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Proper risk assessment and monitoring of critical component is crucial to the safe
operation of Nuclear Power Plants. One of the ways to ensure real-time monitoring is
the development of Prognostics and Health Management systems for safety-critical
equipment. Recently, the remaining useful life prediction (RUL) has been found to be
important in ensuring predictive maintenance and avoiding critical component failure. With
the development of artificial intelligent techniques, deep learning algorithms are becoming
popular for RUL prediction. Consequently, this paper presents RUL prediction techniques
for nuclear plant electric gate valves with a temporal convolution network (TCN). The main
advantage of using TCN is its ability to capture and process useful information in short-term
sensor measurement changes. Moreover, the efficiency of the proposed TCN is enhanced
by incorporating a convolution auto-encoder as a preprocessing layer in its structure,
which greatly improved the residual convolutionmode. The proposedmethod is verified on
the electric gate valves experimental dataset that represents the real-world operation of the
valve, and the result obtained is compared with other conventional data-driven
approaches. The evaluation result shows impressive performance of the proposed
model in predicting the remaining service life of the gate valves used in the nuclear
reactor control system. Moreover, the generalization of the proposed model is evaluated
on the turbofan engine benchmark dataset. The evaluation result also shows improved
performance in the predicted RUL. Broader application of the proposed TCN is envisaged
for critical components in other industries.

Keywords: remaining useful life prediction, electric gate valve, temporal convolutional network, residual
convolution, nuclear power plant

INTRODUCTION

Concerns over energy security and global warming have risen during the past decade and those
concerns have increased the NPPs share in the global energy mix due to its zero-carbon and sulfur
compound emission. Efforts toward research and development of advanced, fail-safe nuclear reactors
have also increased. Conversely, public concerns over the environmental impacts of a nuclear
accident and potential risk of radioactive release (Coble et al., 2015) have also risen globally during
the past decade and the same has delayed new nuclear projects. To ensure operational safety, relevant
equipment in NPPs are designed to the highest standards. However, the probability of component
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failure may increase over time due to prolonged and
uninterrupted operation and degradation in equipment (Lee
et al., 2006). In such a diverse and highly radioactive
environment, ensuring safe and reliable operation of
equipment is a substantial challenge (Ayo-Imoru and Cilliers,
2018).

To address the safety and reliability issues, prognostics and
health management (PHM) systems and programs are being
developed (Gouriveau et al., 2016). In a PHM system, real-
time data streams from plant sensors are preprocessed,
extracted, compressed and packaged into standard formats.
Standardization of data allows the system to accurately detect
any abnormality through comparison with threshold values. In
case of abnormality, PHM carries out system prognosis including
the application of RUL prediction techniques. The prognostic
result is usually presented as a set of potential issues and specific
remedial actions such as component replacement or stoppage and
maintenance of machinery before breakdown. PHM system can
also initiate Condition-Based Maintenance (CBM) (Jardine et al.,
2006). An overview of PHM research trends shows that three key
areas of research are in focus at the moment. These are:

(1) Historic and representative data acquisition and processing:
Nuclear power plant data are subject to export control, for
security reasons. Hence, it is difficult to directly obtain
operating data for various working conditions, different
failure modes, aging and degradation modes. Without
such historical data, it is difficult to develop deep learning
models and accurately estimate the RUL of components.
Hence, it is necessary to conduct accelerated aging and
degradation experiments on key equipment to provide
necessary data to support the development of RUL
predictive models. This experiment is being aided by the
advent of the Internet of Things (IoT) and edge computing
that enable aging and failure data acquisition (Huang, 2020).

(2) Optimal arrangement and modification of sensors:
Currently, sensor measurements and layout in the nuclear
power plant are limited due to space constraints. Therefore, it
is necessary to further optimize the sensor layout scheme for
key components of the NPP.

(3) Intelligent RUL prediction: RUL is closely related to the aging
mechanism, sensing and measurement, characteristic
parameter analysis and other front-end factors. Currently,
most industrial maintenance policy is corrective. Moreover,
the maintenance cycle is generally scheduled and is based on
experience. That is, even if the production equipment
maintains a high level of reliability, there will still be
downtime for maintenance. However, accurate RUL
prediction could aid in discovering fault or component
degradation trends before failure and support predictive
maintenance. Therefore, it is necessary to optimize the
available RUL predictive model, thus reducing the
operation and maintenance costs (Vichare and Pecht,
2006; Pawar and Ganguli, 2007).

The first two identified issues are the recent bottleneck to the
development of effective PHM technology for nuclear power

plants, and the solution requires long-term effort. The need to
make plant data available for researchers and to optimize sensor
layout can be significantly justified by demonstrating the benefits
of effective RUL prediction. Hence, this manuscript focuses on
the development of an enhanced, accurate, and generalized RUL
predictive model.

RUL prediction techniques are generally divided into three
main categories: physical model-based, data-driven, and
reliability-based methods. Each RUL prediction method has
its advantages and disadvantages. Reliability-based RUL
prediction uses methods such as probability theory and
mathematical statistics to fit observation data without relying
on any physical mechanism and has the most extensive
applicability (Kundu et al., 2019; Peng et al., 2019; Wang
et al., 2019). However, such methods need to assume prior
probability and a life distribution such as a Gaussian or Weibull
distribution with a linear relationship. However, for RUL
prediction, the relationship between measurements is
nonlinear, and the assumed probabilistic distribution
contradicts the actual situation (Tang et al., 2019; Chiachío
et al., 2020). Also, estimating the transfer probability matrix
often require a large amount of training data (Papadopoulos
et al., 2019). For physical model-based RUL prediction, the
model development is a tedious and complicated process
(Downey et al., 2019; Sato et al., 2019). Moreover, in a
complex system such as the nuclear power plant, it is
difficult to understand the degradation mechanism with
physical models and this limits the application of the method
(Mardar et al., 2019). Moreover, even if a physical model is
successfully developed, some parameters in the model are
related to material properties and stress levels which still
need to be determined through specific experiments (Mishra
et al., 2019).

The data-driven method is effective, without the bottlenecks
identified in the other models (Lee and Kwon, 2019). Deep
learning is a new branch of machine learning, developed by
stacking layers of neurons to extract the deep and complex
nonlinear relations in features and datasets (Lin et al., 2018).
A deep neural network (DNN) has stronger pattern recognition
ability than a shallow neural network and its accuracy is
significantly higher when the volume of historical data is
enough (Nguyen and Medjaher, 2019). DNNs have also been
applied for RUL prediction. Chen et al. proposed an end-to-end
RUL prediction method based on a recurrent neural network
(RNN), which could improve long-term prediction accuracy
(Chen et al., 2020). Zemouri and Gouriveau (2010) proposed a
recurrent radial basis function network and used it to predict the
mechanical RUL. Hinchi and Tkiouat (2018) proposed a
convolutional long-short-term memory (LSTM) network to
predict RUL of rolling bearings with FEMTO-ST ball bearing
datasets. Wang et al. (2020a) proposed a new recurrent
convolutional neural network that could integrate variational
inference for giving a probabilistic RUL result. Xia et al.
(2020) presented an ensemble framework with convolutional
bi-directional LSTM for RUL prediction which could
adaptively select trained base models for ensemble and further
predicting RUL. An et al. (2020) utilized convolutional stacked
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LSTM for RUL prediction of milling tools where time-domain
and frequency-domain features were combined, encoded and
denoised through unidirectional LSTM.

However, RNNs require large computational resources and
training data. Moreover, although RNNs could theoretically
remember remote historical information, the effect is not ideal
in practical applications. Compared with RNN and other
networks, a convolution neural network (CNN) has a natural
advantage in large-scale parallel processing of data, especially in
dealing with time series problems. On this basis, we propose an
improved Temporal Convolution Network (TCN) for RUL
prediction. The proposed TCN is a one-dimensional
convolution network whose structure and associated
hyperparameters were optimized and verified through actual
experimental data. Previous application of TCN include
pattern recognition tasks on the MNIST dataset, the wiki test-
103, and comparison with other model shows improved accuracy
and speed (Bai et al., 2018). Deng et al. (2019) also used TCN to
predict temporal traffic flow and optimized the hyper-parameters
in TCN through a random search strategy. To the best of the
authors’ knowledge, there are only a few research works that
utilized TCN for RUL prediction. However, these research works
did not evaluate their result on real-world representation inherent
in the electric valve dataset used for this work. This paper takes
electric gate valves as the case study and major contributions in
this work are:

(1) Three critical issues of PHM that need to be addressed are
identified and summarized.

(2) Convolutional autoencoder is integrated with TCN for
effective feature extraction.

(3) Also, the residual convolution mode in TCN is optimized
which enriches the features during RUL prediction.

(4) Comparative analysis of TCN hyper-parameters is carried
out using real-world electric valve data. Further evaluation is
also done with the turbofan benchmark dataset.

This paper is arranged as follows: The first section introduces
the background and motivation;Methodology analyzes the theory
of improved TCN network. The research objects and architecture
of RUL prediction are introduced in Experiment and System
Architecture. The simulation tests are carried out with different
datasets and the proposed model is compared with other state-of-
the-art models in Simulation Analysis. Finally, Conclusion
contains the conclusion and limitation of the work.

METHODOLOGY

Sensors associated with equipment show specific trends over a
protracted period. This relationship between sensor output and
equipment degradation can be assessed by utilizing machine
learning for precise RUL prediction. However, traditional
methods assess instantaneous values and therefore, cannot
learn features hidden in sequential time series. Bai et al.
(2018) proposed the integration of TCN and causal
convolution as a replacement of the RNN/LSTM network for

sequential task analysis. Compared to the RNN network, it has
the following advantages:

(1) For a given a sequence, the TCN could process the time-series
information in parallel rather than sequentially as RNN.

(2) RNNs often have a diminishing or exploding gradient
problem while TCN does not.

(3) RNNs retain the information at each step, which will occupy
a large amount of computer memory. However, for TCN, the
convolution kernel in each layer is shared so it is
computationally less expensive.

Therefore, this paper adopts improved TCN to mine deep
features and to predict the RUL. The proposed TCN is further
condensed and optimized to deal with sequential tasks. For the
RUL prediction problem, given a sequence of sensormeasurements
x0, x1, x2, ., xT, and the corresponding event labels y0, y1, y2, ., yT at
time T, the task is to predict the label y based on the previous sensor
input before end of time T. For this task, the TCN performs better
than ordinary CNN because of the causal relationship between the
layers of TCN. That is, TCN only uses the historical sequence of
information before T as shown in Figure 1. To consider such a
historical sequence, the TCN layers need to be deep enough.
Moreover, the availability of GPU parallel computing resources
makes it easy to train such a large network.

The historical data captured by a simple causal convolution is
only linearly related to the depth of the network, which is a great
challenge for sequential tasks that need to consider longer sequential
dependencies. Vanilla CNN has a small receptive field to cope with
such sequences. To address this, Yu and Koltun (2015) applied the
classical dilated convolution neural network to exponentially
expand the convolution receptive field). Specifically, for inputs
x0, x1, x2. . ., xT and filters f:{0, 1, . . .,k − 1}, the dilated
convolution in sequential series s could be represented as:

F(s) � ∑
k−1

i�0
f (i) × xs−d(i) (1)

where d is the dilated factor and k is the size of filters, s-d(i) refers
to the history. Dilated convolution is an effective strategy to
increase the receptive field without increasing the kernel size or
the number of parameters. When the dilation d � 1, the dilated
convolution functions as a normal convolution. The larger the
dilated factor is, the longer the input range. As a result, a better
receptive field for the convolution network is achieved as shown
in Figure 1. Consequently, the receptive field of the TCN can be
freely enlarged by changing the dilation rate.

Despite the causal and dilated convolution used for the TCN,
the model may sometimes encounter problems such as gradient
disappearance. To address this issue, the TCN structure is made
to be generic, motivated by the residual structure presented in
ResNet (An et al., 2020). In this paper, the residual convolution
takes X series of input, transforms them, and the results are
concatenated with the input. Consequently, the output of the
residual convolution is:

A � Activation(X + F(x)) (2)
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As shown in Figure 1, two layers of dilated causal convolution
and activation function are included in a residual convolution.
Moreover, dropout operation is used for regularization at each
dilated convolutional layer. After that, 1 × 1 convolution is
implemented for input X to ensure the same scale of tensors
between inputs and outputs of residual convolution.

EXPERIMENT AND SYSTEM
ARCHITECTURE

Research Object
NPPs are composed of different components. Since the method
proposed in this paper has not been verified through an
engineering application, we select electric gate valves to

FIGURE 1 | Flowchart of TCN residual convolution.

FIGURE 2 | Illustration of the electric gate valves experimental platform.
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evaluate the RUL predictive model. In NPPs, the valve is one of
the most important components, used for flow control and to
adjust the working fluid pressure. Research shows that the
proportion of nuclear power plant shutdown due to valve
failure is 19%, which is mainly caused by assembly defects,
human factors, and operating environment. Apart from
scheduled maintenance, the valve is generally not allowed to
stop for inspection and its condition could only be detected from
the outside i.e. through a nondestructive test. Moreover, for
nuclear safety-related valves, due to the limitation of
installation space and cost, there are limited redundant
provisions. Considering the importance of electric gate valve
to the safe operation of light and heavy water reactors, the run
to failure data of the gate valve is taken as the training dataset to
verify the effectiveness of the proposed RUL predictive model.

As shown in Figure 2, the electric gate valve used for this
experiment is the Z941h-25P straight screw gate valve, driven by
squirrel cage coil motor. Also, the diameter of gate valve is 50 mm
while the truncation mode is rigid single gate with nominal
pressure of 2.5 MPa. The experimental gate valves’ running
conditions are configured to closely mimic what is obtainable
in the real NPP operation.

In this paper, the external crack of the electric valve is
selected as a typical fault mode. The main reasons for the
crack are as follows: first, the uneven lattice of the valve plate
or valve body leads to a material defect. Secondly, the uneven
impact of the fluid or installation defects lead to uneven force on
the valve plate or valve body. Thirdly, the fluid corrosion effect
and the radioactive material irradiation lead to a corrosive hole
that causes leakage. To preserve the valves for further
experiments, and to ensure reproducibility and save cost,
destructive cracks are not made on the valves during the
experiment. Instead, certain reasonable assumptions and
approximations are made to design the aging parts of the
electric valve as shown in Figure 3. Three holes with 3, 5,
and 10 mm are inserted and screwed on the valve body plate.
During the experiment, the aging degrees are simulated by
slowly adjusting the rotating screw.

For an accurate RUL prediction for electric valves, the
selection of measurements to reflect the status of the electric
valve is important. In this paper, the static pressure and pressure
difference at the valve inlet and outlet is measured by static
pressure and differential pressure gauge. The electromagnetic
flowmeter is also used to measure the flow rate for analysis. To
completely represents the aging state of the electric valves, other
signal detection methods are used to measure the characteristic
parameters. The acoustic emission methods use sensors to
measure the transient stress waves on the surface of the valve
body when cracks occur. When the valve runs normally, no
acoustic emission occurs. After the valve show cracks or even
leakage, fluid flow through the leakage produces jet turbulence,

FIGURE 3 | The electric valve studied in the experiment to simulate
degradation.

FIGURE 4 | The complete architecture of the RUL predictive model.
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which in turn produces a continuous mechanical stress wave. The
sensor mounting surface is polished with sandpaper in advance to
remove any impurities. Details of the mounted valves,
components, the experiment procedure, and circuit
configuration can be found in Wang et al. (2015).

Model Architecture and Implementation
Flowchart
The architecture of the RUL predictive model based on improved
TCN described in this paper is shown in Figure 4. The whole

process is divided into the training and actual RUL prediction
phase:

Step 1. Feature engineering is carried out on the acquired data
from the experimental platform. Irrelevant features are
removed to ensure an effective and compact model. The
selected features are normalized and standardized.
Step 2. To enable the algorithms to fully take into account the
sequential characteristics, the original 2D (N * D) data collected is
preprocessed and reshaped to 3D stacked data block in the form
(n− num_steps+1) *num_steps *D, whereN is the batch length,D
is the features, and num_steps refers to sequence length of the time
series. In this paper, the sliding window with length num_steps is
adopted to the original 2D degradation data x. Since there is an
overlap between slides of each window, the total input length is
(n − num_steps + 1). In this way, the input data is not just a single
data point but a sequence of time-series data, which better reflect
the sequential characteristics of the degradation process.
Step 3. Unsupervised feature extraction by one-dimensional
convolutional auto-encoder (CAE) is implemented. The
theoretical analysis of CAE and its advantages can be found in
reference (Wang et al., 2020c). The model is developed using the
Tensorflow framework, where the encoding and decoding
processes are implemented to form the deep feature representation.
Step 4. Results of the one-dimensional CAE are concatenated
with the original data gathered from Step 2. By doing so,
significant features in the aging data could be enriched to
further develop an accurate RUL predictive model.
Step 5. The feature extraction results are transferred to the
TCN network. On the Tensorflow framework, the TCN tuple

FIGURE 5 | The trends of parameters with PF � 30 Hz, VP � 35%.

TABLE 1 | The architecture definition of ITCN.

Name Definition Default value

Network structure CAE + ITCN None
Sliding window size Size of the sliding window for data preprocessing 40 (Wang et al., 2020b)
Normalization mode Normalization of data Z-score
Encoder of CAE Layers of convolution kernel in the encoder 3
Decoder of CAE Layers of convolution kernel in the decoder 3
CAE Numbers of convolution kernel in encoder and decoder 64
CAE Size of 1D convolution in encoder and decoder 3
CAE 1D pooling size of the encoder 2
CAE 1D upsampling size of the decoder 2
ITCN Layers of ITCN units 4
ITCN The dilated rate in each unit 1-2-4-8
ITCN Number of 1D convolution in each TCN unit 64
ITCN Layers of 1D convolution in each TCN unit 2
ITCN Residual convolution mode in each TCN unit Concatenated
ITCN Size of 1D convolution kernel in each TCN unit 5 (Cui and Bai, 2019)
Keep_prob Percentage retained in dropout operations 0.99
Init_learning_rate Initial learning rate 0.001
Init_epoch Iterations using the initial learning rate 5
Max_epoch Total training times 100
Attenuation rate Attenuation rate of the learning rate 0.99
Batch_size The amount of data used in small batches 128
Loss function None RMSE
Optimization method Optimization algorithms for backpropagation Adams
Dropout coefficient Dropout coefficient 0.5
Activation function Coefficient a in Leaky ReLU 0.3
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model is first developed, which consists of 1D causal
convolution with many layers. For each causal convolutional
layer, the dilated function is used after each TCN to increase
the model receptive field.
Step 6. The residual convolution described in Research Object is
improved by concatenating the results of the convolution filter.
Moreover, the leaky ReLU activation function and sparse
dropout operation are also used instead of ReLU or Sigmoid
activation function based on the previous impressive
performance of the Leaky ReLU activation function on non-
linear sequential datasets (Wang et al., 2020b).
Step 7. When the TCN tuple unit is developed, the stack
function is adopted to construct the entire TCN network.
Step 8. During CAE and TCN training, the processed data is
randomly shuffled to avoid overfitting and then input into
CAE and TCN models.
Step 9. The loss function in this paper is the root mean squared
error (RMSE). Adam optimizer is used as the training
algorithm. During backpropagation processes, the learning
rate at the first 5 iterations is set to 0.001 without
attenuation. Then the attenuation rate of each subsequent
iteration is set to 0.99. With increasing training epochs, the
training errors decreases until it stabilized.
Step 10. When the off-line training process is completed, the
randomly selected test data is normalized as shown in step 1
and step 2. Then, the optimized TCN models are used to
predict the RUL of the electric gate valves. The model
evaluation metrics are the explained variance score, mean
absolute error, mean squared error, and R2 score.

SIMULATION ANALYSIS

Data Acquisition
The degradation of the electric-valves is measured in the
experiment. First, the water tank is filled as shown in Figure 2,
and an electric valve loop is fully opened. The inverter for the pump
is set to 15 kHz and its corresponding pump speed is about 870 r/
min. The pipeline is filled with water after some time. Then, the
driving pressure of the pipeline is 0.26MPa, the valve is in normal
operation, the pressure difference across the valve is 6 KPa and the
total flow in the pipeline is 3 m3/h. Also, relevant parameters of
acoustic emission cards are set as: sampling frequency-5,000 kHz,
digital filter band-15∼70 kHz, the interval of parameters-500 μs,
hangover time-1,000 μs, peak interval-300 μs, locking time-1,000 μs,
single-channel waveform threshold-40 dB, and single-channel
parameter threshold 40 dB.

In the experiment, the crack simulating screw is slowly
adjusted under a certain pump frequency and the electric
valve position (opening degree) to gradually increase the

FIGURE 6 | Training and testing curves with or without CAE.

TABLE 2 | Metrics with or without CAE.

Network structure Without CAE With CAE With CAE and original
data

EVS 0.858 0.958 0.957
MAE 4.35 2.97 2.07
RMSE 32.03 12.33 8.47
R2_score 0.845 0.924 0.957

TABLE 3 | Average test loss with different layers and neurons of CAE.

Numbers
of causal layers

2 3 4 5

Dilated factors 1–8 1-4-4 1-2-4-8 1-2-4-8-16
EVS 0.917 0.933 0.957 0.949
MAE 4.58 2.42 2.07 3.78
RMSE 30.68 10.44 8.47 20.60
R2 score 0.806 0.932 0.957 0.867

TABLE 4 | Average test losses of different RUL prediction models.

RUL model FCN CNN LSTM CAE +
LSTM

Improved TCN

EVS 0.342 0.68 0.67 0.902 0.957
MAE 9.84 8.151 4.74 2.94 2.07
RMSE 137.18 34.68 27.43 13.55 8.47
R2 score −0.43 0.64 0.66 0.90 0.957
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leakage. Different pump frequencies and opening degrees
represent different operating conditions of the electric-valves.
In this paper, a total of five different circulating pump
frequencies (PF) and eight valve openings (VP) are set
during the experiment with a total of 40 operating
conditions. Under each operating condition, 30 groups of
experiments are carried out with various levels of screw
tightness. In each group of the experiment, the measured
variables are the frequency of the circulating pump, opening
degree of the electric-valve, pressure difference between the
front and rear of the electric-valve, and the fluid flow rate
through the valve. For acoustic emission signals acquisition,
computer software is used to automatically calculate the
amplitude, ringing count, rising time, energy, root mean
square (RMS), average signal level (ASL), and other parameters.

Moreover, the length of time for each group varies from 2 to 3 h
to provide adequate aging data. Figure 5 shows different variations
of some selected conditions under which the acoustic emission
sensors measurements were obtained. From the figure, the
amplitude of acoustic emission parameters and ringing count all
show approximately the same trend as the leakage volume
increases under a certain pump frequency and valve opening
position. When the leakage is less than a certain value, the
relevant characteristic parameter has no significant deviation.
However, when the leakage exceeds a threshold, the parameter
presents an obvious change in trend. When the leakage further
increases to a certain critical value, the parameter remains constant
again. This is because when the leakage is tiny, the leakage has little
effect on the flow in the pipeline. But, when the leakage becomes
too large, the pipeline flow is no longer under turbulent states.

Comparison of Different Model Structures
and Hyper-Parameters
For pattern recognition with deep learning, many trainable
parameters directly influence the model performance.
However, there are no generic hyperparameter selection

criteria. Hence, it is necessary to analyze and compare
different hyperparameters to obtain an optimal model for the
RUL prediction.

Optimizable hyperparameters in TCN include the learning
rate, learning rate delay factor, maximum iterations, batch
number, selection of training algorithm, and dropout
coefficient, among others. From the authors’ experience, the
fine-tuning of these hyperparameters has little impact on the
overall results. Therefore, the hyperparameters selected in this
work is motivated by the performance recorded in recent
literature. The default structure and hyperparameters of the
proposed ITCN are shown in Table 1.

In addition to the above hyperparameters, we analyzed the
effect of the CAE preprocessing layer and different dilation rates
on the predictive performance of TCN. Finally, explained
variance score (EVS), mean absolute error (MAE), RMSE, and
R2 score metrics are obtained to evaluate the performance of the
RUL predictive model.

With or Without Convolutional Auto-Encoder
First, an experiment is performed by adding the CAE layer
without changing the structure of the proposed TCN, and the
effect of the CAE layer is analyzed. Figure 6 shows the training
and test curve for the specified epochs. It is seen that the network
neither underfit nor overfit.

Metrics are calculated for further analysis, as shown in Table 2.
From the table, the metric for the model with CAE is better than
that without CAE, whichmeans CAE has a positive effect on feature

FIGURE 7 | RUL results with different algorithms.

TABLE 5 | Average test losses of different RUL prediction models.

RUL model FCN CNN CAE + LSTM Improved TCN

EVS 0.901 0.951 0.967 0.968
MAE 22.92 16.88 3.13 2.38
RMSE 29.15 20.37 17.48 9.09
R2 score 0.896 0.932 0.963 0.965
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extraction. Furthermore, after combining the feature extraction
results of CAE with the original data, the explained variance
score, RMSE, and R2 score are better than those without the
parallel structure. This is mainly because after adopting the
parallel structure of CAE and the original data, the dimension of
the feature map expanded from the original 9 dimensions to 18
dimensions, which is equivalent to enhancing the feature
performance. Therefore, the CAE layer has a significant effect on
the improved TCN network for RUL prediction.

Receptive Field With Different Layers and Dilated
Factors
After evaluating the effect of the CAE layer, we compared a
different number of causal convolution layers and the dilated
factors for TCN optimization. As shown in Figure 1, two layers of
dilated causal convolution and activation function are included in
each causal convolution layer. Table 3 shows the comparison
result. It is seen that the best metric for the predictive model is
obtained when there is four causal convolutional layer and dilated

factor is set to 1, 2, 4, 8. Therefore, it is concluded that this
structure optimizes the RUL predictive model.

Comparison of the Proposed Method With
Conventional Algorithms
To verify the performance of the proposed improved TCNmodel, a
fully connected network (FCN), Convolutional Neural Network
(CNN), LSTM model, and its variation were implemented and
compared for the same dataset. For FCN, it adopts the full
connection of neurons between different layers, which is different
from the TCN network during the training process. Therefore, by
comparing with FCN, the advantage of DNNs is demonstrated.
Also, to show that the improved TCN method is better than other
DNNs, this paper compared the results of CNN, LSTM, and TCN.
The relevant comparison results are shown in Table 4. From the
results, it is seen that the accuracy and performance of TCN are
better than other networks on the task of predicting the RUL of
electric gate valves. Moreover, two operating conditions are selected
at random, and the predicted RUL curves obtained from different

FIGURE 8 | RMSE results of ITCN vs, vanilla TCN under different operating conditions.

FIGURE 9 | Results of RUL prediction under different operating conditions.
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models are shown in Figure 7. The RUL prediction trend for the
improved TCN is the closest to the real RUL, which shows that the
best prediction is obtained from the improved TCN model. This
result is also consistent with the metric shown in Table 4.

To further verify the predictive performance and demonstrate
the generalization capability of the proposed improved TCN
model, we also applied it to predict RULs for the turbofan
engines in the NASA C-MAPSS benchmark datasets. The
C-MAPSS dataset contains the degradation history of aero-
propulsion engines operating under different fault modes. The
dataset has four subsets composed of multi-variate temporal data
obtained from 21 sensors. Detailed information on the
composition of the dataset can be found in reference (Ramasso,
2014). Due to space constraints, we evaluated the proposedmethod
only on the FD001 subset of the C-MAPSS dataset.

Similarly, the different methods mentioned in this section are
compared. The relevant comparison results are shown in Table 5.
It is seen that the improved TCN network still has the highest
accuracy for FD001 data and all TCN evaluation metrics are
better than other networks.

Remaining Useful Life Prediction Results
This section presents the RUL prediction results under different
aging conditions. As shown in Figure 8, the average RMSE of the
improved TCN and the original TCN under different operating
conditions are presented. It is seen that there is an impressive
increase in accuracy of improved TCN compared with that of the
original (vanilla) TCN under different operating conditions.

Moreover, Figure 9 is the results of the RUL prediction curve
after randomly selecting different operating conditions. It is seen
that the RMSE in Figure 8 is consistent with the RUL prediction
curve of the improved TCN, which is significantly better than the
original TCN. Moreover, it can be seen that before and at the
beginning of the equipment degradation, the errors between the
predicted curves and the real curve is large, which is mainly
caused by the sensor measurement error and noise during normal
operation. With the gradual development of degradation, the
improved TCN could better track the real RUL. As the equipment
approaches the end of life, there is a minor deviation between
predicted and real RUL but within the acceptable range.

CONCLUSION

This work proposes an improved TCN (ITCN) model for nuclear
power plant electric gate valve remaining useful life estimation.
Multi-variate training datasets that represent the degradation
history of the valve are acquired from an experimental
platform. The dataset is subsequently preprocessed and
normalized. High-performing convolution auto-encoder layers
are also integrated into the ITCN model to improve model
performance. Moreover, we experimented with different model
hyperparameters and convolution dilation factors to determine the
best parameters for the model. The research result and evaluation
metric show the impressive performance of the ITCN model. To
further verify the generalization capability of the proposed method,

the model is evaluated on NASA’s C-MAPSS dataset, to predict
RUL for aero-propulsion engines. Evaluation results show similar
impressive performance on the benchmark dataset. The results also
show that the work can be further extended to other mechanical
components and devices. Other advantages of the proposed
method are its ability to solve the problem of large computing
resources andmemory requirements that is common to LSTM and
other RNNs. The originality of this study is summarized below:

(1) We present and analyze major issues that constraint the
implementation of PHM for nuclear power systems

(2) We propose an improved TCN predictive model, based on
CAE and improved residual convolution. The parallel
structure of the TCN is augmented to enhance feature
processing for accurate RUL prediction.

(3) The proposed method is extensively evaluated using aging
characteristics of electric gate valves and other benchmark
datasets. The RUL prediction result and the comparative
analysis of other state-of-the-art models show an impressive
performance of the proposed method.

The results also show that the proposed method can be applied
to critical components and devices in other industries. It could
also enable predictive maintenance which reduces maintenance
downtime and part replacement cost, and improves productivity.
Nevertheless, we observed some limitations of the research. First,
the data acquisition procedure presented in this work needs to be
optimized. Aging and degradation modes in experiments also
need to be extended to completely reflect the real degradation
process. Further, the proposed method needs to be verified using
real degradation information from operating NPPs. Moreover,
the hyper-parameters and layer numbers of the proposed ITCN
are selected manually which is time-consuming. The application
of heuristic optimization algorithms and auto-tuners could
further optimize the predictive model performance. These
limitations will be addressed in our future work.
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