developed algorithm is tested through a
case study, where the effects of both loads and renewable resources’ variabilities on the
operation of the BIM are analyzed via numerical simulations.

Keywords: building integrated microgrid, control and optimization, electric vehicle, renewable energy, energy
management system

INTRODUCTION

Smart grid integration into buildings and different energy management methods have represented a
major challenge for new connecting buildings’ energy generation. Energy consumption in different
residential buildings is increasing due to the new trend of comfort requirement nowadays. Building’s
energy bills are consequently higher, which affects the householder’s financial potential. Microgrids
integrated to buildings with/without energy storage systems require different energy management
tools and methods based on the configuration of the energy system and on its efficiency, reliability,
and reducing the electricity cost from the grid. In the literature, several homes’ energy management
systems have been treated. In a study by Han et al. (2014) the authors presented the concept of smart
home energy systems based on ZIG BEE and PLC techniques with renewable energy integration. It
consisted of a new form of energy architecture based on communication blocks and measurement
blocks via Zig Bee applications from energy generation using a wind turbine and photovoltaic panels
connected to a home server related with the internet weather forecast data. The authors in
(Abdeltawab and Mohamed, 2015) developed a real time model predictive control for energy
management systems using a hybrid wind battery storage. The goal is to get the maximum net profit
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from the deregulated electricity market with constraints applied
on the daily number of cycles and the depth charging/discharging
of the batteries. Several MPC types have been tested in a real case
building in Edmonton, Canada. In (Valencia et al., 2016), the
authors formulated a robust energy management system for
microgrids with model predictive control by using the fuzzy
method for the prediction intervals due to the uncertain
nature of the wind energy. This method improved the
efficiency of the robust method combined with the diesel
generator as spinning reserve. In reference (Pellegrino et al.,
2016) authors studied the energy consumption management in
public buildings. The aim was to implement a new building
management system platform into existing buildings to manage
different energy devices and is open to future implementations
through a three-step application. Authors in (Carli and Dotoli,
2019) developed an algorithm for scheduling energy supplies
between smart homes with microgrids and home energy
managing systems for each one, based on time peak demand
and decentralized control. Their approach is implemented as an
iterative algorithm indexing the changing electricity time prices
able to send the renewable energy surplus to fill loads in other
houses in a coupling form over the time horizon. Reference
(Abdelrazek and Kamalasadan, 2016) developed a control
approach for managing the battery energy storage system
(BESS) based on photovoltaic capacity management and time
energy shifting to shave peak load demand. The algorithm
simultaneously optimized the PV firming with the energy time
shift. The system had been implemented with a real feeder
connected to the PV, the grid, and the storage system in the
south of the United States. Authors in (Byrne et al., 2018) focused
on managing energy storage systems to maintain and enhance
grid stability and reliability. The optimization was completed with
linear programming, where mixed integer linear programming
was applied to the BESS. Authors in (Shen et al., 2016) proposed
an energy management system for a microgrid, taking into
account the intermittent behavior of renewable energy sources,
electricity costs, and consumers’ load. They presented a stochastic
optimization-model-based two layers scenarios. A distributed
scheduling optimization framework for the power load of a set
of smart homes in discussed in (Joo and Choi, 2017). The
framework is formulated as a centralized optimization
problem that is decoupled in two-stage optimization.
Reference (Byrne et al., 2018) reviewed the energy
management tools for grid energy storage, defining
optimization techniques and the related architecture. Authors
in (Khalid et al., 2018) presented an energy-management-
framework-based demand side management and load shifting
approach to optimize the energy consumption of a smart home.
The sizing of renewable generators and energy storages in a
household, taking into account various pricing models, is
investigated in (Zhou et al., 2018). Authors in (Xu and Shen,
2018) proposed an optimal control strategy for managing a set of
energy stores with the aim of securing the balance among
generation and demand in a microgrid. Reference (Lee et al.,
2019) proposed a reserve power-procurement-approach-based
resilient energy management system. Authors in (Hou et al.,
2019) studied the scheduling of physical equipment using a

holistic approach. Furthermore, they developed a home energy
management system considering charging/discharging strategies
for both electric vehicles and energy storage systems. Reference
(Jiang et al., 2019) developed an energy management framework
for multi-microgrid systems integrating renewable sources.
Authors in (Cui et al., 2019) presented a sustainable energy
management for a cluster of buildings. The results
demonstrate the economic benefits of their framework. A two-
stage energy management approach to optimally schedule the
distributed energy resources and smart buildings is proposed in
(Jin et al., 2019). Reference (Luo et al., 2020) presented a home
energy management system to optimally schedule the operation
of home energy resources. Authors in (Tsioumas et al., 2020)
proposed a strategy based on integrated control of genetic
algorithms to optimally provide a balance among the
objectives. Authors in (Wu et al., 2019) proposed an
integrated architecture for residential multi-energy system.
Reference (Kannan et al., 2019) investigated an energy
management system to reduce building cooling load demand.
A transactive energy management framework for buildings in a
residential neighborhood was introduced in (Nizami et al., 2020).
Authors in (Chakraborty et al., 2019) addressed the problem of
scheduling thermostatic devices with the objective to minimize
power fluctuation and maximize users’ thermal comfort.
Reference (Lu et al., 2020) investigated the fundamentals and
business mechanisms of resource aggregators in the electricity
market. Authors presented a comprehensive overview of the
current state of the art mechanisms and an analysis of the
business strategies for resource aggregators. A forecasting
framework with the objective to support load aggregators to
predict the existing aggregated smart households’ demand
response capacity is reported in (Wang et al., 2020a).

The above literature discussion shows that previous works
present complex methods and models that are challenging to
implement in real scenarios and necessitate a computation time
requirement. Furthermore, some of the previous methods are
computationally intensive or not appropriate for real-time
implementation, or may generate suboptimal solutions.
Compared to previous works, the strength of this paper might
be summarized in proposing a reduced and accurate high-level
control framework able to offer optimal control of the operation
of the whole building integrated microgrid (BIM).

The main contribution of this paper can be summarized in
developing and implementing a smart building energy
management system with the capability of optimally
controlling the operation of a building-integrated-microgrid in
respect to standard living comforts, which are defined as electric
and thermal loads and the electric vehicle-charging load. A
control framework is formulated and implemented as a finite
horizon scheduling optimization problem for the power
management of all components, as well as power exchanges
with the electrical grid. A centralized algorithm is used to
optimize control of the operation of the BIM, with a focus on
power management, charge/discharge state of the energy storage
system and the electric vehicle, and the state of the micro-CHP.
This paper aims to spread smart grids’ use by proposing practical
energy management methods and control approaches that are
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easy to implement. These strategies may contribute to the
transition to active buildings. The challenge is to propose an
applied framework that allows efficient practical energy
management and accurate control of electric and thermal
loads. The proposed centralized control algorithm can be
considered as a practical solution to address the smart energy
management challenges in buildings. Moreover, it may be taken
as an applied strategy that might be effectively considered in
practical scenarios.

THE SMART
BUILDING-INTEGRATED-MICROGRID
MODELING
PV Module Generators
The PV module is modeled according to the following equations:

Ipv(t) � Isc,ref{1 − A[exp(Vmp,ref

BVoc,ref
) − 1]} + ΔI(t) (1)

Vpv(t) � Vmp,ref[1 + 0.0539log(Gin(t)
Gst

)] + μΔT(t) (2)

where,

A � (1 − Imp,ref

Isc,ref
)exp[ − Vmp,ref

BVoc,ref
] (3)

B �
Vmp,ref

Voc,ref−1

ln(1 − Imp,ref

Isc,ref
) (4)

ΔI(t) � γ(Gin(t)
Gst

)ΔT(t) + (Gin(t)
Gst

− 1)Isc,ref (5)

ΔT(t) � Tamb + 0.02Gin(t) (6)

where Isc,ref and Imp,ref are, respectively, the module short circuit
and the maximum power currents. Vmp,ref and Voc,ref are,
respectively, the maximum power and open circuit voltages of
the module. Gin and Gst are, respectively, the solar irradiation and
the standard light intensity.

The total power and voltage output of the PV modules are
given by:

Vpv, out(t) � βpv, sVpv(t) (7)

upv(t) � βpv, sβpv, pVpv(t)Ipv(t)ξloss (8)

where βpv, s and βpv, p are, respectively, the serial and parallel
number of modules.

Wind Turbine Generator
The power output of the wind turbine is given by:

uwt(t) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 v(t)< vc
Pr(av3(t) − b) vc ≤ v(t)≤ vr

Pr vr ≤ v(t)≤ vf
0 v(t)> vf

(9)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a � (1 + b)/v3r

b � (vc
vr
)3/[1 − (vc

vr
)3] (10)

Where v(t) is the expected wind speed at the hub height of the
wind turbine and Pr is the rated power.

Plug-In Electrical Vehicle Modeling
The electrical vehicle (EV) can operate under two main modes: in
the charging mode it can be considered as a load, while in the
discharging mode the EV can be regarded as a source of power.
This flexibility can participate in enhancing the operation and the
power management in the microgrid, especially during the
scheduling time horizon for the EV, by allocating the charging
and discharging periods. If we consider that the EV is equipped
with an energy control, this would enable the vehicle to
communicate through a smart metering infrastructure once
connected to the charging infrastructure. The EV can transmit
data related to battery capacity. The state of charge of the EV can
be expressed as follow:

SOCpev(t + 1) � SOCpev(t) + (ηev,chPpev,ch(t) − Ppev,dch(t)
ηev,dch

)Δt
(11)

where t ∈ [tAev tDev] is the scheduling time horizon, tAevand tDev are,
respectively, the arrival and departure times of the EV, Ppev,ch(t)
and Ppev,dch(t) are respectively the charged and discharged
powers, and, ηev,ch and ηev,dch are respectively the charging and
discharging efficiencies.

Battery Energy Storage System
It is worth mentioning that the energy storage system can be
charged directly from the renewable generators and/or from the
main grid. However, the energy storage system is discharged
mainly to satisfy the needs of the BIM and the EV. The charging
of the main grid is allowed only during a period of energy
shortage. The charging state of the storage system is given as
follows:

s(t + Δt) � s(t) + βChpCh(t)Δt − βDispDis(t)Δt (12)

where pCh(t) and pDis(t) are, respectively, the charged and
discharged powers at the instant t, βCh is the charging
efficiency, and βDis is the discharging efficiency.

Loads
We assume in this paper that the load includes electric and
thermal loads. The thermal load is defined as the desired hot
water and preferred building temperature. This will allow for
assessing the effects of the thermal loads on the operation of the
BIM. It is assumed that the required thermal power is ensured by
the micro-CHP. The main objectives can be summarized by
controlling the consumption patterns while maximizing the
use of the local available renewable energy production,
smoothing the load profile, and minimizing the cost of the
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energy purchased from the main grid. The temperature state of
the water storage is given as follows:

Tst(t + Δt) � Tst(t) + qcold(t)
qT

(Tcold(t) − Tst(t))

+ uth
chp(t) − uth

air(t)
qTCwater

(13)

where qT is the water storage volume, Cwater is the specific heat of
water, and Tcold(t) is the temperature of cold water.

The building temperature is defined by the following equation:

Tin(t + Δt) � Tin(t)e− Δt
RBIMCair

+ (RBIMu
th
air(t) + Tout(t))(1 − e−

Δt
RBIMCair) (14)

where Cair is the inside air’ heat capacity, RBIM is the thermal
resistance, and Tout(t) is the outside temperature.

BUILDING ENERGY MANAGEMENT
ALGORITHM

Control Algorithm
The BEMS aims to optimally control the operation of the BIM in
autonomousmode or by connecting the BIM sub-systems and the
high-level central controller. The BEMS is in charge of collecting
data and implementing forecasts of energy production and power
loads. Furthermore, it makes an interface of communication for
sending/receiving control signals to the BIM components. The
high-level BIM central controller manages the power flows by
accurately consenting the optimal operation of the BIM. The
main objective of the central controller is to provide a high-level
control to generate optimal set points for all components and for
the energy exchanges. The central controller decides the state of
the energy storage system (charging/discharging), the energy
exchanges with the main grid (selling/purchasing), EV state,
and the state of the micro-CHP.

The control algorithm operates using the receding horizon
scheme to project the behavior of dynamics and uncertainties in
the BIM and to provide a trajectory of future states and control
variables, fulfilling the optimal operation and its constraints. The
constrained optimization problem is solved over a prediction
time horizon based on updated data and a new optimal control
routine is re-calculated at every time step. Specifically, the optimal
control is determined at each prediction time slot, however only
the first step of control signals are applied. The control algorithm
is implemented using the following steps:

• At t � 1, initialize with the actual current state of the BIM
• Compute an optimal control sequence, for the selected

rolling optimization horizon, based on loads and
renewable energy for the next prediction periods

• Implement the first control period operation
• Update the information available for the next period,

i.e., storage system state, loads, renewable energy power

generation. Then, move to the next sampling instant, and
repeat the same algorithm.

The forecasting accuracy may affect the performance of the
proposed receding algorithm. The adoption of very-short-term
predictions may minimize and mitigate the influences on the
optimal results. Further information on e forecasting accuracy
of the PV power output considering different time scales can be
found in (Li et al., 2019; Wang et al., 2020a; Wang et al., 2020b). A
day-ahead PV power prediction framework, combining a deep
learning approach and time correlation principles, is described in
(Wang et al., 2020a). Authors in (Wang et al., 2020a) presented a
minute solar irradiance prediction model considering the real-time
surface irradiance mapping method to attain higher prediction
accuracy. A PV-load decoupling model is investigated in (Li et al.,
2019) to increase the performance of customer baseline load
estimation considering distributed photovoltaic systems.

Objective Function
The objective function is formulated to satisfy the comfort of
occupants in terms of desired indoor temperature and charging
the EV. In addition, the objective function considers the operation
of the storage system around a reference value to ensure the quality of
service and to minimize exchanges with the main grid, aiming to
increase the use of local renewable energy production. The
optimization problem is formulated as a multi-objective
optimization problem subject to quadratic cost function where the
objective function includes fourmain parts. The first part aims to track
the temperature reference signal of the building, defining the thermal
comfort of the occupants, while the second part aims to maximize the
stored energy. The third part aims to minimize interaction with the
main grid and give priority to the use of renewable energy produced
locally. The last objective aims to minimize the maximum divergence
from the desired departure state of the EV.

The objective function to be minimized in defined as follows:

J � ξ∑T
t�1

(Tin(t) − Tin(t))2

− θ∑T
t�1

(s(t))2 + λ∑T
t�1

((ug ,p(t))2

+ β(SOCpev(tdep) − SOCpev(tdep))2

(15)

Where Tin(t) is dynamic reference state representing the desired
temperature of the BIM, SOCpev(tdep) is the desired EV departure
state, and ξ, θ, λ, and β are weighting factors.

State Equations and Constraints
The predicted power balance Δ~ubal(t) of the BIM is given by the
following equation:

Δ~ubal(t) � uwt(t) + ppv(t) + uelc
chp(t) − lnc(t)

� ug ,s(t) + pCh(t) + Ppev,ch(t) − βDispDis(t) − ug ,p(t)
(16)

where ug,p(t), and ug,s(t) are, respectively, the power purchased
and sold from/to the electric grid, and uelcchp(t) is the electric power
output of the micro-CHP.
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The energy storage system is constrained by capacity limits:

smin ≤ s(t)≤ smax (17)

pch, min ≤ pch(t)≤ pch, max (18)

pDis, min ≤ pDis(t)≤ pDis, max (19)

pDis(t)ppch(t) � 0 (20)

The battery of the EV is constrained by capacity limits.

socmin ≤ soc(t)≤ socmax (21)

Ppev,chmin ≤Ppev,ch(t)≤Ppev, chmax (22)

Ppev,dchmin ≤Ppev,dch(t)≤Ppev, dchmax (23)

Ppev,ch(t)pPpev,dch(t) � 0 (24)

The electric power consumed in the BIM is constrained by
upper and lower bounds:

lnc,min ≤ lnc(t)≤ lnc,max (25)

The desired hot water and building temperatures are limited
by preference bounds:

Tst,min ≤Tst(t)≤Tst,max (26)

Tin,min ≤Tin(t)≤Tin,max (27)

The electrical and thermal power outputs of the micro-CHP
are limited:

uelc
chp(t) �

ηel
ηth

uth
chp(t) (28)

uth
chp,min ≤ u

th
chp(t)≤ uth

chp,max (29)

uelc
chp,min ≤ u

elc
chp(t)≤ uelc

chp,max (30)

RESULTS AND DISCUSSION

In this case study, the expected total electrical load is reported in
Figure 1, while Figure 2 displays the desired hot water load in the
BIM. The cold water temperature, outdoor temperature, and
indoor building temperature are stated in Figure 3. The water
storage volume is set to be 150 L. The rated electric and thermal
powers of the micro-CHP are set to equal, respectively, 3 and
5 kW. Furthermore, the micro-CHP unit is characterized by
electric and thermal efficiencies equal, respectively, to 0.3 and
0.5. The maximum capacity of the energy storage system available
in the BIM is assumed to equal 20 kWh. Furthermore, the water
storage temperature is assumed to range between 50 and 70°C
with an initial state equal to 60°C, whereas the building’s
temperature is set to follow the desired temperature signal
reported in Figure 3, with an initial state equal to 18°C.The
microgrid includes a wind turbine of 5 kW and a PV system of
1 kW composed of four high performance polycrystalline solar
PV modules of 250W each. The renewable power generation is
reported in Figure 4.

The multi-objective optimization problem has been solved
considering two scenarios. The first one considers giving the
priority to satisfying the comfort of the occupants, while the
second one aims mainly to give priority to maximize the energy
storage system state. Figure 5 reports the variation of the energy
storage state according to the two scenarios. In the first scenario
(ξ � β � 1, θ � 0.001), the energy storage system responds
actively by regulating its operation (charging/discharging
modes) according to the power loads. In the second scenario
(θ � 1, ξ � β � 0.001 ), the priority is given to maximize the
stored energy. It can be seen that the energy storage system is
mainly set to operate in charging mode.

We mention that the micro-CHP unit is dedicated to retaining
the water storage heated through its thermal power output. The
latter is set to feed the hot water demand and keep the building’s

FIGURE 1 | Expected total electrical load.
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FIGURE 2 | Hot water demand.

FIGURE 3 | Desired, outdoor and cold water temperatures.

FIGURE 4 | Renewable energy production.
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desired temperature. However, the electric power output that is
defined as a fraction of the thermal power is considered to
support the BIM in covering its electric load.

The optimal operation of the micro-CHP as defined by its
electric and thermal power is stated in Figure 6. It can be
observed that the micro-CHP reached its maximum capacity
only from 17:00 to 19:00; this is mostly because the operation of
the unit tracks the temperature reference signal as well as the hot
water demand, defining the standard comfort of the residents.
The proposed algorithm responds to the variation of the thermal
loads and regulates the operation of the unit to track the reference
signal.

The trend of the optimal building’s temperature is shown in
Figure 7. It can be seen that the desired temperature defining the
comfort of the occupants is satisfied. We mention that the initial
temperature state of the building is 18°C. Furthermore, the micro-
CHP unit must satisfy both constraints related to building
temperature and hot water. Results shown in Figure 6

validates the effectiveness of the proposed control strategy to
track the reference signal.

The optimal state of the energy storage system is expressed in
Figure 8. The energy storage system compensates the dynamics
and intermittent trends of renewable sources and loads, fulfilling
the electric load when possiblea. It is observed that the stored
energy level displays different tendencies that can be divided in
three parts: L1 � [8:00, 16:00], L2 � [17:00, 3:00], and L3 � [3:00,
7:00]. In intervals L1 and L3, the energy storage system is
charging energy according to the power balance in the BIM,
where the maximum stored energy attains 16 kWh, while in
interval L2, the energy storage system is set in discharging
mode until it reaches the minimum limit. This can be
explained by the presence of the plugin electric vehicle and
starting the charging process.

The charging state of the electric vehicle is expressed in
Figure 9. In this case study, it is supposed that the electric
vehicle operates only in charging mode and V2B option is not

FIGURE 5 | Variation of the energy storage state according to the two scenarios.

FIGURE 6 | Optimal state of the micro-CHP.
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permitted. In addition, the arrival time is set to be 17:00, while the
departure time is supposed to be 8:00. The energy purchased from
the main grid is shown in Figure 10. It can be seen that the BIM
starts purchasing energy from the main electric grid at 17:00. This
is mainly due to the presence of the electric vehicle and absence of
the PV system support. The microgrid ends purchasing energy
starting around 3:00, defining the full charge of the electric
vehicle.

The time-varying charging/discharging states of the energy
storage system are reported in Figure 11. The charging/
discharging modes mostly follow the resources’ availability and
the dynamics of the electric loads of the BIM. The main aim is to
maximize the use of the local renewable energy production. It can
be observed that the energy storage system is set in discharging
mode starting from 17:00, which is the arrival time of the electric
vehicle. Whereas, during daytime, the energy storage system take
advantage of the absence of the electric vehicle to store energy.

FIGURE 7 | Optimal building’s temperature.

FIGURE 8 | Optimal BESS state.

FIGURE 9 | Optimal PEV state.
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The time-varying total electric load dispatch in the microgrid
is expressed in Figure 12. It is shown that the total load is covered
mainly by the wind turbine and the micro-CHP with minor
contributions from the PV. Starting from 17:00, the microgrid
purchased a considerable part of its needs, and the storage system
is activated in the discharging mode to support in fulfilling the
total loads.

CONCLUSION

In this paper, we developed a smart BEMS to optimally control
the operation of a BIM in respect to standard living comforts,
which are defined as electric and thermal loads and the electric
vehicle charging load. Compared to previous works, the strength
of this paper might be summarized in proposing a reduced and

accurate high level control framework able to optimize control of
the operation of the whole BIM. The challenge is to propose an
applied framework allowing efficient practical energy
management and accurate control of electric and thermal
loads. The proposed centralized control algorithm can be
considered as a practical solution to address the smart energy
management challenges in buildings. Moreover, it may be taken
as an applied strategy that might be effectively considered in
practical scenarios. Emphasis is given to the optimal performance
of the BIM, where the objective is to ensure the power balance
between production and loads in the microgrid (electric and
thermal). A centralized algorithm is implemented for the power
management of all components, as well as for power exchanges
with the electrical grid. The main advantage of the proposed
algorithm lies in its ability to cope with the intermittent and
stochastic behavior of data of loads and generation. This paper

FIGURE 10 | Purchased energy from the main grid.

FIGURE 11 | The time-varying charging/discharging states of the energy storage system.
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aims to test and validate a reduced control algorithm and its
integration into a residential building through electric and
thermal optimization. Both electric and thermal loads are
satisfied mainly by the local energy production in 85%,
including the CHP production and the renewable energies.
The power purchased from the main grid was only 15%. The
findings validate the effectiveness of the suggested control
algorithm in managing and optimizing the operation of the
BIM. The proposed framework may be generalized in a large-
scale district by adopting other control schemes and
approaches like decentralized, team theory, multi-agent,
and distributed control. The forecasting accuracy can be
enhanced by adopting ultra-short-term predictions to
reduce the influences of the random and intermittent
behavior of renewable energy sources. Further information
on the forecasting accuracy of PV power outputs considering

different time scales can be found in (Li et al., 2019; Wang
et al., 2020a; Wang et al., 2020b).
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