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The reduction of energy usage and environmental impact of the built environment and
construction industry is crucial for sustainability on a global scale. We are working towards
an increased commitment towards resource efficiency in the built environment and to the
growth of innovative businesses following circular economy principles. The
conceptualization of change is a relevant part of energy and sustainability transitions
research, which is aimed at enabling radical shifts compatible with societal functions. In this
framework, building performance has to be considered in a whole life cycle perspective
because buildings are long-term assets. In a life cycle perspective, both operational and
embodied energy and carbon emissions have to be considered for appropriate
comparability and decision-making. The application of sustainability assessments of
products and practices in the built environment is itself a critical and debatable issue.
For this reason, the way energy consumption data aremeasured, processed, and reported
has to be progressively standardized in order to enable transparency and consistency of
methods at multiple scales (from single buildings up to building stock) and levels of analysis
(from individual components up to systems), ideally complementing ongoing research
initiatives that use open science principles in energy research. In this paper, we analyse the
topic of linking design and operation phase’s energy performance analysis through
regression-based approaches in buildings, highlighting the hierarchical nature of
building energy modelling data. The goal of this research is to review the current state
of the art of in order to orient future efforts towards integrated data analysis workflows,
from design to operation. In this sense, we show how data analysis techniques can be
used to evaluate the impact of both technical and human factors. Finally, we indicate how
approximated physical interpretation of regression models can help in developing data-
driven models that could enhance the possibility of learning from feedback and
reconstructing building stock data at multiple levels.
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INTRODUCTION

It is widely acknowledged that a lower environmental impact
from the construction industry and built environment is
crucial for sustainability and that this problem has to be
tackled on a global scale (Berardi, 2017). Carbon emission
reduction goals (i.e., decarbonisation) require pressing needs
be met, such as increasing energy efficiency in end-uses,
reducing demand, and providing a relevant quota of
energy supply by renewable sources. Energy efficiency
paradigms that consider the entire building life cycle
performance (Berardi, 2018) are emerging both for new
and existing buildings (e.g., Nearly Zero Energy Buildings,
or NZEBs) (D’Agostino et al., 2016). At the EU level, we are
working towards an increasing commitment towards
resource efficiency in the built environment (Dodd et al.,
2015) and the growth of innovative business opportunities
following circular economy principles (McKinsey, 2014),
because buildings are long-term assets. Built environment
sustainability strategies can be inscribed within the more
general (and rapidly growing) field of sustainability
transitions research (Köhler et al., 2019). Sustainability
transitions research focuses on the conceptualization of
radical changes that have to be compatible with societal
functions. For the construction industry, a
conceptualization is proposed by Thuesen et al. (2016),
identifying three generic knowledge domains: project,
product, and service. Further, methods such as life cycle
assessment are fundamental for the development of
innovative economic paradigms, such as Circular
Economy, in the built environment (Pomponi and
Moncaster, 2017), but the assessment of the sustainability
of products and practices through life cycle assessment is
itself a critical issue. In fact, there could be a large variability
in the way this method is currently used in practice (Pomponi
and Moncaster, 2018), creating difficulties in terms of
transparent comparability of results and performance
benchmarking. From a life cycle perspective, the
environmental impact of buildings should account for both
embodied (products and construction practices) and
operational energy consumptions. Both the measurement
of embodied energy and carbon equivalent of buildings
(De Wolf et al., 2017) and operational energy consumption
(de Wilde, 2017; Imam et al., 2017) represent critical (and
debatable) issues that can ultimately determine a relevant
“performance gap.” Finally, energy transition strategies have
to address complementarities (Markard and Hoffmann, 2016)
which are crucial for the co-evolution of built environment
and energy infrastructures (Junker et al., 2018; Dominković
et al., 2020). In this framework, empirically grounded and
tested methods that can help in standardizing the way energy
consumption data are measured, processed, and reported are
particularly valuable, because they can provide reliable
evidence, inform policies, and support decision-making
processes adequately. In the next sections, some
introductory examples in this sense will be given,
indicating the motivation for the review work.

BACKGROUND AND MOTIVATION

The energy modelling research community at present is
emphasizing the fundamental importance of open energy data
and models (Pfenninger et al., 2017; Pfenninger et al., 2018), and
we can envision an evolution towards systems of models
(Bollinger et al., 2018) created to tackle fundamental problems
in energy transitions, eventually exploiting soft-linking
approaches (Deane et al., 2012; Dominković et al., 2020). The
way energy consumption data are measured, processed, and
reported can be standardized in order to enable transparency
and consistency of methods at multiple scales and levels of
analysis, as well as to complement initiatives applying open
science principles in energy research (Openmod; Hilpert et al.,
2018). Some research projects in this direction have been
developed in recent years (CalTRACK; Jayaweera et al., 2013;
Miller and Meggers, 2017; Firth et al., 2018).

The methods proposed in these projects are empirically
grounded and could be useful in providing evidence regarding
innovative practices, services, and technologies. As an example,
providing robust and empirically tested methods is fundamental
if we think about issues such as “re-bound” (Herring and Roy,
2007) and “pre-bound” effects related to energy efficiency
practices (Sunikka-Blank and Galvin, 2012; Rosenow and
Galvin, 2013), that are determining a substantial difference
between simulated and measured performance.

Further, the methods proposed are data-driven, using
surrogate models, i.e., meta-models or reduced-order models
(Manfren et al., 2013; Wei et al., 2018; Westermann and
Evins, 2019). Surrogate models are approximations of detailed
simulation models that enable efficient computation (within a
given accuracy and temporal constraints)in, for example, design
optimization (Evins, 2013; Nguyen et al., 2014; Westermann and
Evins, 2019) and calibration (Coakley et al., 2014) and control
(Aste et al., 2017; Serale et al., 2018).

Further, surrogate models are flexible and can be used to link
design and operation phase performance analysis (Allard et al.,
2018; Tronchin et al., 2018a) in an integrated workflow (Manfren
and Nastasi, 2020). The choice of a specific surrogate modelling
technique depends on multiple factors (Koulamas et al., 2018;
Østergård et al., 2018). In this review work, we focus on
regression-based approaches that can be used from design to
operation phase energy analysis. The basic reasons for this choice
are its conceptual simplicity, availability of technical
standardization (ISO, 2013; ASHRAE, 2014), availability of
technical guidelines and protocols for field applications (EVO,
2003; FEMP, 2008), and availability of open software
(CalTRACK; Paulus, 2017). Other fundamental aspects, that
will be discussed later in more detail, include the scalability of
building stock analysis (Meng et al., 2020), the affinity with
variable-base degree days methods (Kohler et al., 2016; Meng
and Mourshed, 2017), and the possibility to perform analysis at a
utility scale (Acquaviva et al., 2015) or a city scale (Qomi et al.,
2016), including the assessment of the impact of users’ behaviour
(Oh et al., 2020). Finally, the possibility to analyse thermal,
electrical, and fuel demands with these methods opens up new
possibilities in terms of model soft-linking, for example, by using
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regression-based approaches to create energy demand scenarios
(e.g., considering technological evolution, climate change,
behavioural change, etc.) in multi-commodity systems models
(Adhikari et al., 2012a; Manfren, 2012; Kraning et al., 2014;
Dorfner, 2016; Nastasi, 2019), thereby supplementing open
science oriented approaches in energy research (Hilpert et al.,
2018).

LINKING DESIGN AND OPERATIONAL
ENERGY PERFORMANCE ANALYSIS AT
SCALE
Building performance can be studied by means of Key
Performance Indicators (KPIs) (Ghaffarianhoseini et al., 2016;
Kylili et al., 2016; Yoshino et al., 2017; Talele et al., 2018) that
aggregate a larger set of data in a single representative quantity. In
energy transition strategies for the built environment, the
efficiency dimension plays a key role (Abu Bakar et al., 2015).
From a techno-economic perspective (Fabbri et al., 2011; Aste
et al., 2013; Corgnati et al., 2013; Tronchin et al., 2014) the
analysis is generally concentrated on the trade-off between
performance indicators, such as primary energy demand and
investment and operation costs (Ferrara et al., 2018), following
definitions from technical standardization (ISO, 2017). However,
in order to enable an effective performance assessment, additional
indicators have to be considered regarding IEQ (Fabbri and
Tronchin, 2015; Manfren et al., 2019), RES on-site generation
and self-consumption (Kurnitski, 2013), load matching, and grid
interaction (Voss et al., 2010; Frontini et al., 2012). Further,
indicators are essential to address innovative solutions (Mancini
and Nastasi, 2019) and operation strategies for buildings aimed at
flexibility (Clauß et al., 2017) and relevant problems, such as soft-
linking simulation models with energy planning tools (Noussan
and Nastasi, 2018; Dominković et al., 2020). Indeed, the
scalability of analysis methods and tools up to district
(Adhikari et al., 2012b), city (Cipriano et al., 2017), and
regional scales (Aste et al., 2014; Kuster et al., 2019) is
fundamental to ensure the credibility of policies and practices.

For all these reasons, KPIs are essential to address building
performance problems in a wider sense (de Wilde, 2018),
especially when the goal is understanding performance
uncertainty and variability. These issues can be addressed,
from a computational perspective, by means of a parametric
and probabilistic analysis, used as an exploratory tool and for
optimization purposes (Tronchin et al., 2016; Østergård et al.,
2020). The importance of accounting for multiple performance
scenarios (Shiel et al., 2018), considering the impact of both
technical and human factors (Yoshino et al., 2017), is becoming
evident, and the Design Of Experiments technique is being used
in many cases for building energy performance simulations (Jaffal
et al., 2009; Kotireddy et al., 2018; Schlueter and Geyer, 2018;
Tronchin et al., 2018a). With respect to human factors
influencing performance, generally occupants’ comfort
preferences and behaviours (Menezes et al., 2012; Tagliabue
et al., 2016; Gaetani et al., 2018) are overlooked, even though
they can create a relevant gap between simulated and measured

performance. This fact can clearly undermine the effectiveness of
policies that have to propose techno-economically feasible
solutions and, at the same time, consider human behaviour
realistically (Herring and Roy, 2007; Rosenow and Galvin, 2013).

In conclusion, understanding the variability of building energy
performance outcomes, both in design phase simulation and in
actual operation, requires the definition of appropriate KPIs and
of parametric/probabilistic analysis strategies, involving multiple
input-output combinations. These analyses can be performed by
means of reduced order models, following the argumentation
reported in Introduction and Background and Motivation
regarding the necessity to address multiple problems and the
creating methods that are computationally efficient; in the
subsequent sections, we will discuss data and modelling
strategies in this direction. In Hierarchical Structure of
Building Energy Modelling Data, we analyse the hierarchical
structure of building performance data, while in Regression
Models in Design Phase Analysis and Regression Models in
Operational Phase Analysis we propose examples of regression
models for design phase and operational phase analysis.

Hierarchical Structure of Building Energy
Modelling Data
Building energy modelling data can be organized using a
hierarchical structure to improve the level of transparency in
modelling and the possibility to achieve reliable results. Examples
of hierarchical structures in building energy modelling data can
be found in EU legislation regarding the definition of cost-
optimal levels of performance (European Commission, 2012)
and in the EU Building Stock Observatory web portal
(Arcipowska et al., 2016). In the United States, technical
standardization was tested with the definition of reference
building models (Deru et al., 2011; Goel et al., 2014),
considering also costs of different technological options
(Thornton et al., 2011). Further, the use of hierarchical
structures in datasets for building energy modelling can be
found, for example, in studies about performance gaps (Imam
et al., 2017), automation systems’ efficiency (Aste et al., 2017), and
occupancy modelling (Gaetani et al., 2016). Additionally, we can
find examples of hierarchical data in multi-level calibration
frameworks (Yang and Becerik-Gerber, 2015) and in other
cases where macro-parameters (Calleja Rodríguez et al., 2013)
are used to facilitate and guide the uncertainty and sensitivity
analysis, or where they are used to support the definition of
archetypes (Korolija et al., 2013). In turn, the definition of
archetypes is essential for reference building analysis
(statistically representative buildings) and for parametric
studies, where an appropriate level of simplification is crucial
to enable a correct analysis process. Examples in this sense can be
found for the simulation of simplified building models
(Pernigotto et al., 2014), for city scale modelling (Delmastro
et al., 2016; Dogan et al., 2016; Dogan and Reinhart, 2017;
Ghiassi and Mahdavi, 2017), and for building stock modelling
(Ballarini and Corrado, 2017). An explicative example of the
hierarchical structure of data in building energy modelling is
reported inTable 1. The table is by nomeans exhaustive, but aims
to outline a way to organize building energy modelling data in a
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transparent and possibly reproducible way, using current
technical standardization and validated simulation software as
a reference.

Alternatively, the hierarchy of building energy modelling data
can also be conceived for the “vertical integration” of
information, from the user level up to energy infrastructures,
with a subdivision in levels such as meter, building, building
zones, individual rooms, individual spaces within the room, and
user. Examples of research in this direction can be found in
international research initiatives on “Energy Flexibility in
Buildings” (IEA, 2018a) and “Occupant-Centric Building
Design and Operation” (IEA, 2018b). Further research
developments in this direction appear particularly promising
for Internet of Things applications (Breiner et al., 2016; Reka
and Dragicevic, 2018).

Regression Models in Design Phase
Analysis
In Hierarchical Structure of Building Energy Modelling Data, the
multi-level nature of building data was illustrated using examples
from the current state of the art. Following the argumentation
reported at the beginning of Linking Design and Operational
Energy Performance Analysis at Scale, we can understand how
linking design and operation phase performance analysis using
standardized and consistent methods is crucial to enable
integrated data analysis workflows, from design to operation.
In this section, we illustrate some examples of regression models
used in design phase’s performance analysis, which makes use of
datasets that partially overlap with the ones reported in Table 1.
First of all, there are many examples of applications of regression

models for early stage design evaluation (Catalina et al., 2008;
Hygh et al., 2012; Asadi et al., 2014; Al Gharably et al., 2016;
Ipbüker et al., 2016), also using a Design of Experiments approach
(Jaffal et al., 2009) to create multiple input combinations in a
rational way. Further, we can find examples of application of
energy signatures analysis from design to operation (Allard et al.,
2018; Tronchin et al., 2018a), leading to a continuity in the data
analysis workflow. Additionally, we can find examples of this type
of model for techno-economic analysis (using Life Cycle Cost as a
KPI) based on optimization techniques (Aparicio-Ruiz et al.,
2019), and Data Envelopment Analysis (Kavousian and
Rajagopal, 2013). Finally, we can find an example of
regression models used for Energy Performance Contracting
(EPC) to control operation costs using models trained on
parametric simulations (Ligier et al., 2017), thereby creating a
continuity between design and operational phase analysis. A
summary of the topics and sub-topics emerging from the
review of regression-based approaches for design phase
analysis is reported in Table 2.

While many of the research works reported above focus on
design phase analysis and are, therefore, based on models trained
on simulation data, the applicability of these models has also been
shown for the analysis of energy performance databases (Walter
and Sohn, 2016), considering the actual energy consumption data
collected from surveys.

Regression Models in Operational Phase
Analysis
As anticipated, regression modelling approaches have been
chosen because of their standardization (ISO, 2013; ASHRAE,

TABLE 1 | Hierarchical structure of building energy modelling data.

Category Sub category Description

Location Climate Location, weather data files
Fabric Archetype Building typology, number of floors, net/gross height, width/

length, aspect ratio, orientation angle, windows to wall ratio
(WWR)

Geometry Net/gross volume, heat loss surface area, net floor area, surface to
volume ratio (S/V)

Thermo-physical parameters Envelope Thermal transmittance (U) of construction components, thermal
bridges, thermal capacity, time constant, solar heat gain
coefficients (SHGC), air-tightness

Building operation Activities End-uses, occupancy, lighting, appliances, ventilation
Control and operation settings Heating, cooling set-points (temperature, relative humidity),

domestic hot water (DHW) set-points (temperature)
Operation schedules Operation schedules for occupancy, lighting, appliances, heating,

cooling, ventilation, DHW
Building technical systems Heating, cooling, ventilation, DHW systems Energy efficiencies of technical systems (emission, control,

distribution, storage, generation)
Lighting system Lighting system energy efficiency
On-site generation On-site generation efficiencies (Photovoltaic, solar thermal,

combined heat and power, etc.)
Key performance indicators Energy needs Energy needs for heating, cooling, ventilation, DHW, lighting,

appliances
Comfort Indexes Predicted Mean Vote (PMV), Predicted Percentage of Dissatisfied

(PPD)
Grid exchange Energy delivered (imported) and exported
Overall performance Primary energy consumption, carbon emission
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2014) and the fact that they are adopted in (M&V) protocols
(EVO, 2003; FEMP, 2008), where specific thresholds (expressed
as statistical KPIs) are given for the acceptability of models
(Fabrizio and Monetti, 2015). Therefore, they represent
empirically grounded and tested methods that can be
successfully used to provide and document evidence of results
of energy efficiency measures (Mathieu et al., 2011; Jayaweera
et al., 2013), providing results that are normalized with respect to
weather and operational conditions (Price, 2010). They are based
on energy interval data (dependent variable) and weather data
(independent variables), together with other independent
variables that may be derived from contextual information.
External air temperature is the most important independent
variable, used for weather normalization of energy
consumption (Masuda and Claridge, 2014; Lin and Claridge,
2015; Westermann et al., 2020). Additionally, rather than using
energy data directly, we can transform them to derive the average
power, called energy signature (ISO, 2013), over the amount of
operating hours in the time interval considered.

Scalability constitutes one of the essential pre-requisites for the
applicability of these methods at scale and we consider in this
section both temporal and spatial scalability. On the one hand,
with respect to temporal scalability, regression-based approaches
can be used with monthly, daily, and hourly energy interval data
and weather data. Monthly data are the most easily accessible
(e.g., utility bills or periodic meter readings) and they can used for
multiple purposes, such as targeting energy savings from single
buildings up to utility scale and establishing priorities (Hallinan
et al., 2011b) and for recommissioning and refurbishment
interventions (Hallinan et al., 2011a). Further, they can be
used to estimate energy savings in industrial buildings (Server
et al., 2011) and to perform the disaggregation of weather-
dependent and production-dependent energy consumption in
industrial facilities (Abels et al., 2011). Finally, they can be used as
a basis to measure energy efficiency progress with Normalized
Energy Intensity (Lammers et al., 2011), using a methodology
compatible with energy management systems standardization
(ISO, 2018). Regression with daily data extends these
capabilities further (Masuda and Claridge, 2014; Lin and
Claridge, 2015), giving the possibility to include an
autoregressive term in the model formulation to improve
goodness of fit (Masuda and Claridge, 2012b; Danov et al.,
2013). Finally, hourly models represent an even more detailed
formulation (Jalori and Reddy, 2015b; Abushakra and Paulus,

2016), which can be used effectively to understand dynamic
patterns of energy demand to, for example, optimize operation
interval and control strategies, considering issues such as
dynamic energy tariffs and interactions with the grid and on-
site generation.

On the other hand, in terms of spatial scalability, we can see how
regression-based approaches can be used to model the
performance of construction technologies, considering building
fabric heat transfer (Bauwens andRoels, 2014; Erkoreka et al., 2016;
Giraldo-Soto et al., 2018; Uriarte et al., 2019), or whole building
energy behaviour (Masuda and Claridge, 2014; Lin and Claridge,
2015; Paulus et al., 2015). Going beyond single buildings, we can
find examples of applications regarding building stock (Meng and
Mourshed, 2017; Meng et al., 2020) and community and city scale
systems (Qomi et al., 2016; Pasichnyi et al., 2019), considering also
complex interactions with the urban environment and physical-
statistical interpretation of models (Afshari et al., 2017). A
summary of the topics and sub-topics emerging from the
review of regression-based approaches for operation phase
analysis is reported in Table 3.

As shown above, regression-based approaches are temporally
and spatially scalable and can be employed for different types of
end-uses and for different aggregations of users, making them
suitable for analytics aimed at energy retrofit (Pistore et al., 2019)
and decarbonisation (Tronchin et al., 2019), considering
performance variability due to realistic operational patterns
(Tagliabue et al., 2016; Oh et al., 2020) or the impact of
properties of construction components such as thermal inertia
(Aste et al., 2015).

We already mentioned conceptual simplicity as one of the
advantages of this type of model compared to other meta-
modelling techniques (Manfren et al., 2013). Additionally,
given the standard structure of the basic models, automated or
partially automated model selection techniques (Paulus et al.,
2015; Paulus, 2017) can be applied to compare the performance of
multiple modelling options. Clearly, the presence of different
operating conditions in time (e.g., different types of operational
profiles) may determine the need to cluster operational
conditions on a daily basis (Jalori and Reddy, 2015a; Miller
et al., 2015; Richard et al., 2017). The need for integration of
clustering and regression in data analysis workflow is also
indicated in recent literature reviews regarding energy
transition strategies for the built environment (Tronchin et al.,
2018b).

TABLE 2 | Regression-based approaches for design phase performance assessment and techno-economic analysis.

Topic Sub-topic References

Design phase assessment Early design assessment (Catalina et al., 2008; Hygh et al., 2012; Asadi et al., 2014; Al
Gharably et al., 2016; Ipbüker et al., 2016)

Design of Experiments and parametric design (Jaffal et al., 2009)
Energy signatures from design to operation (Allard et al., 2018; Tronchin et al., 2018a)

Techno-economic analysis Design optimization considering life cycle cost (LCC) a simplified
energy modelling

(Aparicio-Ruiz et al., 2019)

Data-driven cost optimization, using data envelopment analysis
(DEA)

(Kavousian and Rajagopal, 2013)

Modelling for Energy Performance Contracting (EPC) from design
to operation

(Ligier et al., 2017)
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FURTHER RESEARCH

In the previous sections we illustrated how a regression-based
approach can be used to analyse performance from design to
operation phase in the building life cycle using standardized
methods that are conceptually simple, scalable (temporally and
spatially), and easily interpretable. Future research efforts should
be oriented, first of all, to the exploitation of the approximated
physical interpretation of regression model coefficients (Masuda
and Claridge, 2012a; Bauwens and Roels, 2014; Tronchin et al.,
2016, Tronchin et al., 2019). Indeed, this interpretation depends
on the formulation of an approximated physical model, which
can be created, for example, according to current technical
standardization (ISO, 2017). This, in turn, could enable a
harmonized definition of quantities and methods at multiple
levels (Manfren and Nastasi, 2019). Other relevant issues to be
considered are Monte Carlo simulation methods to test the
robustness of models’ estimates with respect to variable
operational conditions (Cecconi et al., 2017) and Bayesian
analysis as an extension of conventional regression paradigms
(Li et al., 2016). In particular, Bayesian analysis can be used to
reconstruct built environment data (Booth et al., 2013; Zhao et al.,
2016; Lim and Zhai, 2017), considering the hierarchical data
structure outlined in Hierarchical Structure of Building Energy
Modelling Data. Further, regression-based approaches could
become suitable for projections about energy consumption in
future climate change scenarios (Jentsch et al., 2008; Jentsch et al.,
2013; Bravo Dias et al., 2020) and to create load profiles when
designing decentralized energy systems from buildings (Stadler
et al., 2018) up to community scales (Adhikari et al., 2012a;
Orehounig et al., 2014; Orehounig et al., 2015), also using
clustering techniques to identify typical (recurrent) operational
conditions.

In terms of technologies, regression-based approaches can
complement the analysis of performance of technologies such
as heat pumps and cooling machines (Busato et al., 2012; Busato
et al., 2013), considering also exergy balance (Tronchin and
Fabbri, 2008; Meggers et al., 2012), where temperature
dependence is fundamental.

In conclusion, standardized and harmonized regression-based
approaches can be used to complement recent advances in
research regarding end-use energy demand based on

epidemiology concepts (Hamilton et al., 2013; Hamilton et al.,
2017), providing suitable evidence (Jack et al., 2018; Lomas et al.,
2018) aimed at informing decision-making processes and future
policies by means of robust and empirically grounded methods.

CONCLUSION

Understanding and conceptualizing innovation processes is
crucial to respond to global sustainability issues for the built
environment. Research has to be able to address the whole
building life cycle, assessing the sustainability of products and
practices transparently and consistently. The correct assessment
of operational and embodied energy and carbon emission
depends critically on the way energy data are measured,
processed, and reported. The methods to perform energy-
related data analysis workflows during building life cycle have
to be progressively standardized and harmonized in order to
enable transparency and consistency at multiple scales, from
single components up to city scale and building stocks, and
levels of analysis, from individual components up to systems.
In other words, the evolution of methods should be aimed at
creating continuity between energy performance analysis across
life cycle phases (e.g., by means of data-driven model based
analysis and linked open data standards), using parametric
simulations in design phases and progressively calibrating
building models to measured data. In this way, parametric
data generated in the design phase can be analysed to detect
the most relevant factors influencing performance and potentially
critical assumptions, while (multi-level) model calibration can
help in deriving insights on the actual performance and show
transparently any potential misalignment between simulation
assumptions and measured values. On the one hand, the
possibility to learn constantly from measured performance
could help in providing robust evidence of the impact of
innovative products and practices. On the other hand, the
possibility to exploit an approximated physical interpretation
of regression model structure could greatly enhance the
interpretability and explainability of data-driven methods,
learning from feedback to enhance the performance of both
single technologies and systems. The goal of this research was
mapping the ongoing research in these areas, with a focus on

TABLE 3 | Regression-based approaches for operation phase performance analysis.

Topic Sub topic References

Temporal Monthly (Abels et al., 2011; Hallinan et al., 2011a, Hallinan et al., 2011b;
Lammers et al., 2011; Server et al., 2011)

Daily (Masuda and Claridge, 2012b; Danov et al., 2013; Masuda and
Claridge, 2014; Paulus et al., 2015; Hitchin and Knight, 2016;
Paulus, 2017)

Hourly (Jalori and Reddy, 2015b; Abushakra and Paulus, 2016)
Spatial Building fabric heat transfer (Bauwens and Roels, 2014; Erkoreka et al., 2016; Giraldo-Soto

et al., 2018; Uriarte et al., 2019)
Building energy behaviour (Masuda and Claridge, 2014; Lin and Claridge, 2015; Paulus et al.,

2015)
Building stock energy behaviour (Meng and Mourshed, 2017; Meng et al., 2020)
Community and city scale analysis energy behaviour (Qomi et al., 2016; Pasichnyi et al., 2019)

Frontiers in Energy Research | www.frontiersin.org November 2020 | Volume 8 | Article 5576496

Manfren et al. Performance Analysis Through Regression-Based Approaches

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles#articles


regression-based approaches that could be used to create scalable
(temporally and spatially) integrated data analysis workflows from
design to operation in buildings. In this sense, we showed how data
analysis techniques could be used to evaluate the impact of both
technical and human factors, with the aim of reconstructing
building stock data at multiple levels. In turn, these data could
be used for the development of next-generation products and
services in the built environment, following a continuous
improvement approach, which is already recommended (and
standardized) in energy management practices at the state of
the art. In particular, these methods will be crucial for the
further development of innovative building design paradigms
(e.g., NZEBs) and will be necessary for the development of
innovative energy services (e.g., exploiting energy flexibility and
considering user behaviour) and technologies (e.g., energy
management and automation systems). Finally, energy
transition strategies have to address “complementarities” for the
co-evolution of built environment and energy infrastructures, and
the possibility to create an improved “soft-linking” among open
energy modelling tools (and data) is particularly valuable, because

they can provide reliable evidence, inform policies, and support
decision-making processes.
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