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Industrial control network is a direct interface between information system and physical
control process. Due to the lack of authentication, encryption, and other necessary
security protection designs, it has become the main target of malicious attacks under
the trend of increasing openness. In order to protect the industrial control systems, we
examine the detection of abnormal traffic in industrial control network and propose a
method of detecting abnormal traffic in industrial control network based on
autoencoder technology. What is more, a new deep autoencoder model was
designed to reduce the dimensionality of traffic data in industrial control network. In
this article, the Kullback–Leibler divergence was added to the loss function to improve
the ability of feature extraction and the ability to recover raw data. Finally, this model was
compared with the traditional data dimensionality reduction method (principal
component analysis (PCA), independent component analysis, and singular value
decomposition) on gas pipeline dataset. The results show that the approach
designed in this article outperforms the three methods in different scenes in terms
of f1 score.
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INTRODUCTION

Industrial control system (ICS) is a highly complex integrated system that provides services to people
through the coordination of various critical infrastructures. For example, smart grids, oil and gas,
aerospace, transportation, and other critical infrastructure are all part of ICSs [Zhichen (2017); Inoue
et al. (2017)]. Therefore, the safety and security of ICSs are vital to national security [Anton et al.
(2018); Wang et al. (2016)].

The early ICS was a relatively independent and isolated system, maintaining a separate
relationship with the external Internet [Garg et al. (2019)]. The functionality and
controllability of ICS were its main concerns. However, with the rapid development of
network and information technology, ICS gradually develops toward a networked, open
architecture (Vávra and Hromada (2017)). This provides a convenient method for hackers to
attack ICS by network, resulting in the network security of ICS having huge security risks. For
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example, Stuxnet in 2015 and widespread power outages in
Ukraine and Venezuela in 2019 were all caused by hacking
attacks on industrial infrastructure. As can be seen from these
industrial network security incidents, the tentacles of hackers
have extended to the field of industrial control.

Although the IT community has considered the security of
critical infrastructure, efforts to develop security solutions for
ICSs remain limited. Traditional network security cannot provide
effective guidance for ICSs because the traditional network
security and ICSs security problems are quite different
(Alguliyev et al. (2019); Martins et al. (2018)). Therefore, it is
necessary to build a strong anomaly detection mechanism for
ICSs under an open environment.

For the special case of ICSs, different anomaly detection
methods are proposed. The behavior-based abnormal detection
model realizes the recognition of abnormal data by modeling
normal data and judging the deviation degree between current
behavior and normal behavior by designing distance model (Lai
et al. (2019); Huda et al. (2018)). The learning-based abnormal
detection model realizes the recognition of normal data and
abnormal data by learning the characteristics of all data Anthi
et al. (2020). But these methods only model specific types of
attack data; such techniques cannot identify new types of
attacks. In addition, most of the existing research is aimed at
a specific industrial control environment and lacks some
universality.

Most importantly, the existing literature fails to consider the
problem that the length of traffic data in ICSs is not fixed. Most of
them are based on the industrial control data after complex
processing, which will greatly reduce the efficiency of
industrial control anomaly detection. Because of the higher
data dimension, the training speed and recognition accuracy
of the model will be greatly reduced.

Aiming at the special situation and existing problems of ICSs,
in this article, we propose a traffic data dimension reduction
method that can handle variable-length data, and a new loss
function is designed to speed up the processing speed. Finally,
the decision tree is used as a binary classifier to evaluate the
performance of the algorithm on a real industrial control
dataset.

The main contributions of this article are as follows:

1 A new model of autoencoder is designed. The model can not
only accelerate the speed of feature extraction but also extract
more key information.

2 The accuracies of anomaly detection and F1 are improved by
using the new dimension reduction method and decision tree
classifier.

3 A generic model is developed that can be used for different
critical infrastructures and improve the performance of
identifying abnormal data.

The rest of this article is organized as follows. The related work
is presented in Section 2. The deep autoencoder algorithm is
studied in Section 3. The dataset is described in Section 4. The
contrast test is presented in Section 5. And conclusions are drawn
in Section 6.

RELATED WORK

With the development of computer technology and network
technology, the importance of ICSs is becoming increasingly
prominent. Because ICSs did not consider the design of
security protection at the beginning, the network
interconnection exposes the industrial control network to
cyberspace, which undoubtedly brings huge security risks and
hidden dangers to the critical infrastructure controlled by ICSs
(Morris and Gao (2013); Ding et al. (2018)). In order to avoid the
occurrence of industrial safety incidents, the detection and
prevention of ICSs are very important.

The existing abnormal detection methods of industrial control
are usually based on the traditional network abnormal detection
methods. At present, the commonly used detection methods are
signature-based and learning-based technology (Das et al.
(2020)). Signature-based methods use fixed signatures to detect
known attacks. However, this method is inefficient in detecting
unknown or new attacks (Marian et al. (2020)). The learning-
based industrial control anomaly detection technology can
identify the anomaly data by extracting the key features of
similar samples as the classification basis. In 2019, Pang Ying
et al. (Pang et al. (2019)) realized the abnormal detection of
malicious traffic by signing the dataset of network traffic after
clustering. In 2020, the abnormal nodes were detected by using
the elliptic curve digital signature (Deepalakshmi and Kumanan
(2020)).

In contrast, learning-based industrial control anomaly
detection has higher performance because it can continuously
learn new knowledge and then realize accurate identification of
abnormal data (Halftermeyer (2020)). An effective anomaly
detection framework was proposed by optimizing the
parameters of support vector machines (Injadat et al. (2018)).
A classifier model of industrial control anomaly detection based
on support vector machine and C4.5 decision tree is established,
and the effective classification of industrial control data is
realized by taking advantage of the physical properties of the
system (Al-Madani et al. (2019)). Jeyaram (2017), YaLi Liu and
Ding (2018), Junjie Shao and Feng (2018), and Songqing and
Zhiguo (2018) combined flow anomaly detection technology
and adopted traditional machine learning method to further
improve the identification accuracy of industrial control
anomaly detection.

Although the above studies solved some problems related to
network attack detection in ICSs, most of them relied on complex
feature engineering to process data into fixed-length datasets.
This process is very complex and can seriously increase the
computational burden of the model. In addition, most of the
traditional dimensionality reduction methods are used in
industrial control anomaly detection, and the feature
extraction energy is poor. Therefore, this kind of algorithm
cannot extract the key features of industrial control data well
and cannot get good detection effect. Inspired by the above
article, this article proposes a new AE-based feature extraction
method, which extracts a new and efficient representation from
the original variable-length non-time series dataset so that the
classifier can accurately identify the attack data.
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DEEP AUTOENCODER ALGORITHM

The traffic data dimension of industrial control network is so
large that the task of traffic classification is carried out directly,
which is prone to the problem of dimension disaster. Therefore,
the autoencoder techniques (Hou et al. (2017)) were used to
reduce data dimensions without breaking the original data
semantics. The framework of malicious traffic detection system
is shown in Figure 1. The system consists of models of data
preprocessing, automatic encoder, and classifier.

In the part of data preprocessing, due to the diversity of data
sources, the character data should be carried out one-hot
encoding processing. Then, the data need to be normalized
and standardized. The normalized and standardized formulas
are shown as follows:

x1 � x − xmin

xmax − xmin
, (1)

x2 � x − μ

σ
, (2)

where xmin represents the minimum value of the data, xmax is the
maximum value of the data, μ is the average value of the data, and
σ represents the variance of the data. And x1 is the normalized
data, whereas x2 is the standardized data.

Autoencoder is an unsupervised method of data dimension
compression and data feature expression. The autoencoder is
composed of an encoder and a decoder, as shown in Figure 2,
where h(x) is the encoder. The encoder is composed of
multilayer neural network, which can reduce the data from
n dimension to m dimension. n is the dimension of the input
data and m is the number of neurons in the hidden layer.
Instead, r(h(x)) represents the decoder that is composed of
neural network symmetric with the encoder, restoring the data

from m dimension to n dimension. The goal of the
autoencoder is to optimize the loss function
L(x, y), y � r(h(x)). That is, by reducing the error in the
graph, the decoded data can recover the original data as far
as possible.

Remark 1. Autoencoder is a kind of feedforward neural
network; however, it differs from feedforward neural network.
Feedforward neural network is a kind of supervised learning
method, which needs a lot of marked data. Autoencoder is a kind
of unsupervised learning method, data need not be annotated, so
they are easier to collect. M is a key parameter. The value of m
should be unique in different applications. We can find the
optimal m by looking for the minimum value of the loss
function in different dimensions.

The Description of Autoencoder Algorithm
(1) Autoencoder automatically encodes the network to restore

compressed data by learning y � r(h(w) + b1) + b2 , where w
and b are the parameters for the algorithm to learn and h, r
are nonlinear functions.

(2) In order to restore the original data as much as possible, we
can define the objective function of the algorithm as

J(w, b) � ⎛⎝∑n
i�0

( y − x )2⎞⎠/n. (3)

The working process of autoencoder is shown in Algorithm 1:

Require: X: Raw input data
Ensure: Dimensionally-reduced data x* and encoded data Y;
1.Initial i � 0, j � 0, n � 100, batch size � 1000, total number
of data N and randomly initialize the neural network weights
w1,w2 and bias b1, b2;

FIGURE 1 | The system of malicious traffic detection.

FIGURE 2 | Autoencoder model.
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2.repeat
3.repeat

4.Extract batch size samples of the data X without putting
them back: xi;

5.The weight w1 and bias b1 were used to Encode the data
x: yi;

6.The weighted w2 and bias b2 were used to Decode the
data yi to obtain the approximate data y*i of the original data;

7.Calculate the loss L(xi, y*i );
8.Back propagation updates the weights and the bias

parameters wi � wi + zL/wi, bi � bi + zL/bi;
9.j � j + 1;

10.until j× batch − size ≥N ;
11.i � i + 1;

12.until i> n
13.X is putted into the encoder to get the encoded data Y;

Remark 2. The DAE is composed of multiple autoencoders, in
which the output of the previous encoder is the input of the next
encoder.

In this article, the network structure of autoencoder is shown in
Figure 3. This network structure is called DAE. The encoder is
composed of a three-layer neural network. And the number of layers
of the network decreases layer by layer. It changes the input data to
Z(z1, z2 . . . zm). The part of the decoder is also composed of a three-
layer neural network, in which the number of layers increases layer
by layer. And the dimension of the last layer is consistent with that of
the input vector. Specifically, the network parameters of the encoder
and decoder are completely independent. However, the number of
hidden units per layer of the neural network in the encoder is the
same as that in the decoder.

Traditional DAE uses Mean Squared Error (MSE) as the loss
function. This approach only considers the numerical value of the
input and output data, not the distribution of the data. In this

case, the extracted features do not include the distribution
characteristics between the data. This caused some data loss.
Kullback–Leibler divergence (KLD) is the asymmetry measure of
the difference between the two probability distributions
Goodfellow et al. (2016). Here, we add KLD to the loss
function. At this time, the distribution of the input data is the
true distribution, and the output data is the theoretical
distribution. KLD means the loss of information produced by
fitting a theoretical distribution to a true distribution.

In order to recover the speech and distribution
characteristics of the original data as much as possible on the
basis of removing redundancy and noise, the loss function
designed in this article is composed of MSE and KLD. MSE
is the difference between the generated data and the original

FIGURE 3 | Deep autoencoder model.

FIGURE 4 | The loss of the KDAE and DAE.
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data, and KLD is the difference between the generated data
distribution and the original distribution. Our goal is to
minimize the sum of MSE and KLD.

MSE � ⎛⎝∑n
i�0

(y − x)2⎞⎠/n,

KLD(P‖Q) � ∑
i

P(i)log2
P(i)
Q(i),

(4)

loss � MSE + KLD, (5)

where Pi is the variance of the generated data in each batch andQi

is the variance of the original data distribution. The value of KLD
is always greater than 0 and KLD is equal to 0 if and only if the
two distributions are the same. We use it to extract distribution
information from the data.

The role of MSE is to make the value of decoded data as close
as possible to the input data. The functions of KLD are mainly to
make the distribution of decoded data as close as possible to the
distribution of the input data. After adding KLD to DAE model,
the DAEmodel becomes KLD-based DAE (KDAE) model, which
has better feature extraction capability. By constructing the
KDAE model, we can realize the dimensionality reduction of
the original data, extract the key features and distribution of the
original data, and reduce the noise of the original data. Through
analyzing Algorithm 1, we can see that the time complexity of
KDAE is O(n).

DATASET

In this part, the gas pipeline dataset proposed by the Critical
Infrastructure Protection Center at Mississippi State University
was used to test the performance of the proposed algorithm and
compare the algorithm with principal component analysis
(PCA) and other mainstream data dimensionality reduction
methods.

This dataset is the standard dataset of ICS by injecting attack
and capturing network data in the natural gas pipeline control
system. Apart from “normal” data, the dataset also includes
seven types of attack data. The seven types are original malicious
response injection (NMRI), complex malicious response
injection (CMRI), malicious status command injection
(MSCI), malicious parameter command injection (MPCI),
malicious function command injection (MFCI), denial of
service (DOS), and detection attack (RA). In the dataset,
each of the network data contains 27 marked features,
among which 26 are connection features and one is marked
to mark whether the data is normal or not. In the gas pipline
dataset, the proportion of normal samples is 62.9% and that of
abnormal samples is 37.1%.

CONTRAST TEST

To enable the machine to recognize the gas pipline dataset, one-
hot encoding technology was used to transform each column of

data that contains a string. After the data transformation, the
characteristic number is 35, and then each sample changes
from a 26-dimensional vector to a 35-dimensional vector. Then
the whole dataset was standardized and normalized using (1)
and (2). In order to ensure the accuracy of the experimental
results, all data in this article are the average values of the ten
repeated experiments. Each experiment randomly selects 15%
of the data from the dataset as the test set and the rest as the
train set.

Firstly, the preprocessed data reduced the dimension to 16 by
using the DAE model that only has BCE and the KDAE model
that has BCE and KLD, respectively. The number of hidden
neurons in the three layers of the encoder is 86, 64, and 32,
respectively. The optimizer used Adam training method. The
batch size is 1,000.

The loss variation of KDAE and DAE model is shown in
Figure 4. One of the models is DAE with MSE loss function and
the other is KDAE, whose loss function has MSE and KLD. In the
beginning, the loss of KDAE is higher than DAE because KDAE
adds the KLD item. Figure 4 illustrates that the model converges
faster at the early stage after adding KLD to the loss function.
From Figure 4, we can see that the loss value of KDAE is
significantly lower than the loss value of DAE when it finally
reaches stability. The overall convergence rate of the KDAE
model is higher than that of the DAE model. This shows that
the KDAE model has a better recovery effect on data. This
indicates that data extracted by KDAE are more representative
of the information of the original data than DAE and have better
feature extraction capability.

In order to test the performance of the classifier after
dimension reduction, the data was reduced to 22 and 16
dimensions, respectively, and then compared their effects with
neural network (NN), support vector machine (SVM), and
decision tree (DT) classification model. When the KDAE
model was used to reduce the data dimensions to 64, the
number of hidden neurons in the three-layer NN of the
encoder was 100, 86, and 64, respectively. When the KDAE
model was used to reduce the data dimensions to 16, the
number of hidden neurons in the three-layer NN of the
encoder was 64, 32, and 16, respectively.

In the NN, the optimizer used the Adam training method. The
penalty coefficient of the objective function in SVM is C � 20, the
parameters of the kernel is selected as RBF, gamma � 1, and the
maximum number of iterations is 2000. In the DT, the number of
DTs is 10, so N estimators � 10; the number of samples with the
least leaf nodes is 5, so Min samples leaf � 5.

In the prediction, the True Positive (TP), True Negative (TN),
False Positive (FP), and False Negative (FN) were used to
represent the number of normal samples judged as normal
samples, the number of abnormal samples predicted as
normal samples, the number of normal samples predicted as
abnormal samples, and the number of abnormal samples
predicted as abnormal samples, respectively. In order to
further test the performance of the classifier, recall, precision,
and F1 score are used to evaluate the classification performance of
the classifier. The definition of precision is
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precision � TP
TP + FP

. (6)

Recall rate is a measure of coverage, which is mainly used to
measure how many positive cases are divided into positive cases.
The formula of the recall rate is as follows;

recall � TP
TP + FN

. (7)

Accuracy and recall rates sometimes contradict each other, so
we need to take them into consideration. f1 score is the weighted
harmonic average of recall rate and accuracy. And it is a
comprehensive evaluation index.

f1 � 2 × precision × recall
precision + recall

. (8)

When the value of f1 score is high, it indicates that the experiment
has better results and the model is more effective.

At the beginning of this section, the KDAE and DAE models
reduce the data to 16 dimensions, respectively. Then we will use
the NN to see the impact of dimensionless data on classifier
classification performance.

As we can see from Table 1, datasets processed by KDAE have
higher f1 score. This indicates that the KDAE model has a
stronger feature extraction capability than the DAE model.

This also proves that KDAE is superior to DAE in noise
reduction.

By analyzing the change of the loss function, we can know that
compared with other dimensionality reduction methods, the
autoenconder dimensionality reduction method designed by us
can better recover the original data.

Then, we compare the KDAE algorithm with traditional
dimension reduction methods. Firstly, Table 2 shows the
classification effect of raw data in three classifiers. It can be
seen that the classification effect of untreated data in NN and
SVM is very poor. The reason is that the classifier fails to extract
the characteristics of the abnormal samples, so the abnormal
samples are mostly predicted to be normal samples.

Tables 3, 4 are the classification of the data reduced to 16 and
22 dimensions, respectively. To be specific, we use three kinds of
dimensionality reduction methods to compare the methods
proposed in this article. In Tables 3, 4, the highest f1 score is
generated by SVM. And it is obtained by the KDAE method. The
value of f1 score is 0.9613.

In addition, from Tables 2–4, it can be found that the effect of
classification has been significantly improved after the dimension
reduction of KDAE. This means that the KDAE method is not
only better than the traditional DAE method but also better than
other traditional methods.

In Table 5, we used the LSTM autoencoder method that was
proposed by Lai et al. (2019) to reduce the data to 16 and 22
dimensions, respectively. The classifiers of DT, NN, and SVM
are used to detect the performance of reduced data. The
precision, recall, and f1 score are significantly lower than the
value in Tables 2–4. This is mainly because gas datasets are
characteristic data. Before dimensionality reduction, we must

TABLE 4 | Detect data in 22 dimensions.

Decision tree Precision Recall f1 score

ICA 0.9515 0.951 0.95095
SVD 0.9518 0.951 0.9506
PCA 0.9469 0.946 0.9455
KDAE 0.953 0.952 0.9525
Neural network Precision Recall f1 score
ICA 0.9412 0.94 0.9393
SVD 0.948 0.947 0.9465
PCA 0.9395 0.938 0.9372
KDAE 0.95 0.947 0.9485
SVM Precision Recall f1 score
ICA 0.9468 0.946 0.9455
SVD 0.9518 0.951 0.9506
PCA 0.945 0.944 0.9434
KDAE 0.956 0.955 0.9555

TABLE 1 | The comparison of feature extraction abilities.

Precision Recall f1 score

DAE 0.9354 0.9352 0.9343
KDAE 0.9552 0.9551 0.955

TABLE 2 | Detection of raw data.

Precision Recall f1 score

Decision tree 0.9459 0.945 0.9446
Neural network 0.9376 0.936 0.9353
SVM 0.9503 0.95 0.9497

TABLE 3 | Detect data in 16 dimensions.

Decision tree Precision Recall f1 score

ICA 0.9564 0.956 0.959
SVD 0.9545 0.954 0.954
PCA 0.958 0.958 0.958
KDAE 0.96 0.958 0.959
Neural network Precision Recall f1 score
ICA 0.9516 0.951 0.951
SVD 0.95 0.949 0.948
PCA 0.9531 0.953 0.9528
KDAE 0.9552 0.9551 0.955
SVM Precision Recall f1 score
ICA 0.9601 0.96 0.956
SVD 0.9537 0.953 0.9526
PCA 0.9589 0.959 0.9589
KDAE 0.9615 0.961 0.9513

TABLE 5 | The detection of data reduced by LSTM autoencoder.

DT 16 NN 16 SVM 16 DT 22 NN 22 SVM 22

Precision 0.85 0.41 0.80 0.85 0.39 0.80
Recall 0.80 0.64 0.70 0.80 0.63 0.71
f1 score 0.77 0.50 0.63 0.78 0.48 0.64
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first use the word2vec encoding method to convert the data into
data that can be processed by LSTM. The data is then
dimensioned down by LSTM. In the process, some
important information is lost. Therefore, the method of
LSTM dimension reduction is not suitable for processing
such datasets.

At the same time, in Figure 5, each polyline represents the change
in f1 score of the data on different classifiers after being reduced by
different dimensionality reduction methods. It is shown that the red
line has the smallest change. And the range of other lines is very large.
This shows that the data reduced by KDAE can achieve good results
on various classifiers. Moreover, the KDAE-reduced data had the
highest f1 score on each classifier. From the above, we can conclude
that the KDAE-reduced data not only extracts the key features of the
original data but also eliminates redundancy and noise. This makes
the classification effect significantly improved. It shows that our deep
autoencoder anomaly flow detection system is efficient and has
practical value.

To further illustrate the effectiveness of the deep autoencoder
algorithm proposed in this article on a malicious traffic
monitoring system, the k-fold cross-validation was used to
construct a receiver operating characteristic (ROC) curve to
evaluate the performance of our anomaly detection system. In
this case, the classifier is the NN. The data is reduced to 16
dimensions by using KDAE. And K � 6.

Figure 6 illustrates that the average area obtained by six cross-
validations is 0.89 and the worst is 0.55. At the same time, the
ROC curve of the raw data under the same classifier is given in
Figure 7. In the ROC curve, the average area of raw data is 0.87
that is much lower than the number in Figure 6. This indicates
that data processed by KDAE have better performance when used
for classifier classification. The classifier can identify the
abnormal traffic more stably.

In Table 6, we compare the time required for each process of
different dimensionality reduction methods. Table 6 shows that
the time difference of different algorithms in classification is not

big. However, the conversion time of the KDAE algorithm in
dimension reduction is 53.44s, which is significantly higher than
other algorithms. Combined with the previous comparative
experiments, we can know that the KDAE algorithm improves
the identification accuracy of attack samples on the basis of
lost time.

CONCLUSION

In this article, a new industrial control flow anomaly detection
model was proposed, which reduces dimension by improved deep
autoencoder. The new algorithm has verified the performance of
the gas pipeline dataset. And the new algorithm was compared

FIGURE 6 | Receiver operating characteristic of 16 dimensions.

FIGURE 7 | Receiver operating characteristic of raw data.

FIGURE 5 | The comparison of F1 Score with different dimension
reduction methods.
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with the traditional methods of dimension reduction such as
PCA and singular value decomposition based on the classifier
such as SVM, random forest, and deep NN. Experiments show
that the algorithm of KDAE has good performance in
dimensionality reduction of industrial control network
datasets. Data processed by the KDAE algorithm can
significantly improve the performance of the classifier. This
will greatly improve the identification accuracy of attack data
in different detection models. And we prove that our algorithm
can obtain the best ROC scores and F1 score in different
classifiers.
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