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Climate change has become a worldwide concern with the rapid rise of the atmospheric
CO2 concentration. To mitigate CO2 emissions, the research and development efforts in
CO2 capture and separation both from the stationary sources with high CO2

concentrations (e.g., coal-fired power plant flue gas) and directly from the atmosphere
have grown significantly. Much progress has been achieved, especially within the last
twenty years. In this perspective, we first briefly review the current status of carbon capture
technologies including absorption, adsorption, membrane, biological capture, and
cryogenic separation, and compare their advantages and disadvantages. Then, we
focus mainly on the recent advances in the absorption, adsorption, and membrane
technologies. Even though numerous optimizations in materials and processes have
been pursued, implementing a single separation process is still quite energy-intensive
or costly. To address the challenges, we provide our perspectives on future directions of
CO2 capture research and development, that is, the combination of flue gas recycling and
hybrid capture system, and one-step integrated CO2 capture and conversion system, as
they have the potential to overcome the technical bottlenecks of single capture
technologies, offering significant improvement in energy efficiency and cost-effectiveness.
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INTRODUCTION

Today’s primary energy supply is heavily relying on carbonaceous fuels, mainly the three typical
fossil energies, that is, coal, petroleum, and conventional and unconventional natural gas. The
control of pollutants emitted from combustion of these fuels in various stationaries including power
plants, mobile energy systems, and industrial factories is a major challenge to the environment and
human health and safety. It is initially related to the emissions of SOx, NOx, mercury, and particulate
matters. Now, it also involves the emissions of carbon dioxide (CO2) and methane (CH4), two major
greenhouse gases which have been regarded as the main reason for the climate change worldwide.
With increasing concerns on global climate change (Melillo et al., 1993; Houghton et al., 2001; IPCC,
2015), reducing greenhouse gases emissions, particularly CO2 emissions, has been significantly
heightened in both academia and industry in recent years (Maroto-Valer et al., 2002; Brovkin et al.,
2004; Song, 2006), in part because the increased CO2 emissions are believed to contributing to ocean
acidification and sea level rise in addition to global warming and climate change.

Since the industrial revolution, CO2 emissions have increased continuously due mainly to the
anthropogenic activities. Figure 1 shows the CO2 concentration in the atmosphere within the last six
decades from 1958 to 2019. As of December 2019, CO2 concentration in the atmosphere has reached
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412 ppm, accounting for about 31% increase of that in 1958
(∼5.1‰ per year). In contrast, it took about a hundred years for
the atmospheric CO2 concentration to reach 315 ppm by 1958
(IPCC, 2015; Seneviratne et al., 2016), an increase of ∼12.5%
(∼1.25‰ per year). Such a change clearly shows that the
atmospheric CO2 concentration has increased significantly, and
the rising rate becomes faster and faster. The CO2 concentration
in air would surpass 550 ppmby 2050 if no actionwere taken to curb
CO2 emissions while keeping fossil fuels utilization as is (Smith and
Myers, 2018), possibly reaching to 900–1,100 ppm by the end of this
century (Kiehl, 2011). If so, it could cause catastrophic impact on
global climate and human nutrition and societies.

In 2015, a global agreement was reached at the United Nations
Climate Change Conference, known as the Paris Agreement. It
sets a target of keeping the global temperature rise at 2°C or less by
the end of the 21st century (United Nations Climate Change,
2015), accentuating well on the urgency in reducing CO2

emissions (Seneviratne et al., 2016). However, with fast growth
of global economies and world population which demands more
and more energy supply globally, fossil fuels will continue playing
a major role. Although the supply of alternative energies such as
biomass, solar, and wind is increasing, they are still in the
developing stage, yet far from ready to replace the fossil
energy completely. Thus, developing strategies to significantly
reduce CO2 emissions both from the stationary sources with high
CO2 concentrations (e.g., coal-fired power plants, and
manufacturing industries) and directly from air have attracted
increasing attention worldwide (Lackner, 2003; Song, 2006; Keith,

2009; Lackner et al., 2012; IPCC, 2015; Sanz-Pérez et al., 2016;
National Academies of Sciences, Engineering, and Medicine, 2019).

There are several pathways to mitigate CO2 emissions:
reducing energy use, improving energy efficiency, shifting to
low-carbon or even non-carbon energy, and implementing
carbon capture and sequestration (CCS) (Pacala and Socolow,
2004). Reducing energy use is not realistic on a global scale, while
improving energy efficiency is a highly challenging task to meet
the climate change mitigation goals. The use of low-carbon
energy such as natural gas can slow but not be able to solve
the problem. Renewable energy such as biomass, wind, and solar
is still at its early stage and not able to replace the current fossil
fuel-based energy in near future, while the future of nuclear
energy is under much debating with big uncertainty. In contrast,
carbon capture, utilization, and sequestration (CCUS), which
refers to a process that captures CO2 from sources like power
plants or ambient air followed by recycling it for utilization or
sequestrating it underground permanently, is now widely
regarded as a viable option to quickly alleviate CO2 emissions
within amidterm. Especially, when the captured CO2 is utilized as
a valuable (and renewable) feedstock and cheap carbon source for
industrial chemicals and fuels production, it offers a cost-
competitive way to solve the contradict between the ever-
increasing energy demand and CO2 emissions reduction
(Markewitz et al., 2012).

Today, the global energy-related CO2 emissions are at the
level of 35–37 gigatonnes per year (Gt/yr), with over 80%
coming from fossil fuel combustion--> (National Academies

FIGURE 1 | Atmospheric CO2 concentration during 1950–2019 (data sources: http://climate.nasa.gov/vital-signs/carbon-dioxide/).

Frontiers in Energy Research | www.frontiersin.org December 2020 | Volume 8 | Article 5608492

Wang and Song A Perspective on CO2 Capture

http://climate.nasa.gov/vital-signs/carbon-dioxide/
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles#articles


of Sciences, Engineering, and Medicine, 2019; IEA, 2010;
OECD, 2012). In the United States, the energy-related CO2

emissions are about 5.1–5.3 Gt/yr in recent years (U.S. Energy
Information Administration, 2020). Among them, the CO2

emissions from power plants, industrial sector, and the
transportation sector account for 30, 21, and 26% of total
carbon emissions, respectively (United States Environmental
Protection Agency, 2016). Capturing CO2 from these sources is
thus critical to maintain or slow down the increase of the
atmospheric CO2 level (Sanz-Pérez et al., 2016). About
1.3 Gt-CO2 is emitted annually from the transportation
sector in the United States, which is expected to increase
significantly by 2050 due to the increasing demand for
vehicles and aviation (OECD, 2012). Unfortunately, till
today, onboard CO2 capture from the mobile system is still
not available. To address the challenge, negative emission
strategies have recently been proposed. One method is
directly removing CO2 from air, the so-called direct air
carbon capture (DACC) (Keith, 2009; Lackner et al., 2012;
Sanz-Pérez et al., 2016; National Academies of Sciences,
Engineering, and Medicine, 2019). According to the
Intergovernmental Panel on Climate Change (IPCC), the
current global CO2 emissions are more than those envisaged
with the most pessimistic model (Stocker et al., 2013). Thus,
combining CO2 capture both from the high and low CO2

concentration sources could be essential to achieve the Paris
Agreement goal of limiting anthropogenic global temperature
increase below 2°C.

Aqueous amine scrubbing is the benchmark carbon capture
technology currently commercially available in industry
(Rochelle, 2009; Rochelle, 2016; Tontiwachwuthikul and Idem,
2013; Darunte et al., 2016). This process, however, is very energy
intensive. It is predicted that the required parasitic loads or the so-
called energy penalty for CO2 removal is around 0.2–0.5 MWh/
ton-CO2, which is equivalent to 20–30% of power plant output
(Rochelle, 2009). Particularly, the absorbent regeneration and
CO2 recovery step consumes about 50% of the overall energy in
the form of low-pressure steam for the stripper reboiler due
largely to the high heating capacity of water. The high energy
penalty induces both high capital cost and operating cost. The use
of basic amine solution can cause corrosion to the equipment.
Furthermore, the amine loss due to the degradation and
evaporation in the process generates pollutants to the
environment. It is estimated that the application of the
technology could result in the increase in the cost of electricity
by 25–40% (Rubin et al., 2015), thus limiting its widespread use
(Haszeldine, 2009). Therefore, developing new technologies to
minimize energy penalty and improve cost-effectiveness for
carbon capture is highly desired yet quite challenging (Song,
2006; Chu, 2009; Keith, 2009). In this article, we first convey a
short review on the R&D status of carbon capture technologies
including absorption, adsorption, membrane, biological capture,
and cryogenic separation; compare their advantages and
disadvantages; and elaborate mainly on absorption, adsorption,
and membrane technologies more in detail. Then, we provide our
perspective on future directions in CO2 capture research and
development.

CURRENT STATUS OF CARBON CAPTURE
TECHNOLOGIES

Currently, several technological pathways are pursued for CO2

separation and capture including carbon capture from post-
combustion, pre-combustion, oxy-combustion, chemical
looping combustion (CLC), and ambient air as well, which is
illustrated in Figure 2. Table 1 lists the advantages and
disadvantages of those pathways (Figueroa et al., 2008;
Rackley, 2017).

• Post-combustion capture involves CO2 separation from flue
gases after combustion, which has a low CO2 partial
pressure (0.03–0.2 bar) and/or a low CO2 concentration
(3–20%) (Figueroa et al., 2008; Feron and Hendriks,
2005). The carbon capture from some industrial sources
such as cement manufacturing, stainless steel factory can
also be categorized into post-combustion capture, although
the CO2 concentration from those industrial processes is
higher than that of a typical flue gas from post-combustion
power plants. Table 2 lists the typical CO2 concentration of
a flue gas stream from various sources (Metz et al., 2005;
Husebye et al., 2012; Liguori and Wilcox, 2018). The
commercially available post-combustion capture process
is the chemical absorption-based aqueous amine solution,
such as 30% monoethanolamine (MEA) solution. Post-
combustion capture is considered as a more viable option
for existing coal-fired power plants (Wang Y. et al., 2017).

• In a pre-combustion process, which is based on the scaled
industrial processes for the production of hydrogen and
chemical commodities (Jansen et al., 2015), fuel feedstocks
(i.e., coal and natural gas) are converted into syngas (H2 and
CO) via gasification, steam reforming, auto thermal
reforming, or partial oxidation (Steinberg and Cheng,
1989), and then CO is transferred into CO2 by water,
with more hydrogen produced (the so-called water–gas
shift reaction, WGS), followed by carbon capture system
to remove CO2. After CO2 is captured, the hydrogen-rich
fuel gas is utilized for power and heat generation such as
boilers, gas turbines, and fuel cells (Metz et al., 2005). After
WGS, the CO2 concentration in the flue gas is relatively
high, which is in the range of 15–60% (dry basis) at a total
pressure of 2–7 MPa (Gazzani et al., 2013a; Gazzani et al.,
2013b), thus physical solvents such as Selexol and Rectisol
rather than chemical solvents are commonly used for pre-
combustion capture.

• Oxy-combustion is a relatively new technology (Jurado
et al., 2015) and involves the combustion of fuel
feedstocks in a nearly pure oxygen (95–99%) or
O2–CO2–rich environment (Miller, 2017), resulting in a
flue gas with very high CO2 concentration, where the
capture of CO2 is thus normally not needed and CO2 is
basically ready for sequestration (Miller, 2017; Li et al., 2018;
Wu et al., 2019). However, in order to obtain nearly pure
oxygen (>95%) (Kather et al., 2008), usually a cryogenic air
separation unit is required for oxygen separation from air,
which makes the whole process costly.
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• CLC is an emerging combustion process similar to oxy-
combustion producing the CO2-concentrated flue gas
(Abanades et al., 2015; Miller, 2017), so that the
separation of CO2 from fuel gas (e.g., pre-combustion) or
flue gas (e.g., post-combustion) is not needed. In a typical
chemical looping process, an oxygen carrier such as Fe, Mn,
Cu, Ni, and Cometals is oxidized in air in one reactor (called
the air-reactor), which is then reduced with a hydrocarbon
fuel in another reactor (called the fuel-reactor) to regenerate
the metal and release CO2 and water (Abanades et al., 2015).
The metal is then sent back to start another cycle in the air-
and fuel-reactors. The exothermic air-reactor provides
higher temperature heat and power, while the fuel-
reactor can also generate some heat and power as well.
CLC was introduced first by Lewis et al. (Lewis et al., 1951)
and later applied for CO2 mitigation by Ishida et al. (Ishida
et al., 1987; Ishida and Jin, 1994). Since then over 900
materials have been tested (Lyngfelt and Mattisson, 2011)
and a number of reviews have been published (Fan, 2010;
Adanez et al., 2012; Lyngfelt, 2014; Abanades et al., 2015).
Compared to oxy-combustion, CLC eliminates the costly air
separation unit, thus is more cost-effective, but the process is
relatively more complicated, requiring more studies. To be
more cost competitive, a suitable metal/metal–oxide pair as

the oxygen carrier plays a critical role in the chemical
looping process. More recently, the machine learning
algorithms and artificial neural networks have been
utilized to estimate the performance of hetero- and
multi-component materials as oxygen carriers for CLC
(Yan et al., 2020).

• DACC represents a process for CO2 extraction or removal
directly from the atmosphere, which was first introduced for
the mitigation of climate change by Lackner in 1999
(Lackner et al., 1999). DACC could play a crucial role for
CO2 capture from decentralized and mobile emission
sources such as vehicles, ships, or air planes (Sanz-Pérez
et al., 2016; Bhown et al., 2020; Jones, 2011; Goeppert et al.,
2012), thus gaining increasing attention. In 2012, Kulkarni
and Sholl (Kulkarni and Sholl, 2012) developed a steam-
based process using aminosilica sorbents, which can recover
CO2 at 1–3 ton/unit/year. Currently, multiple companies
including Carbon Engineering (Carbon Engineering, 2020),
Climeworks (Climeworks, 2020), and Global Thermostat
(Global Thermostat, 2020) are developing DACC systems at
a commercial scale. However, it is quite challenging due to
the exceptionally low CO2 concentration (∼400 ppm in air).
It requires moving very large volume of air through the
capture unit and high adsorption heat to execute the CO2

FIGURE 2 | Schematic diagram of the existing CO2 capture pathways.
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extraction, making this pathway more energy intensive and
costly than removing CO2 from the concentrated sources.
There is a debate on whether DACC is an enabling factor
(Realmonte et al., 2019; Azarabadi and Lackner, 2020) or
just a costly distraction for effective climate change
mitigation (Chatterjee and Huang, 2020).

Other industrial processes such as hydrogen production,
ammonia synthesis, and methanol manufacture release the tail
gases with a high concentration of CO2, which could be captured
and directly used or transported for storage after some
purification. Similar to the oxy-combustion and CLC
processes, an individual CO2 capture unit is normally not
needed for those processes.

As shown in Figure 2, only post-combustion capture, pre-
combustion capture and air capture require a CO2 capture
system. So far, many technological approaches are available for
a carbon capture system; however, the choice of a specific capture
technology differs widely depending on the sources and CO2-
generating processes, resulting in different energy penalties.
Figure 3 illustrates various CO2 capture technologies including
absorption, adsorption, membrane, biological capture, and
cryogenic capture under investigation in both academia and
industry for the past few decades, while Table 3 briefly
compares the advantages and limitations of these carbon
capture technologies (Singh and Dhar, 2019). Among them,
absorption, adsorption, and membrane methods are more
intensively studied, thus are further discussed in the following
section.

Absorption
Among the abovementioned CO2 capture options, the technology
based on liquid absorption is most mature and commercially
available, especially in the petroleum and chemical industries.
Based on the nature of the interaction between the absorbent and
CO2, it separates as chemical absorption (mainly applied for CO2

capture from post-combustion flue gas) and physical absorption
(mainly used for CO2 capture from pre-combustion flue gas).
Aqueous amine solutions (e.g., 20–30 wt% MEA, and
diethanolamine (DEA)) and liquid ammonia are typical
solvents for chemical absorption. MEA solution has become
the benchmark amine for CO2 capture from power plants
because it has good CO2 transfer rates, relatively low cost, and
biodegradable. However, it suffers from toxicity and solvent loss
due to evaporation and degradation (Bui et al., 2018). In addition,
at higher concentrations, MEA solution is highly corrosive to the
equipment.

Developing new CO2 absorbents to replace MEA has thus
aroused much interests and is still ongoing. Normally, thermal
swing absorption–regeneration is used for chemical absorption;
thus, selecting an absorbent with optimized thermal and physical
properties is crucial to the development of energy-efficient and
cost-effective carbon capture absorption technology. So far, a
large number of solvents, including single amines, amine blends,
and amino acids, have been evaluated individually for their
performance in CO2 capture (Bui et al., 2018; Sreedhar et al.,
2017). Figure 4 shows the CO2 absorption capacities in mol-CO2T
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per mol-amine obtained at 40°C and CO2 partial pressure of
15 kPa using different amines with different structures at
different amine concentrations (Shen and Li, 1992; Jou et al.,
1995; Park et al., 2002; Benamor and Aroua, 2005; Derks et al.,
2005; Maneeintr et al., 2009; Puxty et al., 2009; Chen and

Rochelle, 2011; Rebolledo-Morales et al., 2011; Schäffer et al.,
2012; Tong et al., 2012; Chang et al., 2013; Monteiro et al., 2013;
Yamada et al., 2013; Arshad et al., 2014; Bougie and Iliuta, 2014;
Li et al., 2014; Li and Rochelle, 2014; Nouacer et al., 2014; Chen S.
et al., 2015; Conway et al., 2015; Mondal et al., 2015; El Hadri

TABLE 2 | Typical CO2 concentration of a flue gas from various sources (Metz et al., 2005; Husebye et al., 2012; Liguori and Wilcox, 2018).

Flue gas source CO2 conc. (%) P (atm) CO2

partial pressure (atm)

Gas turbine 3–4 1 0.03–0.04
Fired boiler of oil refinery and petrochemical plant ∼8 1 0.08
Natural gas fired boilers 7–10 1 0.07–0.10
Oil-fired boilers 11–13 1 0.11–0.13
Coal-fired boilers 12–14 1 0.12–0.14
IGCCa after combustion 12–14 1 0.12–0.14
Hydrogen production 15–20 22–27 3–5
Steel production (blast furnace) 20–27 1–3 0.2–06
Aluminum production 1–2 1 0.01–0.02
Cement process 14–33 1 0.14–0.33

aIGCC, integrated gasification combined cycle. Data extracted from the literature (Figueroa et al., 2008; Chu, 2009).

FIGURE 3 | Illustration of various CO2 capture technologies along with typical materials currently under investigation.
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TABLE 3 | Comparison of typical CO2 capture technologies.

Technology Mechanisms Pros Cons

Absorption Chemical absorption (e.g., MEA and
NaOH)

chemical reaction between a solvent and CO2 ✓High capacity at low CO2 pressure • Energy-intensive regeneration
✓Mature technology • Low absorption–desorption rate

• Corrosion
• Absorbent degradation
• High operating cost

Physical absorption (e.g.,methanol,
Selexol, and Rectisol)

The solubility of CO2 in a solvent ✓High capacity at low temperature and
high pressure

• Low selectivity
• High energy consumption

✓Cheaper solvent • Low capacity at high temperature and low pressure
✓Mature technology • Absorbent loss

Adsorption Physical adsorbents (e.g., AC,
zeolites, and MOF)

Molecular sieve confinement effect of solid
materials, normally with micropores

✓High capacity at low temperature and
high pressure

• Low CO2 selectivity
• Capacity decreases with temperature

✓Low waste generation • Normally require high pressure
• Moisture degrades the adsorbent performance

Chemical adsorbents (e.g., CaO and
Na2SiO3)

Through the formation of carbonates or
bicarbonates

✓Work at high temperature • Require high temperature for CO2 sorption and adsorbent regeneration
✓High capacity

— — • High energy consumption
✓Low waste generation • Performance loss with cycles

Solid amine sorbents (e.g., PEI/SiO2) Chemical reaction between amine groups and
CO2

✓High capacity at low CO2 pressure • Thermal and oxidative degradation
✓High selectivity • Degradation due to contaminants (e.g., SOx and NOx)
✓Fast kinetics
✓Mild conditions
✓Positive effect of moisture
✓Lower energy consumption
✓Less corrosion
✓Low waste generation

Membrane Different gas permeability ✓Relatively low operation cost • High manufacturing cost
• Relatively low separation selectivity✓Easy handling and Operation
• Permeability still low
• Negative effect of moisture

Biological absorption/utilization Captured and utilized through photosynthesis in
plants

✓No hazards of chemicals • Long time requirement
• Large area requirement
• May affect biological diversity
• Sensitive to other flue gas contaminants (e.g., SOx and NOx) and culture
conditions (pH, temperature, and salinity)

✓Coproduction of food, biofuels, and
value-added products

Cryogenic separation Different condensation temperature ✓High capture efficiency (up to 99.9%) • High energy requirement
• Low efficiency
• Moisture pre-removal is required
• Solidified CO2 may be accumulated on the surface of heat exchanger
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et al., 2017). The majority were examined at the amine
concentration between 2 and 3.5 mol/L. The CO2 absorption
capacity is ranged from 0.4 to 1.4 mol-CO2/mol-amine. More
specifically, for the primary, secondary, and tertiary mines in
straight chains, multi-amines, and amines in cyclic chains, their
capacities are in the range of 0.5–0.7, 0.4–0.8, 0.4–0.9, 0.8–1.4,
and 0.5–1.1 mol-CO2/mol-amine, respectively. The CO2

absorption capacity decreases generally following the amine
structure as cyclic amines ≈ multi-amines > tertiary-amines >
secondary-amines > primary-amines. Among them, piperazine
(PZ) absorbent has been suggested as a good alternative to
conventional chemical solvents. Compared to MEA, it shows
fast kinetics in reaction with CO2, better chemical stability, and
requires lower energy input for regeneration (Rochelle, 2009;
Dugas and Rochelle, 2011). It also exhibits better resistance to
oxidative and thermal degradation (Freeman et al., 2010a).
Other amine blends such as PZ/AMP (Seo and Hong, 2000;
Khan et al., 2016) and K2CO3/PZ (Tim Cullinane et al., 2005;
Cullinane and Rochelle, 2006) have also been studied, and it has
been found that the blending can improve the absorption
kinetics, thermodynamic efficiency, and resistance to
degradation. The main drawback of PZ is that it could form
precipitation and nitrosamine during CO2 capture process
(Freeman et al., 2010b; Cousins et al., 2015).

There is another class of amine-based solvents which is called
phase-change solvents including amine–alcohol system and
amine–water system. Upon CO2 absorption or increasing the
temperature after CO2 absorption, the solvent divides into two
phases: CO2-rich and CO2-lean phases (Zhuang et al., 2016;
Papadopoulos et al., 2019). In contrast to traditional solvents,
only the CO2-rich phase is sent for regeneration; therefore, the
energy demand and the size of the regenerator can be
dramatically reduced in comparison to non–phase-change
solvents. Gomez et al. compared the performance of phase-
change solvent process to the conventional MEA process,
showing the CO2 capture cost could be saved by 15.4% for the
power plant, and as much as 51.7% for the cement plant (Gomez
et al., 2014). Although the phase-change absorbent systems
exhibit some potential merits and economic incentives for
scaling up, they may be volatile and corrosive due to the use
of amine solution in nature. The formation of precipitation and
salts is another important issue for the implementation of the
phase-change solvent-based absorption process.

Besides the chemisorption using amine solutions, another type
of absorption technology is using physical solvents to absorb CO2,
which is based on their CO2 solubility (Chakma, 1999). Physical
absorption is generally preferred at higher pressures. Selexol,
Rectisol, Purisol, and Fluor are the well-established commercial

FIGURE 4 | CO2 uptakes obtained at 40°C and CO2 partial pressure of 15 kPa using different liquid amines with different structures at different amine
concentrations. Data from the literature (Shen and Li, 1992; Jou et al., 1995; Park et al., 2002; Benamor and Aroua, 2005; Derks et al., 2005; Maneeintr et al., 2009;
Puxty et al., 2009; Chen and Rochelle, 2011; Rebolledo-Morales et al., 2011; Schäffer et al., 2012; Tong et al., 2012; Chang et al., 2013; Monteiro et al., 2013; Yamada
et al., 2013; Arshad et al., 2014; Bougie and Iliuta, 2014; Li et al., 2014; Li and Rochelle, 2014; Nouacer et al., 2014; Chen S. et al., 2015; Conway et al., 2015;
Mondal et al., 2015; El Hadri et al., 2017).
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physical absorption technologies, and also energy-intensive
processes due to their heat transfer requirements (Figueroa
et al., 2008). Since the physical absorption is depended on
physical interaction rather than chemical reaction, it normally
requires higher partial pressure of CO2 and is preferred at low
temperatures in order to achieve high CO2 capture capacity,
which thus reduces its efficiency and increases its operation cost.

Recently, ionic liquids (ILs), which consist of ions and act as liquid
at room temperature (Hallett and Welton, 2011), are considered as
suitable alternatives to the traditional physical absorbents, because ILs
have unique properties such as low volatility, low vapor pressure, and
good thermal stability (Bates et al., 2002; Corvo et al., 2015; Zeng et al.,
2017). In addition, after CO2 absorption, its energy requirement for
regeneration is also relatively low. Figure 5 presents the CO2

absorption capacities of some typical ILs (Zhang et al., 2008; Pérez-
SaladoKamps et al., 2003; Shiflett and Yokozeki, 2005; Shin et al., 2008;
Carvalho et al., 2010; Kilaru and Scovazzo, 2008; Anderson et al., 2007;
Aki et al., 2004; Blanchard et al., 2001). As seen, the CO2 absorption
capacity varies with the type of ionic liquid. The highest value of
0.88mol-CO2/mol-IL (moles ofCO2 permole of IL)was obtainedwith
[THTDP][NTf2] ionic liquid, while the [hmpy][Tf2N] ionic liquid
gave the lowest value of 0.20mol-CO2/mol-IL (Anderson et al., 2007).
ThemaxCO2 solubility in ILs reported in the literature is largelywithin
the range of 0.4–0.8mol-CO2/mol-IL, which is comparable to those of
most aqueous amine solutions as shown in Figure 4. However, their
high viscosities and relatively low working capacity are the two main
obstacles for their application in CO2 capture. To attain higher CO2

capacity, a series of the so-called task-specific ILs have been designed by
incorporation of various functionalities, such as carboxylate anions,
amine and amino acid groups, or azolates for chemisorption of CO2,
thereby significantly boosting the absorption capacity up to about
0.5–2.0mol-CO2/mol-IL under atmospheric pressure (Bates et al.,
2002; Giernoth, 2010; Wappel et al., 2010; Petkovic et al., 2011;
Shannon and Bara, 2012; Cui et al., 2016). Several groups have also
studied the physical and chemical properties of CO2–IL systems using
thermodynamic modeling (Zhang et al., 2008; de Riva et al., 2017),
kinetics (WangC. et al., 2011;Moya et al., 2014; deRiva et al., 2017) and
CO2 sorption mechanisms (Carvalho et al., 2009; Shiflett et al., 2010).
Although higher capacity can be obtained, the functionalized ILs show
higher viscosities than unfunctionalized ILs. Therefore, how to greatly
reduce the viscosity while maintaining its high capacity is the largest
technical challenge for the successful use of ILs in CCS. High cost and
difficulty in scale-up are other two significant barriers to the wide
spread of ILs for CCS (Singh and Dhar, 2019).

Adsorption
Adsorption is widely deemed as a promising technology for CO2

capture as it can be retrofitted to any power plants, operated at
various conditions with relatively high capacity, high CO2

selectivity, and low energy requirement for regeneration. It can
be applied for both pre- and post-combustion pathways (Bui
et al., 2018). If waste materials are utilized for preparation of
adsorbents, the adsorption process could be potentially more
sustainable. It should also be highlighted that adsorption method
is well suited for CO2 capture directly from air.

Currently, most efforts in developing advanced adsorbents
have been focused on improving CO2 adsorption capacity, CO2

selectivity, and impurity tolerance. So far, a large number of solid
adsorbents have been investigated, including carbons and carbon
nanotubes (Aaron and Tsouris, 2005; Huang et al., 2007; Plaza
et al., 2007; Razavi et al., 2011), clays and oxides (Ding and Alpay,
2000; Yong et al., 2001; Gray et al., 2005; Hiyoshi et al., 2005),
microporous zeolites and mesoporous molecular sieves
(Takamura et al., 2001; Siriwardane et al., 2003; Son et al.,
2008; Zelenak et al., 2008a), and microporous metal–organic
framework materials (MOFs) (Torrisi et al., 2010; Zhang Z.
et al., 2013; Gonzalez-Zamora and Ibrra, 2017).

Zeolites are widely used in refinery and gas separation
industry, and have shown high CO2 uptake such as zeolite
13X and Ca-A, reaching about 3 and 3.72 mmol/g, respectively
(Bae et al., 2013). CO2 adsorption over zeolites is derived from the
interaction between the electric field of zeolite and the large
quadrupole moment of CO2. Thus, both the structure and
composition of zeolite framework, and the composition and
location of cations govern its CO2 adsorption performance
(Grajciar et al., 2012; Kim et al., 2012). Lin et al. screened
over hundreds of thousands of zeolites and zeolitic imidazolate
frameworks (ZIFs) via a computational approach and identified
potential materials for CO2 capture (Lin et al., 2012). The main
weakness of zeolites is their sensitivity to moisture, which results
in a significant reduction of CO2 uptake (Bui et al., 2018).

MOFs are a relatively new class of crystalline porous materials
constructed via self-assemblage of metal “nodes” and organic
linkers (Long and Yaghi, 2009; Zhou et al., 2012; Lu et al., 2014).
MOFs possess very high surface areas and pore volumes.
Theoretically, by varying the metal and the linker, infinite
different MOFs can be synthesized, and their physicochemical
properties are consequently tuned in terms of CO2 capacity,
selectivity, and heat of adsorption, which makes them highly
attractive for CO2 capture (Singh et al., 2020). For example,
MOF-74(Mg) showed a high CO2 adsorption capacity of
5.5 mmol/g at 0.15 bar CO2 and 40°C (Caskey et al., 2008; Bae
et al., 2013), while UiO-66 and SIFSIX-6_Zn exhibited good
resistance to other flue gas components such as water, SOx,
and NOx (Nugent et al., 2013; Burtch et al., 2014; Wang C.
et al., 2016). In a recent article, Ding et al. conducted a
comprehensive review on MOFs for CO2 capture and
conversion, where they summarized and compared the
reported MOFs for CO2 capture in terms of their CO2

capacities (Ding et al., 2019).
Carbon materials including activated carbons, carbon

nanotubes, and graphene have also been studied for CO2

capture due to their low cost and wide availability (Wang Q.
et al., 2011; Montagnaro et al., 2015; Taheri Najafabadi, 2015;
Mohamedali et al., 2016). The capability of carbon materials for
CO2 adsorption mainly relies on its porosity; thus, the higher the
pore volume, particularly the micropores, the higher the CO2

capacity (Estevez et al., 2018). Carbons work better at high
pressure. While at low pressure, their CO2 capacities are
typically lower than those of zeolites. Compared to zeolites,
carbons possess much better stability in the presence of water
(Xu et al., 2013).

Another type of solid adsorbents is oxides including CaO,
MgO, and FeO (Feng et al., 2007; Florin and Harris, 2009; Mutch
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et al., 2018; Mora Mendoza et al., 2019); layered double
hydroxides (LDHs) (Ram Reddy et al., 2006; Ram Reddy
et al., 2008); and alkali metal–containing ceramics such as
Li2ZrO3 (Nakagawa, 1998), Li4SiO4 (Gauer and Heschel,
2006), and Na2SiO3 (Rodríguez and Pfeiffer, 2008). Those
adsorbents are normally handled at high temperatures within
the cyclic carbonation/calcination reactors. High temperature
(>500°C) causes the sintering of oxides, which results in the
dramatic reduction of their CO2 capture performance (Erans
et al., 2016).

Compared to abovementioned adsorbents, amine-based solid
sorbents are the center of investigation in adsorption. Since the
first report on polyethylenimine (PEI)-based sorbents showing
good performance for CO2 separation, the so-called molecular
basket sorbents (Figure 6) (Xu et al., 2002), in the past twenty
years, solid sorbents containing amines, have aroused significant
interests for CO2 capture and later for CO2 removal directly from
air (Yu et al., 2012). The use of amine-functionalized sorbents can
greatly reduce the need in the parasitic energy input (mainly
because solid has lower heat capacity than water), and offer high
CO2 capacity and selectivity, fast kinetics, multicycle stability, and

tolerance to water with no or less corrosion to the equipment (Ma
et al., 2009; Choi et al., 2009; Wang et al., 2009; Bollini et al., 2011;
Wang and Song, 2019). By far, three popular approaches are
proceeding in preparation of those amine-based sorbents, which
are outlined in Figure 6, including 1) immobilizing amine
compounds (e.g., PEI, TEPA, DEA, and dendrimers (Wang
et al., 2005; Yue et al., 2006; Liang et al., 2008; Qi et al.,
2011)) onto a nanoporous support (Xu et al., 2002; Xu et al.,
2003; Xu et al., 2005; Ma et al., 2009; Chen et al., 2010; Liu et al.,
2010; Tanthana and Chuang, 2010; Wang D. et al., 2011; Zhang
et al., 2012; Yang et al., 2013) and/or microporous zeolites (Kim
et al., 2016) and MOFs (Demessence et al., 2009; Lee et al., 2014;
McDonald et al., 2015) by a conventional wet impregnation
method; 2) growing reactive amine monomers inside the
porous material via in situ polymerization method or
incorporating amine compounds with silica precursor during
mesoporous material preparation via co-condensation method
(Tsuda et al., 1992; Tsuda and Fujiwara, 1992; Rosenholm et al.,
2006; Rosenholm and Linden, 2007; Hicks et al., 2008); and 3)
covalently grafting amine compounds (e.g., (3-aminopropyl)
trimethoxysilane and (3-aminopropyl)triethoxysilane) on a

FIGURE 5 | The reported maximum CO2 absorption capacity of some typical ionic liquids for CO2 capture at 40°C with CO2 partial pressure of 15 kPa, data from
the literature (Zhang et al., 2008; Pérez-Salado Kamps et al., 2003; Shiflett and Yokozeki, 2005; Shin et al., 2008; Carvalho et al., 2010; Kilaru and Scovazzo, 2008;
Anderson et al., 2007; Aki et al., 2004; Blanchard et al., 2001).
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support surface via post-synthesis method (Huang et al., 2003;
Hiyoshi et al., 2004; Hiyoshi et al., 2005; Zelenak et al., 2008b;
Belmabkhout and Sayari, 2009; Kumar and Guliants, 2010).

Polymer PEI contains repeating -CH2CH2-NH-units. Because it
has high nitrogen content in mass and relatively good thermal
stability (Yue et al., 2008; Goeppert et al., 2011), PEI is often
selected for amine-based sorbents, becoming a promising
candidate suitable not only for CO2 capture from flue gases with
relatively high CO2 concentration, but also good for direct air capture.
Other amines such as tetraethylenepentamine (TEPA),
pentaethylenehexamine (PEHA), MEA, DEA, and
diisopropanolamine are more prone to leaching issue due to their
relatively lowmolecular weight and boiling points, which could cause
CO2 capacity loss and pollute the downstream equipment of the
sorption system (Goeppert et al., 2014). Many reviews on solid-
sorbent–based CO2 capture have been published (Song, 2006; Sanz-
Pérez et al., 2016; Darunte et al., 2016; Choi et al., 2009; D’Alessandro
et al., 2010; Lin et al., 2016; Didas et al., 2015; Dutcher et al., 2015;
Chen C. et al., 2014; Gargiulo et al., 2014; Olajire, 2017). In a recent
book chapter (Wang and Song, 2019), we summarized the recent
advances of solid PEI-based sorbents for CO2 capture focusing on the
development of sorbent materials, the mechanism and kinetics in
CO2 sorption, the regeneration and deactivation, and the current and
future CO2 capture approaches.

To have a better overall picture, the CO2 capacities reported in
the literature with different support at different PEI loading and
sorption temperature for CO2 capture from pure CO2 and the
simulated air containing ∼400 ppm CO2 are plotted in Figure 7.
For CO2 capture from pure CO2 (Figure 7A), the higher the PEI
loading, the higher the CO2 uptake. Increasing temperature also
benefits CO2 sorption. Generally, high CO2 capture capacity of
around 150–200 mg/g is mostly reported, which is favored at
50–70 wt.% PEI loading at 70–90°C. The amine efficiency (termed
as A.E.), which is defined as moles of CO2 captured per mole of N
groups in the sorbent, is presented as an inset in Figure 7A. It
shows the major value of about 0.30 (the black dot line in the inset
of Figure 7A). It is widely accepted that under dry condition, two
N sites are needed for one CO2molecule through the formation of
zwitterions. Although tertiary amine does not directly react with
CO2, it could accept the proton from zwitterions generated by the
reactions between CO2 and primary/secondary amines,
contributing to CO2 sorption. Thus, it is projected that the
theoretic value for the maximum amine efficiency would be
0.5 (the blue dot line in the inset of Figure 7A). Clearly, most
PEI-based sorbents are still not able to achieve this theoretic
value, although there are a few reports showing their amine
efficiency close to 0.5. Only one article reported the amine
efficiency over 0.5, which was attributed to the contribution of

FIGURE 6 | Schematic illustration of the widely used three approaches in preparation of the amine-based sorbents.
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CO2 physisorption on the porous support (Gaikwad et al., 2019).
As for the air capture (Figure 7B), most work was studied over
the sorbents with PEI loading of 50 wt.% at room temperature.
Unlike CO2 capture from pure CO2, increasing temperature
results in the decrease of CO2 uptake, making it suitable for
air capture operation. Compared to those amine efficiency for
pure CO2, the amine efficiency for air capture is much lower, in
between 0.05 and 0.15. It reflects that CO2 capture directly from
the air is more challenging than that from the concentrated CO2

sources.
Figure 7 displays an indication of the current development

status of the PEI-based solid sorbents. Considering the low amine
efficiency compared to the theoretic value, especially for the air
capture, we believe there is still a possibility to further enhance
CO2 capture from both the concentrated sources and the air.
Thus, further investigations are required to determine at what
level of PEI dispersion could be best for maximizing the amine

efficiency with high capacity, or whether there is a limit in the
amine efficiency in order to maintain the best CO2 sorption
capacity and kinetics.

With the aid of modern and advanced characterization
techniques, the CO2 sorption/deactivation mechanism over
PEI-based sorbents has been fundamentally better understood.
Zhang et al. studied CO2 sorption behavior with small angle
neutron scattering (SANS) technique and identified that the
swelling of PEI with CO2 sorption and temperature increase
played an important role in CO2 sorption process (Zhang et al.,
2019). Using solid-state nuclear magnetic resonance (SSNMR),
Mafra et al. (Mafra et al., 2017) found three chemisorbed CO2

species involving hydrogen bonds with either surface silanols or
amines. Chen et al. (2018) confirmed the formation of
bicarbonate in the presence of water. During CO2 sorption,
both carbamate and carbamic acid are formed (Foo et al.,
2017; Shimon et al., 2018), but only carbamic acid desorbs
while carbamate persists (Shimon et al., 2018). The formation
of C�O and −CH � N- species is a main reason for the air
degradation of amine sorbents (Ahmadalinezhad and Sayari,
2014). To improve the regeneration and long-term stability of
PEI-based sorbents, a two-step synthesis strategy involving
support modification followed by PEI loading has been
proposed and studied (Choi et al., 2016; Jeon et al., 2018; Min
et al., 2018a; Min et al., 2018b; Xu et al., 2018; Kim et al., 2019;
Wang et al., 2020), which have been summarized and elaborated
in our recent book chapter (Wang and Song, 2019).

Additionally, there has been important progress in the
development of adsorption processes for CO2 capture. A large
number of different cyclic regeneration processes using
temperature, pressure, vacuum, steam or moisture, or
combinations thereof have been studied. Recently, Inventys
Inc. (now is Svante Inc.) reported the VeloxoTherm™ process
using a rotary unit packed with structured honeycomb adsorbent
for both CO2 adsorption and desorption, which can complete a
full cycle in about 60 s (Greeson, 2016). The comprehensively
review of the development of these processes can be found in the
literature (Grande and Rodrigues, 2008; Webley, 2014).

It should be pointed out that with the advance of the
technologies, some novel structured CO2 adsorbents have
emerged, such as thin film nanocomposites (Shah and Imae,
2016; Yong, 2016; Niranjana et al., 2019) and adsorbent-coated
monoliths made of zeolites, MOFs, or carbons (Öhrman et al.,
2004; Ramos-Fernandez et al., 2011; Akhtar et al., 2014; Lee et al.,
2015). Monolithic contactors have substantial advantages like
uniform flow, high gas throughput, low pressure drop, and less
attrition in comparison with conventional packed-bed reactors
(Rezaei and Webley, 2009; Rezaei and Webley, 2010). Both the
diameter of the parallel channels and the density per cross-
sectional area of monoliths are controllable. Most recently,
three-dimensional (3D) printing or additive manufacturing
technique has gained worldwide attention and has been
applied for fabrication of 3D-printed monoliths including
zeolites (e.g., 5A and 13X) and MOFs (MOF-74-Ni and
UTSA-16-Co (Thakkar et al., 2016; Thakkar et al., 2017a;
Thakkar et al., 2017b; Thakkar et al., 2018; Nguyen et al.,
2019; Regufe et al., 2019; Thompson et al., 2019). Compared

FIGURE 7 | CO2 capacity reported in the literature with different support
at different PEI loading and temperature for CO2 capture from (A) pure CO2

and (B) from simulated air with about 400 ppm CO2 along with the insets
showing the amine efficiency (A.E., mol-CO2/mol-N). All data are from
the reported values (Wang and Song, 2019).
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to those prepared by conventional method, the 3D-printed
adsorbent materials exhibited comparable CO2 capacity, fast
adsorption rate, and relative stability and regenerability.
Although 3D-printing shows flexibility in material design and
requires less steps and resources, extensive study on fabricating
the adsorbent materials at large scale for carbon capture is
needed.

Membrane
Compared to other separation methods, membrane separation is
generally more energy efficient and environmentally benign, thus
has been much studied for CO2 removal from flue gases (Merkel
et al., 2010; Japip et al., 2014). In membrane separation, the
driving force is the pressure and/or concentration difference. The
higher the pressure difference, the better the membrane
separation. Therefore, it is more applicable to pre-combustion
capture processes, while it is quite challenging for post-
combustion capture due mainly to the low CO2 partial
pressure and/or concentration in the post-combustion flue
gases. Furthermore, unlike other methods, membrane
separation involves multistage operation and streams recycling,
which makes this method more complicated and complex.

Based on the properties of the fabrication materials, there are
three types of membranes in general (Powell and Qiao, 2006; Low
et al., 2013): inorganic (or ceramic), organic (or polymeric), and
hybrid membranes. Those made up of zeolites, oxides (e.g.,
Al2O3, TiO2, and ZrO2), ceramics, carbons, and MOFs are
typical inorganic membranes (Al-Mamoori et al., 2017).
Inorganic membranes are capable of high temperature
operation with good mechanical stability, but high fabrication
cost limits their scale-up (Al-Mamoori et al., 2017). Compared to
inorganic membranes, polymeric membranes have several
advantages including ease of synthesis, low production cost,
good mechanical stability, and excellent separation
performance (Songolzadeh et al., 2014). Thus, more and more
polymeric membranes are practically replacing inorganic
membranes in large-scale industrial gas separation processes
(Bernardo et al., 2009), and gradually dominating most
commercial membranes (Siagian et al., 2019). However, their
thermal stability is relatively low, which curbs their application in
post-combustion CO2 capture. Flue gases normally have to be
cooled down first for membrane process (Du et al., 2011; Favre,
2011). The separation performance of polymeric membrane
materials can be further improved by incorporating or
blending organic or inorganic compounds (Du et al., 2011;
Dai et al., 2019).

Recently, new types of polymeric membranes have been
developed, for example, thermally rearranged (TR) and
intrinsic microporosity polymeric (PIM) membranes. TR
membranes exhibit improved thermal stability through
structural rearrangement and molecular transformation during
the heat treatment, which can generate interconnected
microcavities with narrow size distribution, decreasing the
mechanical strength of TR membranes (Jo et al., 2015; Liu Q.
et al., 2016; Scholes, 2016). PIM membranes are promising for
CO2 capture as they exhibit high CO2 permeability and
selectivity, surpassing the Robeson’s upper bond due largely to

their pore structure, thus receiving much attention (Alaslai et al.,
2016; Yong et al., 2016; Gemeda et al., 2017). Siagian et al.
compared various polymeric membranes in terms of CO2/N2

selectivity vs. the permeability (Siagian et al., 2019). The
conventional polymers are not able to reach the desired
performance for CO2 separation. The performance of TR
membranes is close to the Robeson’s upper bond, while some
of PIM membranes show the performance above the Robeson’s
upper value, suggesting PIM membranes are more promising
than TR membranes for CO2 removal. However, more tests are
needed for these new membranes to be practical for CO2 capture
in industries.

Hybrid membrane, or mixed matrix membrane (MMM),
which normally consists of an inorganic component such as
zeolites, carbon nanotubes, silicates, alumina, or MOFs
incorporated into the polymer matrix in the nanoparticles
form (Vinoba et al., 2017; Ahmad et al., 2018; Sarfraz and Ba-
Shammakh, 2018; Dilshad et al., 2019; Julian et al., 2019), is
becoming a new trend to improve polymeric membranes’
properties, as it could possess both advantages of inorganic
and organic materials. Incorporating inorganic particles
improves both the mechanical and thermal properties, making
the polymeric membranes more stable. Thus, it provides a
solution to go beyond the restraint of polymeric membranes
and the inherent drawbacks of inorganic membranes in cost and
production (Ramasubramanian et al., 2012; Tanh Jeazet et al.,
2012; Bae and Long, 2013). MMMmembranes show the potential
to exceed the Robeson’s upper value and are comparable to the
PIM membranes. The main drawback for MMM membranes is
that inorganic particles could be poorly dispersed, even
aggregated within the polymer matrix, leading to membrane
defects, deteriorating its overall performance (Zhang Y. et al.,
2013; Siagian et al., 2019). In addition, they are under early
development along with costly and complex fabrication processes
(Ramasubramanian and Ho, 2011).

A new type of MMM membranes called facilitated transport
hybrid membranes (FTHMs) or fixed carrier membranes (FCMs)
has been proposed and studied (Wu et al., 2014). By
incorporating the polymeric matrix with functional groups, it
exhibits fairly high CO2 permeability, CO2 selectivity, and
material stability (Wang S. et al., 2016), thus is promising as
next-generation membrane for CO2 separation. For example, at
107°C and 15 bar, the CO2 permeability and the CO2/N2

selectivity of the FCM containing amino-functionalized multi-
wall carbon nanotubes was 975 Barrer and 384, respectively
(Ansaloni et al., 2015). The CO2 permeance of 5693 GPU and
CO2/N2 selectivity of 268 were reported over the FCM
incorporated with nanosized hydrotalcite in
PEI–epichlorohydrin copolymer (PEIE) at around 25°C and
1.1 bar (Liao et al., 2014). Similar to other MMM membranes,
one of the biggest challenges for industrial application of FCMs is
to prepare the membranes without defects and the use of
nanosized carriers without agglomeration.

Besides the membrane materials, the configuration of
membrane modules is also crucial. There are four main types
of modular configurations mostly adopted: tubular, plate-and-
frame (Martín, 2016; Berk, 2018), spiral wound (Qi and Henson,
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1998; Chen X. et al., 2015; Liu C. et al., 2016), and hollow fiber
(Yoshimune and Haraya, 2013; Chen X. et al., 2015; Esposito
et al., 2015; Liu C. et al., 2016). Compared to other types of
modules, hollow-fiber membranes exhibit better popularity and
more compact because of its optimum geometry and high
surface-to-volume ratio (Koros, 2004; Al-Mamoori et al., 2017;
Wang Y. et al., 2017). Furthermore, highly porous polymeric
substructures supporting a thin selective layer of hollow fiber
membranes show the potential in advancing the development of
membranes (Chen H. et al., 2014).

FUTURE CONSIDERATION OF CARBON
CAPTURE TECHNOLOGIES

Combination of Flue Gas Recycling and
Hybrid Capture
The current development of CO2 capture processes has largely
centered on a single separation technology. Although numerous
optimizations in materials and processes have been pursued,
implementing a single separation process (e.g., aqueous amine-
based chemical absorption) is either energy intensive or costly.
Only few studies have looked at integrating two or more
technologies (i.e., absorption, adsorption, membrane, and
cryogenic) into a hybrid process for CO2 capture (Freeman
et al., 2014). The integration of different separation
technologies could avoid their individual disadvantages, thus
may be superior to the standalone process (Scholz et al., 2013).

Recently, Song et al. reviewed the hybrid CO2 capture
technologies and explored possible combinations (Song et al.,
2018), including absorption-, adsorption-, membrane-, and
cryogenic-based hybrid processes with different options.
Nakhjiri and Heydarinasab compared the performance of the
hybrid membrane absorption process using ethylenediamine
(EDA), 2-(1-piperazinyl)-ethylamine (PZEA), and potassium
sarcosinate (PS) absorbents (Nakhjiri and Heydarinasab,
2019). They found that the CO2 separation efficiency decreases
as PZEA > PS > EDA. Atlaskin et al. (Atlaskin et al., 2020) studied
a hybrid membrane-assisted gas absorption (MAGA) process for
CO2 andH2S removal. The efficiency for CO2/H2S separation was
significantly increased bymixing imidazolium ionic liquid (ca. 5 v
%) into the methyldiethanolamine (MDEA) solution. Over the
hybrid membrane absorption system using 2-methylpiperazine
(2MPZ)-promoted potassium carbonate for CO2 separation,
increasing 2MPZ concentration, absorbent flow rate, porosity
to tortuosity ratio, and membrane fibers can enhance the CO2

removal percentage up to over 98% (Izaddoust and Keshavarz,
2017; Mesbah et al., 2019). Scholes et al. recently reported the
pilot plant trials with hollow fiber membrane-MEA (MEA, 30 wt
%) contactor for post-combustion CO2 capture, showing the
energy duty less than 4.2 GJ/ton of CO2 captured (Scholes
et al., 2020). Through the comparison to the standalone
methods, they found that the hybrid processes are superior in
terms of CO2 recovery, energy penalty, and installation
investment, thus are promising as future carbon capture
technology (Song et al., 2018).

As above-pointed out, the high energy penalty for CO2 capture
process is mainly caused by the low concentration or partial
pressure of CO2 in a flue gas, which results in high cost for CCS, as
the capture step accounts for about 70–80% of the overall CCS
cost (Figueroa et al., 2008). As shown in Table 2, the typical CO2

concentration in flue gases is about 3–14%. The current prevail
economic analysis estimates a cost of $70–100/tonne-CO2 for
carbon capture from flue gas (Vitillo et al., 2017). With only
400 ppm CO2 in air, a DACC process requires a cost between
$300 and $1,500 per tonne of CO2 captured (National Academies
of Sciences, Engineering, and Medicine, 2019). One viable
strategy is to increase the partial pressure or concentration of
CO2 in flue gas. For example, through exhaust gas recycling, in
which flue gas from natural gas boiler (containing ∼4% CO2) is
recycled and used in place of air for the fuel combustion, CO2

concentration in the flue gas can be enriched up to ∼8%, making
CO2 capture less thermodynamically challenging (Vaccarelli
et al., 2014). However, considering the significant capital
investment in exhaust gas recycling with respect to the
combustion unit, the balance between exhaust gas recycling
and carbon capture energy penalty has to be carefully and
thoroughly examined and optimized (Vaccarelli et al., 2014).

Membranes can also be utilized to concentrate CO2 from flue
gas for recycling. Merkel et al. obtained up to 20% increase in CO2

concentration and up to 40% reduction in the minimum energy
required for CO2 capture (Merkel et al., 2013). A set of
membranes in series or parallel may be used for selective CO2

recycling, offering increased driving force for CO2 separation. It
could be more efficient if coupled with other capture technologies
(e.g., absorption, adsorption, and cryogenics), especially with
those hybrid systems.

Although it could increase capital and maintenance costs,
recycling flue gas or pre-concentrating CO2 with membranes can
simplify the CO2 capture process. By combining the advantages of
hybrid CO2 capture systems, we believe that the benefits in the
subsequent CO2 capture step could be substantial, which may
ultimately make this approach more energy efficient and cost
effective. Although currently the experimental data are not
enough, the primary results have convinced us that the
proposed concept would be plausible as future CCS direction,
especially to overcome the technical bottlenecks encountered
when using single carbon capture technology.

One-Step Integrated CO2 Capture and
Conversion
Another encouraging strategy is integrating the CO2 capture and
conversion in one stage. In nature, organisms or organelles
indeed systematically utilize and store CO2 directly. However,
compared to chemical-based approaches, they are much limited
by the long time and large contact area requirements (Table 3).
When CO2 capture is integrated directly with subsequent in situ
CO2 utilization/conversion to value-added products in one step,
the concept of which is depicted in Figure 8, the process could
eliminate the needs of the steps for CO2 desorption, compression,
transportation, and storage, eradicating the energy penalty
associated with these steps. It is particularly useful to the
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chemical absorption-based CO2 capture technologies, where the
significant energy penalty occurs at the desorption step.
Furthermore, the production of value-added chemicals and
fuels could generate revenues to compensate the cost for
carbon capture, which helps reducing the economic barrier for
the commercial deployment of the CO2 capture technologies.
This is also a pathway to functionalizing metal–organic
frameworks, electrocatalysts, photocatalysts, and more—for
their potential applications in CO2 capture and conversion.

Recent years, more reports about the one-step integration of
CO2 capture and conversion are coming out. Gassner and Leitner
first reported the attempt to integrate catalytic CO2 conversion to
capture via CO2 hydrogenation to formate in the presence of
aqueous amine solutions (Gassner and Leitner, 1993). He et al.
explored a combined system containing a superbase, a poly
(ethylene glycol) (PEG), ionic liquid and amino acid for in
situ CO2 capture-conversion to carbonates, urea, and formate
salts (Yang et al., 2011a; Yang et al., 2011b; Liu et al., 2012). Kim
et al. experimentally demonstrated a process directly integrating
CO2 utilization into CO2 capture, allowing for the full conversion
of the CO2 captured into syngas in a single reactor using
limestone for CO2 capture and a non-precious metal catalyst
for CO2 conversion with CH4 (Kim et al., 2018). Liu et al.
developed a novel hybrid MgAl(LDO)/TiO2 adsorbent/
photocatalyst for the integrated CO2 capture plus
photocatalytic conversion directly to C1 products at
100–200°C (Liu et al., 2015). The regeneration of the
developed material can be easily achieved with low-grade
waste heat and/or solar energy (Liu et al., 2015). Kar et al.
systematically reviewed the current progress in the integrated
capture-conversion process using aqueous amine and hydroxide

solutions for CO2 capture followed by in situ hydrogenation using
coexisted homogeneous metal complex catalysts to formate salts
and methanol (Kar et al., 2019). The whole process is regenerable
for multiple cycles. Consequently, they suggested that the amine-
assisted CO2 capture and conversion to methanol process is very
encouraging. Stuardi et al. also suggested the integration of CO2

capture and utilization as a priority research direction (Marocco
Stuardi et al., 2019).

Besides the liquid amine processes, the solid adsorbent
catalyst-based CO2 capture-conversion processes using dual
function materials (DFMs) consisting of the methanation
catalyst (e.g., Ru and Ni) and CO2 adsorbent (e.g., CaO,
Na2O, and MgO) on a support have also been studied at mild
conditions (200–350°C and 1 atm) (Duyar et al., 2015; Duyar
et al., 2016; Miguel et al., 2017; Wang S. et al., 2017; Wang et al.,
2018; Arellano-Treviño et al., 2019; Zhou et al., 2020).Those
DFMs exhibit stable performance in CO2 capture and conversion
to synthetic CH4 for over 50 cycles. No loss in CO2 capture
capacity and Ru dispersion was observed (Wang et al., 2018).
Over the 2D-layered Ni–MgO–Al2O3 nanosheets, continuous
and nearly 100% capture of CO2 during prolonged cycling
tests was achieved at temperatures below 250°C (Zhou et al.,
2020). Its hydrogen efficiency reached 60% for CO2 conversion to
CH4, making the process attractive for large CO2 emission
sources.

Patterson et al. proposed an approach to recycle atmospheric
CO2 into liquid fuels on a large-scale marine-based artificial
island, using renewable energy (solar or wind) to power the
production of hydrogen and CO2 extraction from seawater,
followed by catalytic conversion to liquid methanol fuel
(Patterson et al., 2019). The major advantage of the proposed

FIGURE 8 | Concept of one step direct integration of CO2 capture and in situ CO2 conversion.
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approach is the utilization of sea as the CO2 absorber, in which it
is always in equilibrium with the atmosphere, along with the
usage of renewable energy, generating negative CO2 emission
through the process.

These efforts in the integration of CO2 capture and conversion
in one step have demonstrated their promise, although mainly C1
products are generated. Through the research entailing
experimental results coupled with theory to improve
fundamental understanding, and the design of innovative
polyfunctional and multi-structured materials for the one-step
integrated CO2 capture and conversion, the production of liquid
hydrocarbon fuels, chemicals, polymers, carbon materials (e.g.,
nanotubes and nanofibers) directly from flue gas or atmospheric
CO2 can be envisaged in future. It will also lead to developing
carbon capture technologies with smaller size, greener process,
and better energy efficiency. If implemented, it could significantly
change the way in CO2 capture, compress, transport, conversion,
and/or storage, thus increasing opportunities for CO2

valorization, and offer a feasible solution to the current global
environmental problems associated with energy use.

CONCLUDING REMARKS

Through the past few decades of research and development, there
have been significant progresses in CO2 capture technologies, but
still far from economically attractive commercialization. It
requires a comprehensive investigation on the characteristics
and relationships of the materials and process performance,
which is crucial to the development of next-generation carbon

capture technologies with improved energy efficiency and cost-
effectiveness. In this perspective, we believe the two plausible
approaches, that is, the combination of flue gas recycling and
hybrid capture system, and one-step integration of CO2 capture
and conversion, are promising for future research, as they could
offer significant improvement in energy efficiency and cost-
effectiveness, by simplifying the capture process in the former
and eliminating the desorption, compression, transportation, and
storage steps in the latter, respectively. However, more research
and development such as materials development, synergistic
assessment, process design, process optimization, and scale-up
are required. Their environmental impacts and the life-cycle
analysis should also be considered. Nonetheless, the proposed
and emerging approaches appear to be promising with better
commercial potential in the future, and offer a viable solution to
the technical bottlenecks of current carbon capture technologies,
and to the global dilemma in meeting more energy demand while
reducing environmental impact.
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