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In order to analyze the impact of large-scale photovoltaic system on the power system, a
photovoltaic output prediction method considering the correlation is proposed and the
optimal power flow is calculated. Firstly, establish a photovoltaic output model to obtain the
attenuation coefficient and fluctuation amount, and analyze the correlation among the
multiple photovoltaic power plants through the k-means method. Secondly, the long
short-term memory (LSTM) neural network is used as the photovoltaic output prediction
model, and the clustered photovoltaic output data is brought into the LSTM model to
generate large-scale photovoltaic prediction results with the consideration of the spatial
correlation. And an optimal power flow model that takes grid loss and voltage offset as
targets is established. Finally, MATLAB is used to verify that the proposed large-scale
photovoltaic forecasting method has higher accuracy. The multi-objective optimal power
flow calculation is performed based on the NSGA-II algorithm and the modified IEEE
systems, and the optimal power flow with photovoltaic output at different times is
compared and analyzed.

Keywords: large-scale photovoltaic, correlation, neural network, prediction, optimal power flow

INTRODUCTION

In recent years, with the strong support of national policies, photovoltaic capacity of China has
grown rapidly in the short duration (Mohammadi and Mehraeen, 2017). At the end of 2019, the
national photovoltaic power generation capacity reached 224.3 billion kWh, a year-on-year increase
0f 26.3%. The “Three Norths” area is affected by the large scale of local new energy installations and
the limited consumption space. This area abandoned 87% of the country’s photovoltaic power
generation, and its light abandonment rate dropped by 2.3% year-on-year to 5.9% (Hashemi and
Ostergaard, 2017). In order to further reduce the national light abandonment rate, it is of great
significance to study the large-scale photovoltaic output prediction method and its impact on the
planning and operation of the power system (Bowen et al., 2016; Sun et al., 2017; Zhongkai et al.,
2018).

New energy sources such as photovoltaics and wind power have volatility and randomness (Yang
et al., 2016). How to improve the accuracy of new energy prediction has become a hotspot for both
domestic and foreign scholars (Lorenz et al., 2009; Li et al,, 2019). An improved vector auto-
regression model that can combine historical PV output power with weather monitoring data is
proposed. The model generates PV output simulation series and applies them to short-term forecasts
for small-scale smart grids (Huang et al., 2014; Bessa et al., 2015). In (Ghislain et al., 2019), history
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data of adjacent power stations was applied to generate the
probability density function of photovoltaic output based on
quantile regression and Lasso penalty technology, which
provides a theoretical basis for short-term photovoltaic output
prediction. Cluster analysis methods are applied in the process of
PV output modeling and reliability assessment. Based on the
theory of cluster analysis, a multiscale time-series clustering
model of solar irradiance intensity is developed from the
perspective of data mining (Lin et al,, 2018).

With the integration of large-scale new energy into the power
grid, the regularity and volatility of new energy output have an
increasing influence on the operating status of the system (Xia
etal., 2016; Ye et al., 2019). Gaussian mixture models are applied
to accurately establish source-load uncertainty models, due to the
stochastic response of source-load interactions. An adaptive
linearized semi-invariant method for probabilistic power flow
calculation that considers the source-load strength randomness is
proposed, which can effectively reduce the global linearization
error of the power flow (Liu et al., 2019). Under the condition that
the wind farm is connected to a hybrid AC-DC system, the
optimal power flow problem of minimizing the total transmission
loss is studied in the article. The internal point method (IPM) is
applied when dealing with discrete variables as a way to improve
the accuracy of the optimal solution (Cao et al, 2013). The
traditional safety constrained economic dispatch model for
provincial power grids is extended and applied to large power
grids across provinces and regions. In order to solve the problem
of optimal resource allocation over a large area, the model is
further optimized to improve the solution efficiency. The
economic dispatching problem of large-scale multi-region
cogeneration units under different scenarios is studied in
(Nazari-Heris et al., 2019), balancing the operation cost and
pollutant emission targets, and the proposed method can
reduce the cost of $1939534.08 per year. The impact of price
uncertainty on active distribution network dispatching is studied
in (Nazari-Heris et al, 2020), in which the multi-objective
problem is solved by robust optimization algorithm and
e-constraints. In (Nazari-Heris et al., 2018), optimal stochastic
scheduling of virtual power plant considering NaS battery storage
and combined heat and power units is studied.

Due to the insufficient number of power plants modeled in the
existing literature, PV output impact on the system at different
moments and the spatially correlation of large-scale PV
generation are not represented. Therefore, this paper proposes
the optimal power flow calculation considering the correlation of
large-scale photovoltaic power generation. First, in this paper,
attenuation coefficients and fluctuations are obtained from PV
output models and measured data, and the k-means method is
used in the clustering analysis of PV output fluctuations in large-
scale power plants. The attenuation coefficient and fluctuation
amount through the photovoltaic output model and the
measured data, and use the k-means method to cluster analysis
on the photovoltaic output fluctuation of large-scale power stations.
Secondly, establish an LSTM prediction model that considers spatial
correlation, obtain a large-scale photovoltaic output prediction
curve, and establish an optimal power flow model that takes
power system loss and voltage offset as targets. Finally, the

Optimal Power Flow Calculation

proposed large-scale photovoltaic prediction method and optimal
power flow calculation model were simulated in the modified
IEEE39-bus system and IEEE118-bus system, verifying that the
prediction method has higher accuracy and the daily regularity of
photovoltaic output has a greater impact on the system.

CORRELATION OF LARGE-SCALE
PHOTOVOLTAIC OUTPUT

Ideal Model of Photovoltaic Power

Generation
The ideal output P; of the photovoltaic power station without
considering the influence of the shading and temperature is Eq. 1
(Wang et al,, 2019):
P, =P stc% (1)

Where Py, is the output of photovoltaic panels under standard
conditions (solar radiation intensity Iy, = 1000 W/m?
temperature Ty, = 298 K).

The total solar radiation intensity at a certain place on the
earth at time ¢ is Eq. 2:

It =Ib+I,i (2)

Where I, is the solar radiation intensity without attenuation. I, is
the direct solar radiation. I is the solar scattered radiation.

I, is the main component of solar radiation. The direct solar
radiation in a certain place can be expressed as (Yang et al., 2011):

I, = 8( 1+ 0033 cos{ ZN 1OV G 3)
b= ' 365 b p
Tb — 0.56 (efo,SGM + e—o,OQSM) (4)

Where § is the solar constant, about 1366 W/m? N is the day
sequence, which means the day number of the year; p is the solar
incident angle, which is the difference between the solar zenith
angle 9z and the photovoltaic panel inclination g; 7, is the
atmospheric transparency coefficient of direct solar radiation;
M is the atmospheric mass, which is related to the altitude.

P(a)
v @, >30°
P, sin «;
M= P(a) .
a, <30
PO{ \/[1229 + (614sina,)?] — 614sin as}
(5)

Where a is the altitude of the measuring place; P(a) is the
atmospheric pressure of the measuring place; P, is the
standard atmospheric pressure. «, is the local solar altitude
angle, which is complementary to the solar zenith angle 6.

Due to the action of air molecules and erosol particles, light
radiation energy is redistributed in a certain law to form scattered
radiation (Bunea et al., 2006; Dall Anese et al., 2014). According to
the Berlage formula, the intensity of solar scattered radiation is Eqs
6-8 (Yang et al,, 2011; Zhang et al,, 2014):

Frontiers in Energy Research | www.frontiersin.org

November 2020 | Volume 8 | Article 590418


https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles#articles

Lietal

k(1 -1y)sina;

I; = (6)
2-28In%

7, = 0.271 — 0.2747, 7)

sin & = sin ¢ sin 8 + cos ¢ cos 8 cos w; (8)

Where k is a parameter related to air quality. 7,4 is the atmospheric
transparency coefficient of scattered radiation. & is the latitude of
the area; & is the solar declination angle; w, is the solar hour angle.
The solar declination angle changes with the seasons and is
calculated by the following formula (Zhang et al., 2014):

8:23.4Ssin[3<ﬂxﬁxﬁxﬂ>] 9)
2\N;, N, N; N,
Where Ny = 92.975 is the number of days from the vernal equinox
to the summer solstice; ; is the number of days from the vernal
equinox; and so on, N, = 93.269, N; = 89.865, N, = 89.012.
The time angle of the Sun is represented by w, sunrise is
negative, sunset is positive, and it is 0" at noon, increasing by 15°
every hour according to the rotation of the earth. Meanwhile, the
time difference has an impact on w;. Beijing time is the time in the
eastern eight time zone, and the longitude of the interval is 120°
east. The formula for calculating the time angle w; based on
Beijing time in a certain area is Eq. 10:

w,= (12-1)x 15° + (120° — y) (10)

Where v is the local longitude; ¢ is Beijing time.

Spatial Correlation Characteristics of
Large-Scale Photovoltaic Output

Photovoltaic power generation is affected by a variety of practical
conditions (Samadi et al., 2014; Lingfeng et al., 2017). Without
considering the volatility, the theoretical output will be attenuated.
The daily attenuation coefficient K; is used to characterize the
attenuation of photovoltaic output, the expression is Eq. 11:

e M (11)
Zu:lfi (u)

Where K; is the attenuation coefficient on the i day; y; (u) and
fi(u) are the measured photovoltaic power value and the
theoretical photovoltaic power value of the u sampling point;
n is the number of sampling points.

Eq. 11 uses the least squares method to find the best fitting
coefficient, so that the squared residual sum of attenuated
theoretical output and the measured output is minimized,
which is the optimization problem of matching the theoretical
model with the measured data.

Natural phenomena such as cloud movement, floating dust
occlusion, etc., cause fluctuations in photovoltaic output and
produce fluctuation components. The difference between the
actual photovoltaic output and the theoretical attenuation
output represents the fluctuation component aAP; of the
photovoltaic output, and its expression is Eq. 12:

\ AP, = P/ _ K,P, (12)

Optimal Power Flow Calculation

/, /’?c

Forget Input OQutput
gate gate tanh gate

P s s el

FIGURE 1 | LSTM unit structure diagram.

The spatial correlation characteristics of photovoltaic
output are affected by two spatial scales: large-scale weather
and small-scale weather. Large-scale weather mainly affects
the overall attenuation, while small-scale weather affects
fluctuations. The similar fluctuations in photovoltaic output
indicate that the geographical environment and weather
conditions of the power station are similar, and the spatial
correlation of photovoltaic output is high. Therefore, this
paper clusters the fluctuations of each photovoltaic power
station output in each power station group. By selecting the
optimal cluster number, the final group result of the power
station is obtained. The k-means method is used here to cluster
the output fluctuations of multiple photovoltaic power
stations, and the optimal cluster number of power stations
is determined by the sum of squared error (SSE) within
the group.

PHOTOVOLTAIC OUTPUT PREDICTION
MODEL CONSIDERING SPATIAL
CORRELATION

Taking into account the spatial correlation between power
stations can make the photovoltaic output prediction model
more comprehensive and reduce the photovoltaic output
prediction Therefore, this paper considers the
fluctuation of photovoltaic output to perform a cluster analysis
of large-scale photovoltaic power stations, and obtains the spatial
correlation characteristics between the power stations, and then
predicts the photovoltaic output of multiple photovoltaic power
stations at the same time.

Long short-term memory (LSTM) neural network is an
improved deep learning algorithm based on recurrent neural
network (RNN), especially for processing time series with
seasonal periodic changes. LSTM neural network consists of
input layer, hidden layer and output layer. Figure 1 shows the
unfolded cyclic network.

The LSTM gating mechanism contains three gates: forget gate
f» input gate i, and output gate o,. In addition, the structure also

€rror.
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FIGURE 2 | Structural diagram of photovoltaic output prediction model considering spatial correlation characteristics.

contains an internal memory C,. The calculation formula of each
variable in the cyclic network is Eq. 13:

fo=0(Welho,x] +by)

iy =0 (Wilh_1,x] + b;)

o =0(W, (he-1, x:] + b,)

C; = tanh (W [h;_,x:] + b,)
Ct=ft><CH+it><(~3,

h; = o; x tanh (C;)

(13)

Where Wy W;, W, and W, are the weight matrix; b b;, b,, b, are
the bias parameters; o are the activation functions that are
usually rely or sigmoid functions; x,, C,, h; are the input
layer state, control unit state, and hidden unit state at time ¢,
respectively.

The structure of the LSTM model is the same as the cyclic
neural network. It can be seen as multiple copies of the same
neural network, and each neural network module will pass
the message to the next module. Taking the history output
data and solar radiation intensity data of the target
photovoltaic power station as the input of the LSTM
network model, the expression of the prediction model can
be obtained Eq. 14:

ht+l :f(hhht—l:--

Where hy,; is the predicted value of photovoltaic power of the
target power station; hy, ... , hy, is the history data of
photovoltaic output of the target power station; Xy, q, ... , Xrp
is the solar radiation intensity data of the target power station.

Figure 2 is a block diagram of the photovoltaic output
prediction model considering spatial correlation. There is a
higher spatial correlation between the PV plants obtained by
clustering with the above method. Taking the power stations in
each type of power station group as the target power station in the
prediction model, and using the history output data and solar

L htfn) Xti15 Xp5 + - - )xtfn) (14)

radiation intensity data of each target photovoltaic power station
as the input of the LSTM network model, a multi-dimensional
photovoltaic output prediction sequence can be obtained at the
same time. The prediction data from all PV clusters are summed
to get the total predicted output of large-scale PV clusters in the
province.

OPTIMAL POWER FLOW CALCULATION

Optimal Power Flow Model

Based on the NSGA-II algorithm, this paper performs the optimal
power flow calculation with the objective functions of active grid
loss and voltage offset. The optimal power flow model consists of
three parts: objective function, equality constraints and unequal
constraints.

Objective Function
(1) Active power loss

Py = Z Pi1oss

keNp
= Z gk((]t2 + UJZ - ZU;U]' cos Gij)gk

keNp

(15)

Where P, is the total grid loss of the system, Py, is the active
power loss of branch k; g is the conductance of branch k; Ny is
the set of AC and DC branches, and Nygc is the set of nodes of the
converter station.

(2) Voltage offset

L fpec
AU = Ui~ U ] (16)

Ny [
- max min
i=1 U™ - U;
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v

Data initialization (photovoltaic output and solar
radiation intensity data; K-means clustering
algorithm parameters; NSGA-II parameters;

system grid structure data)

v

K-means clustering analysis is used for PV output
data, which is substituted into LSTM model

A 4
Output prediction data of photovoltaic power
stations in the whole province

The output prediction data of photovoltaic power
stations in the whole province generate the initial
population, I =1,

The number ofI iterations J =1

v

NSGA-II optimal power flow calculation

JT1

S the maximum number of iterations
reached?

The Pareto optimal solution set is output to obtain
the optimal solution of multi-objective optimal
power flow

End

FIGURE 3 | Flow chart of optimal power flow considering large-scale
photovoltaic.
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FIGURE 4 | Sum of squared errors of photovoltaic output fluctuation.

Optimal Power Flow Calculation

Where U;, UF*, U™, and U™™ are the actual value, expected value,
minimum value and maximum value of the node voltage respectively.

Equality Constraints

PGi - Py - U,z UJ(G,] cos 0,] + B,] sin 9,]) =0
jei

Qi — Qi - Uiz Uj(G,-j sin 0;; — By cos Bij) =0 (17)
jei

i€ Np

Where Pg; and Qg; respectively represent active power and
reactive power of generator output at node i, Pr; and Qy;
respectively represent the active power and reactive power of
the load at node i, and U; and Uj represent the voltage amplitude
of nodes i and j respectively. 6; represents the phase angle
difference between node i and node j, G;; and B;; represent the
conductance and susceptance between node i and node j
respectively, and Nj is the set of power system nodes.

Inequality Constraints

Pgimin < Pgi < Pgimax i € Ng

Qgimin < Qgi < Qgimax- i € Ng
Timin < Ti < TimaX) i€ NT (18)
Uinin SU; < Uipax, i € N
Plimingplsplimaxrl € Nl

Where Pginmax Pgimin QGimax Qgimin represent the upper and
lower limits of the active power of the generator at bus i, and the

TABLE 1 | Number of clusters per day.
Date First Second Third Fourth Fifth Sixth Seventh

Weather type ~ Cloudy Cloudy Overcast Cloudy Rainy Sunny  Sunny
Number of 6 7 8 6 8 5 6
clusters

15 20 25
|
N\

stations/%

AN

N

2 3 4 5 6 7 8 9
Number of clusters

Percentage of variable power

FIGURE 5 | Change curve of variable power station proportion under
different clustering numbers.
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TABLE 2 | Number of power stations corresponding to 6 cluster power stations in QingHai province.

Cluster names Cluster1 Cluster2
of power
stations
Number of power stations 7 9
12501
— Actual photovoltaic
“““ Prediction with considering correlation

= 1000[ —— Prediction without considering correlation

=

o L

5 750

o

Q

E

S L

2 500

kS)

=

(=

250 |
0
0 6 12 18 24
Time/h
FIGURE 6 | Prediction curve of day-ahead and intra-day photovoltaic
output and actual measurement curve of A province.

TABLE 3 | Comparison of forecast results with and without considering
correlation.

Cluster names of Mean Standard Maximum
power stations value deviation

Actual photovoltaic 508.3 317.8 876.9
Forecast with considering 491.6 288.1 805.6
correlation

Forecast without considering 461.47 252.0 723.8
correlation

upper and lower limits of output reactive power, respectively; Timin
and Tyax respectively represent the upper and lower limits of the
adjustable ratio of the transformer at bus i, Ny represents the
number of transformers in the system, Ujyay and Ujmiy, respectively
represent the upper and lower limits of bus i voltage, Pjmax and
Pjimin respectively represent the upper and lower limits of the active
power carried by the branch, Ng represents the generator set, Nj is
the power line set, and Nj is the power system set.

Optimal Power Flow Solution
Figure 3 shows the flow chart of the optimal power flow using

NSGA-II to consider photovoltaic correlation. Specific steps are
as follows:

(1) Initialization parameters need to be set. The user has to set up
the system grid structure, enter the PV output and solar
irradiance data, k-means algorithm parameters and NSGA-II
algorithm parameters.

Cluster3 Cluster4 Cluster5 Cluster6

(2) The paper uses the k-means clustering method to analyze the
fluctuation of PV output, and then substitutes the history PV
output data and other information of the power plants into
the LSTM model, so as to obtain the predicted output of
large-scale PV power plant clusters in the province.

(3) We then replace the photovoltaic output into the optimal
power flow calculation model and carries on the optimal
power flow calculation.

EXAMPLE ANALYSIS
Large-Scale PV Forecast Output

This paper uses the actual data of a large-scale centralized
photovoltaic power station in a province as an example,
intercepting the photovoltaic output from May to July 2018
for simulation. The data sampling interval is 15 min, and each
photovoltaic power station contains 5,152 output data.

The k-means method is used to cluster the attenuation
coefficients and fluctuations of multiple photovoltaic power
stations, and the optimal cluster number of the power station
group is determined by the sum of squared errors (SSE) within
the group. Taking province A as an example, cluster analysis of
large-scale power stations in the province was carried out on the
first to seventh of June when the weather fluctuates frequently.
Taking June 1 as an example, the result of the optimal number of
clusters in a power plant group through SSE is shown in
Figure 4. It can be seen that the blue curve has an obvious
inflection point when the number of clusters is set to 6. After
that, as the number of clusters increases, the trend of the curve is
relatively flat, which proves that the optimal number of clusters
in the power plant group is 6. Table 1 shows the optimal
clustering number of photovoltaic power plants in the
province from June 1 to 7.

This paper selects power stations that always belong to the same
cluster set as typical power stations under different weather
conditions, and defines power stations that do not belong to the
same set as variable power stations. In order to improve the forecast
accuracy of PV output in the province, the percentage of variable
power plants should be lower. Through the statistics of clustering
number and variable power plant ratio data, the variable power
plant ratio curve under different clusters number can be plotted as
shown in Figure 5. By observing the curve for the clustering
number from 5 to 7, it is obvious that the minimum value of the
variable power plant ratio is obtained when the clustering number
is 6. Therefore, considering different weather conditions, the
optimal classification number of power stations in the province
is 6. Table 2 shows the number of power stations corresponding to
the six types of cluster power stations in Province A.
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FIGURE 7 | Topology diagram of modified IEEE 39-bus system.
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Voltage offset

6 . .
09 095 1

FIGURE 8 | Distribution of Pareto solution in objective function space at
12:00 for IEEE 39-bus system.

The cross-validation method was applied to the history data of
six kinds of photovoltaic power plant groups, and the history data
was trained and tested according to the ratio of 9:1 (4637:515) of
the training set to the test set. Set the time step of the model input
layer to 10 and the number of hidden layers to 2, The dimension
of the first layer of the hidden layer is 15, and the dimension of the
second layer of the hidden layer is 30. The model simulation

results in the forecast curve of the province on August 1 as shown
in Figure 6. Based on this model, carry out 1-4 steps, which is
15 min-1 h ultra-short-term rolling forecast. It can be seen that
the large-scale photovoltaic forecasting method considering the
correlation has higher accuracy.

The benefits of considering photovoltaic correlation is
further verified. Table 3 lists the comparison of forecast
results with and without considering correlation. It can be
seen that the mean value, standard deviation and maximum
of the prediction are all closer to the actual value of photovoltaic,
compared with the forecast results without considering
correlation, which further demonstrate that the large-scale
photovoltaic forecast method considering the correlation has
higher accuracy.

Optimal Power Flow Calculation
In order to analyze the impact of large-scale photovoltaic on the

system, simulation verification was carried out in the modified
IEEE 39-bus system and IEEE 118-bus system. The optimal
power flow mode is implemented on a personal computer
with Intel Core i7 CPU(2.20 GHz) and 16.00 GB RAM.

The power grid connection of modified IEEE 39-bus system is
shown in Figure 7. The province’s intraday photovoltaic output
forecasts at different times will replace the traditional generator in
38th bus. The simulation parameters are taken from manpower 4.1.

The NSGA-II algorithm is used to perform multi-objective
optimal power flow calculations for systems containing large-
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TABLE 4 | Comparison of optimal power flow results.

Time Grid loss (MW) Voltage offset
6:00 [6.92, 22.52] [0.39, 1.28]
8:00 [7.81, 9.58] [0.30, 0.78]
10:00 [6.25, 8.16] [0.56, 0.92]
12:00 [6.04, 7.00] [0.91, 1.26]

scale PV output, and an optimal set of Pareto solutions is
obtained for each moment. In NSGA-II algorithm process, the
maximum iteration number is set as 200, the population size is set
to be 100, and the distribution indices for crossover and mutation
operators are 20. The computation time of the proposed optimal
power flow model is 10 min. Figure 8 shows the Pareto solution
set at 12:00, and the optimal solution set is uniformly distributed
in the objective function space. It is verified that the NSGA-II
algorithm has strong validity and applicability, can coordinate the
active power loss and voltage offset of the system, and has a strong
global search capability.

Table 4 shows the comparison of the optimal power flow
calculation results at different times. As the 38th bus is connected
to photovoltaic output, the PV output gradually increases.
Therefore, the traditional generators are avoided to supply
power to the remote load, which reduces the transmission
distance and the grid loss in the system. At the same time, the
improvement in power supply reduces the variations of the
optimization objectives, and the system operating state tends
to stabilize. In addition, the grid loss and voltage offset are in a
mutually restrictive relationship, and the operator can select the
system operating state according to actual needs.

In order to further validate the effectiveness of the proposed
method in a large-scale system, case studies are performed on
IEEE118 system. The province’s intraday photovoltaic output
forecasts at different times will replace the traditional generator in
90th bus. The computation time of the proposed optimal power
flow model is 17 min. Figure 9 shows the Pareto solution set at 12:
00, and Table 5 shows the comparison of the optimal power flow
calculation results of IEEE118 system at different times. These
results further demonstrate the NSGA-II algorithm have a better
performance in solving multi-objective problems, and the
effectiveness of the proposed method is also validated.

CONCLUSION

This paper proposes an optimal power flow calculation method
considering the correlation of large-scale photovoltaic output,
and the following conclusions are obtained:

(1) The k-means clustering algorithm is used to obtain the spatial
correlation between large-scale PV plants. The accuracy of the
PV output prediction model is improved by using the LSTM
network model for multidimensional PV output prediction.

(2) The impact of regular variations in PV output on the system
is obtained through optimal power flow analysis. Traditional
generators are required to adjust their output according to
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FIGURE 9 | Distribution of Pareto solution in objective function space at
12:00 for IEEE 118-bus system.

TABLE 5 | Comparison of optimal power flow results.

Time Grid loss (MW) Voltage offset
6:00 [21.92, 22.02] [0.34, 0.80]
8:00 [21.98, 22.06] [0.32, 0.72]
10:00 [21.9, 22.04] [0.3, 0.65]
12:00 [21.94, 22.05] [0.31, 0.58]

the PV conditions to meet the grid-wide load. As the PV
output increases, the transmission path and the grid loss
decrease, but the voltage offset increases.

(3) The photovoltaic forecast method proposed in this paper is
conductive for dispatch center to obtain more realistic
photovoltaic output, and then the optimal dispatching is
utilized to balance the economy and security of the power system.
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