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Identifying the critical factors of industrial total-factor coal productivity (TCP) and its
promotion paths will help achieve the goals of regional energy conservation and
pollution reduction. Based on the perspective of total-factor productivity, this paper
integrates the methods of stochastic frontier analysis (SFA), Kaya identity, and
STIRPAT model to systematically diagnose the temporal and spatial characteristics
and the heterogeneous sources of the industrial TCP in 11 provinces of eastern China,
and it proposes some differentiated regulatory policies for different provinces. The results
show that the TCP is increasing year by year and tends to converge, which indicates that
increasing TCP is more and more challenging. Further research shows that there are
significant spatial differences in the impact of the economic development level (EDL),
industrial economic structure (IES), energy consumption intensity (ECI), and energy
consumption structure (ECS) on industrial TCP. As the original driving factors of
technological progress, the impact of R&D investment intensity (RII) and R&D
investment levels (RIL) on industrial TCP is relatively consistent in different regions. The
former has a negative congestion effect on TCP due to the imbalance of R&D investment
structure, while the latter has a positive effect on TCP. Therefore, the eastern region should
increase R&D expenditure and optimize R&D expenditure structure as a general way to
improve TCP in each region and adopt differentiated regulatory policies in economic
development and energy utilization according to local conditions.
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INTRODUCTION

With the development of economy and the acceleration of industrialization, problems such as
resource shortage and air pollution have become increasingly serious. How to coordinate the
development of economy and environment has become a topic of common concern for the whole
society. Therefore, while developing the economy, we must also pay attention to energy saving and
emission reduction, so as to coordinate economic and environmental benefits. Through previous
studies, we know that improving energy efficiency is an essential means of energy saving and
emission reduction (Guan et al., 2014; Mardani et al., 2017; Wang et al., 2019a). The key to energy
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saving is to define the factors that affect the total-factor coal
productivity (TCP) in the industrial sector. Besides, affected by
industry-dominated industrial structure and coal-dominated
energy structure, improving TCP in the industrial sector is
related to the economy’s sustainable development, and it is an
important means to resolve air pollution (Hou et al., 2018; Zhao
et al., 2018; Xiong et al., 2019). Based on the above, it is urgent to
study how to identify important influencing factors and how to
choose the upgrade path of TCP in consideration of regional
differences. Therefore, this paper analyzes the evolution trends
and regional differences, key factors, and possible improvement
paths of industrial coal productivity. It contributes to industrial
energy saving and emission reduction and has an important
significance for the economic transformation and upgrading.

For energy productivity measurement, single-factor and total-
factor energy productivity are usually used. The former,
traditionally represented by energy intensity, is used to
measure the relationship between energy input and economic
output. It is easy to operate but cannot measure the potential
technology efficiency and ignores the substitution effect of
production factors such as labor and capital on energy (Zhou
et al., 2008). In comparison, the substitution elasticity of energy
and other production factors is considered, and the defects
mentioned above are overcome in the total-factor energy
productivity (Wang et al., 2016; Liu and Bae, 2018). As for the
measurement methods, the most used methods are non-
parametric data envelopment analysis (DEA) and parametric
SFA (Chen et al., 2015; Iftikhar et al., 2016; Wang et al.,
2018). Comparatively speaking, as the DEA is a mathematical
programming method that does not include statistical noise, its
estimate of efficiency value may be biased, and its measurement
results are easily affected by extreme values (Yang et al., 2011).
The SFA method can identify the ineffectiveness of various
influencing factors and analyze the factors affecting efficiency
while calculating the efficiency, thus avoiding the deficiency of the
DEA two-step method (Feng et al., 2017; Gong, 2018). Therefore,
considering random noise, the SFA method is applied to measure
the industrial TCP in this paper.

There are large spatial differences in China’s energy
productivity. For example, He et al. (2018) studied the
industrial sector’s energy productivity and found that the
energy productivity in the eastern region was higher than that
in the central and western regions. Zhao et al. (2014) studied
industrial energy productivity and found that energy productivity
gaps in the eastern region were narrowing, while in the west and
central regions, they were widening. In studying the economic
and environmental efficiency of energy consumption, Lu et al.
(2019) found a positive spatial correlation between the economic
and environmental efficiency of energy consumption. The
productivity of coastal areas in eastern China was relatively
high, while that of inland areas in central and western China
was relatively low. Overall, energy productivity is high in the
eastern region and low in the west and central regions.

As for the influencing factors of energy productivity, energy
productivity is affected by technology, energy structure, economic
development, industrial structure, and others. However, due to
the differences in research methods or samples, different scholars’

research conclusions were not the same (Ang and Xu, 2013; Meng
et al., 2015). For the technological level, it is generally believed
that its improvement will increase energy productivity. For
example, Ouyang et al. (2019) found that the technical level
was the main driving force for energy efficiency growth. In
contrast, Jiang and Zha (2015) found that R&D expenditures
from enterprises could improve it, but those from the government
would inhibit it. Energy structure is also an important influencing
factor in energy productivity. Most scholars believed that the
high-carbon energy consumption structure was not beneficial to
improving energy productivity (Li and Shi, 2014). For example,
Teng et al. (2018) hold that the industrial sector’s productivity has
not been significantly improved only because the optimization of
energy consumption structure and the treatment of emission
reduction have reduced pollution emissions. Besides, many
scholars were also concerned about the relationship between
economic development and energy productivity, but the
research results differed. For example, Zhao et al. (2014) and
Lu et al. (2019) found that there was a positive correlation
between economic development and energy productivity, but
Zhou et al. (2018) found that there was a U-shaped relationship.
The industrial structure has an important impact on regional
energy productivity. In general, the increase in the proportion of
the secondary industry characterized by high energy
consumption would reduce energy productivity, but the
increase in the proportion of the tertiary industry
characterized by low energy consumption would increase
energy productivity (Wang et al., 2019b).

The spatial evolution trends of industrial coal productivity and
the spatial differences of the influence of related factors on TCP
need to be further examined. What is more, many scholars used
to adopt energy intensity, which was an indicator of output-type
technological progress, to explore the influence of technological
progress on the TCP. In contrast, few scholars comprehensively
consider the impact of input-type and output-type technological
progress. Therefore, this paper takes per capita R&D investment and
R&D investment proportion as input-type technological progress
factors to examine their regional energy efficiency implications.

As for the research methods for the influencing factors of
energy productivity, the method of the factor decomposition and
the econometric analysis are most widely used. However, data
availability often limits the former, and its conclusions can only
provide a general direction for policy improvement. Therefore,
many scholars use econometric methods to analyze the
influencing factors of energy efficiency. Overall, all methods
have advantages and disadvantages. For example, the Ordinary
Least Square (OLS) method often leads to biased estimation
results (Li and Shi, 2014), and the Tobit model is also a
commonly used method. But Simar and Wilson (2007) found
that the Tobit regression would show inconsistent results with the
deterioration in DEA, and the truncated model was more
applicable to related research. However, the truncated model
has some defects. Liu and Lin (2018) pointed out that the
truncated regression would lose some observations and
decrease sample size. Generalized-moment-method estimator
(GMM) was also a method for analyzing the main factors
affecting energy productivity. This method could significantly

Frontiers in Energy Research | www.frontiersin.org January 2021 | Volume 8 | Article 6271252

Wang et al. Drivers and Policy Choices of Industrial TCP

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles#articles


improve the efficiency of the estimates and solve the endogenous
variable. However, compared with other methods, GMM introduces
more estimates of the variables. Although this method would
improve the estimated results’ consistency, it may cause excessive
restriction to generate estimated bias (Jiang and Zha, 2015).
Considering the spatial differences in the influencing factors of
industrial coal productivity, this paper uses a panel data model.
This method is more beneficial to revealing the spatial differences
and the promotion paths of the influencing factors of regional coal
productivity than using time series data or cross-sectional data alone.

Generally speaking, the existing literature has carried out
extensive research on energy productivity and put forward
many useful insights, but some shortcomings also exist. First,
many scholars mostly measure energy productivity by energy
intensity, and the result is difficult to reflect the real energy
utilization efficiency, while there are few studies on TCP. Second,
based on the research objects (provinces, industries, and cities),
most scholars do not consider different impacts of heterogeneous
factors such as resource endowments, institutional environment,
and industrial structure on TCP (Lu et al., 2019). Moreover, the
existing research on provincial energy productivity is usually
based on the dynamic panel data model, such as system GMM.
Although this method can avoid endogenous problems of
variables, it leads to overconstraints and thus produces
estimation bias, and it is difficult to portray the spatial
differences of heterogeneous influencing factors of TCP.
Finally, most of the influencing factors of regional energy
productivity are selected based on subjective experience or
existing literature, lacking a theoretical basis.

The efficient use of coal resources depends on a differentiated
policy support system. However, there is still a lack of consistent
analysis framework concerning the measurement of the coal
utilization efficiency, the description of its internal heterogeneities,
and the analysis of related influencing factors within the existing
literature. In addition, the previous literature rarely considered the
impact of technological progress onTCP in terms of input and output.

Based on the above deficiencies, the contribution of our paper is
threefold. First, the TCP in the eastern region is taken as the
research object to discuss its influencing factors’ spatial differences.
China’s industrial structure is dominated by the industrial sector,
and the energy consumption structure is dominated by coal. The
eastern part of China is the center of economic development and
energy consumption. At the same time, it is facing problems such
as resource shortage and environmental carrying capacity
constraints. Therefore, this paper takes 11 provinces in eastern
China as the research objects. The results are more targeted and
operable for industrial energy saving and emission reduction.
Second, based on the expanded Kaya identity, this paper
measures energy technology progress from two aspects; that is,
it considers the impact of technological progress on total-factor
coal productivity comprehensively. Per capita R&D investment
and R&D investment proportion are regarded as input-type
technological progress, and industrial energy intensity is used as
output-type to examine the effect on TCP. Third, based on the
STIRPAT model, the spatial differences of various influencing
factors in China’s eastern region on TCP are empirically
analyzed to clarify the possible paths for the improvement of

coal productivity and thus to promote the energy saving and
emission reduction in the industrial sector and the
transformation and upgrade of the regional economy.

The remainder of this paper is organized as follows. Section 2
describes the researchmethods and sample data. Section 3 presents
the empirical results. Section 4 discusses the impact of various
influencing factors on the industrial TCP in the eastern region and
the differences between regions, and Section 5 concludes.

METHODOLOGY

Stochastic Frontier Analysis
Stochastic frontier analysis (SFA) is proposed by Aigner et al.
(1977). Its main feature is that it adopts a combined error term
composed of symmetric random error and new unilateral error.
This method can not only capture the random influence of
environmental factors but also measure the non-effectiveness.
Compared with the traditional DEA method, SFA is more
convenient to compare and analyze different objects. Its
discriminant ability is stronger, especially in the processing of
panel data (Zhang and Lu, 2017). Referring to the modeling ideas
of Battese and Coelli (1995), this paper expresses the stochastic
frontier production function of TCP as follows.

yit � f (xit; β)exp(vit − uit) (1)

where i and t represent the ith region and tth period, respectively,
yit denotes economic output, f (xit ; β) means the production
frontier, xit represents the factor input vector, and β is the
parameter to be estimated. (vit − uit) is the compound error
structure, vit is the random disturbance term of the normal
distribution, and uit is used to measure the technological non-
validity. Technological efficiency can be defined as the ratio of
actual output to the maximum possible output:

TEit � yit
f (xit ; β)exp(vit) � exp(−uit) (2)

Before measuring the TCP through the stochastic frontier
production function, the form of the production function
must be determined first. The production functions in the
existing literature mainly include the Cobb-Douglas
production function and the trans-logarithmic production
function. In comparison, the latter can reflect the interaction
of input factors on output. Therefore, this paper uses the trans-
logarithmic production function to measure the TCP. Based on
the research ideas of Zhang and Lu (2017), this paper sets capital,
labor as fixed investment, and industrial coal consumption as a
variable input, establishing the trans-logarithmic production
function as follows:

ln IEAit � β0 + β1 lnKit + β2 ln Lit + β3 ln ICCit + β4(lnKit)2
+ β5(ln Lit)2 + β6(ln ICCit)2 + β7 lnKit · ln Lit

+ β8 lnKit · ln ICCit + β9 ln Lit · ln ICCit + vit − uit

(3)

where IEA represents the industrial value-added (100 million yuan),
K represents the net value of industrial fixed assets (100 million
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yuan), L represents the total population of industrial employees (10
thousand people), and ICC represents the industrial coal
consumption (10 thousand tons). This paper measures TCP by
the ratio of IEA to industrial coal consumption (ICC), subtracting
lnICC from both sides of model Eq. 3 simultaneously:

ln (IEAit/ICCit) � β0 + β1 lnKit + β2 ln Lit + (β3 − 1)ln ICCit

+ β4(lnKit)2 + β5(ln Lit)2 + β6(ln ICCit)2
+ β7 lnKit · ln Lit + β8 lnKit · ln ICCit

+ β9 ln Lit · ln ICCit + vit − uit

(4)

Therefore, the industrial TCP can be measured based on
model Eq. 4.

Kaya Identity
Kaya identity integrates social, economic, energy, environmental,
and technological subsystems and is described by a simple
mathematical identity (Kaya, 1989). Because of simple
structure and intuitive calculation, it is widely used to analyze
the influencing factors in greenhouse gas emissions, energy
consumption, and other research fields (Lima et al., 2016; Wu
et al., 2016). Kaya identity is expanded in this paper to define the
influencing factors of TCP, as shown in model Eq. 5.

TCP � IEA
ICC

� IEA
GDP

· GDP
POP

· POP
RDI

· RDI
GDP

· GDP
TEC

· TEC
ICC

� IES · EDL · RIL−1 · RII · ECI−1 · ECS−1
(5)

where GDP represents the regional gross domestic product. TEC
represents terminal energy consumption. RDI represents internal
expenditures for regional research and development. IES indicates
the industrial economic structure, represented by the proportion of
IEA to GDP. EDL is the per capita GDP to measure the level of
economic development. ECS represents the proportion of ICC to
TEC tomeasure the energy consumption structure in the industrial
sector. Therefore, a high degree of the ECS means that the
industrial sector uses more coal, while other sectors use less.
That is, coal resources are concentrated in the industrial sector.
It is well known that the industrial sector has high coal utilization
efficiency, so increasing the proportion of coal consumption in
total energy consumption is more conducive to energy saving and
emission reduction. ECI denotes TEC per unit of GDP to measure
the level of output-type technological progress. RII is the
proportion of R&D expenditures to regional GDP to measure
the intensity of R&D expenditures. RIL indicates the R&D
investment level, measured by per capita R&D investment.
According to model (5), TCP is mainly affected by factors such
as industrial economic structure (IES), economic development
level (EDL), industrial energy consumption structure (ECS),
energy consumption intensity (ECI), R&D investment intensity
(RII), and R&D investment level (RIL).

STIRPAT Model
Based on the identification of the influencing factors, the
STIRPAT model is used to analyze the asymmetrical impact of

IES, EDL, ECS, ECI, RII, and RIL on TCP in this paper. The
STIRPAT model facilitates the avoidance of cross-sectional
dependence, heterogeneity, and nonlinear transformation of
potential integration variables (Liddle, 2015). On this basis, the
logarithm on both sides of model Eq. 6 is taken, and a panel data
model Eq. 7 for influencing factors of industrial coal productivity
in eastern China is obtained:

TCPit � a · IESbit · EDLcit · ECSdit · ECIeit · RIIfit · RILgit · εit (6)

lnTCPit � αi + β1i ln IESit + β2i ln EDLit + β3i ln ECSit

+ β4i ln ECIit + β5i lnRIIit + β6i lnRILit + μit (7)

where α, β are coefficients to be evaluated and μ is random error.
According to model Eq. 7, the factors of industrial TCP mainly
involve economic growth (EDL and IES), energy utilization (ECS
and ECI), and R&D expenditure (RII and RIL). Furthermore, this
paper uses the Hausman test to identify the type of panel data
model. This article first sets the following two null hypotheses,
namely, H1 (α1 � α2 � . . . � αn, β1 � β2 � . . . � βk) and H2

(β1 � β2 � . . . � βk), and then it constructs F1 and F2 statistics,
respectively.

F1 � (S3 − S1)/[(n − 1)(k + 1)]
S1/[nT − n(k + 1)] ∼ F[(n − 1)(k + 1), n(T − k − 1)]

(8)

F2 � (S2 − S1)/[(n − 1)k]
S1/[nT − n(k + 1)] ∼ F[(n − 1)k, n(T − k − 1)] (9)

where n is the number of cross-section objects; k is the number of
explanatory variables; T is the number of periods. S1, S2, and S3
represent the sum of squares of residuals of the variable
coefficient model, variable intercept model, and constant-
coefficient model, respectively. If the model accepts hypothesis
H1, it means that the model should be set as the constant
coefficient model. If H1 is rejected, it is necessary to check
further whether H2 is received. If H2 is accepted, the local
boundary model should be selected; otherwise, it should be set
as the variable coefficient model.

This paper uses this method to determine the type of panel
data and then empirically analyzes the influencing factors of
industrial TCP of 11 provinces in eastern China.

Sample and Data
Affected by industry-dominated industrial structure and coal-
dominated energy structure, energy consumption in the east of
China has increased dramatically in recent years (Wang et al.,
2020; Xu et al., 2020). Therefore, studying the industrial TCP in
the region and its influencing factors will help formulate
differentiated energy saving measures and paths. This paper
takes the data from 2000 to 2018 in 11 provinces in eastern
China as samples (Beijing City, Tianjin City, Hebei Province,
Liaoning Province, Shanghai City, Jiangsu Province, Zhejiang
Province, Fujian Province, Shandong Province, Guangdong
Province, and Hainan Province). The indexes of GDP,
industrial value-added (IEA), and the net value of industrial
fixed K are derived from the “China Statistical Yearbook
(2000–2019)”, and K is calculated by subtracting the
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accumulated depreciation from the original value of the fixed
assets of industrial enterprises above designated size. For
excluding the price factor, GDP, IEA, and K of each province
have been deflated to constant price referring to 2019.

Because of the availability of data, POP represents the average
employee number of industrial enterprises above designated size;
the data is derived from “China Industrial Statistical Yearbook
(2000–2019)”; the missing data are obtained from the statistical
yearbooks of each province; terminal energy consumption (TEC)
and industrial coal consumption (ICC) are sourced from the
regional energy balance sheet in “China Energy Statistical
Yearbook”; R&D investment intensity (RII) and R&D
investment level (RIL) are derived from “China Science and
Technology Statistical Yearbook (2000–2019)”.

RESULTS

Calculation Results of TCP in Eastern China
Based on the SFA model, this paper calculates the industrial total
factor coal productivity of 11 provinces in eastern China from
2000 to 2018, and the results are shown in Table 1. On the whole,
the industrial TCP in the east of China has been increasing year
by year, but there are obvious spatial and temporal differences in
the annual average growth rate and cumulative increment of
industrial TCP.

As shown in Table 1, the industrial TCP of 11 provinces shows
growth trends from 2000 to 2018. However, due to the
heterogeneity of regional social and economic development,
there are obvious regional differences in industrial TCP of
various provinces. For example, the industrial TCP in
Guangdong, Jiangsu, Shandong, Zhejiang, and Hebei provinces
is obviously higher than the average level in the eastern region,
which indicates that the industrial TCP in these provinces has
limited potential for improvement in the future. In contrast, the
industrial TCP of the four provinces of Liaoning, Tianjin, Beijing,

and Hainan is significantly lower than the average level of eastern
China, which indicates that the TCP of these provinces has great
potential for improvement in the future.

In terms of the change trends, the regional differences in TCP
tend to decrease. As shown in Figure 1, its growth rate and the
increment are significant in Beijing, Tianjin, Liaoning, and
Hainan provinces during the inspection period. For example,
the TCP in Hainan province increased from 0.177 in 2000 to
0.714 in 2018, and its average annual growth rate reached 8.06%.
In contrast, due to the relatively large base of the TCP in Hebei,
Zhejiang, Jiangsu, Shandong, Guangdong, and other provinces,
its growth rate and the increment are not significant. However,
their TCP is still at a relatively high level. Besides, the regional gap
in TCP in the eastern region decreases year by year, and its
growth rate tends to converge. The maximum inter-provincial
gap in TCP was 0.378 in 2000, and the maximum inter-provincial
gap in 2018 was 0.183. Meanwhile, the regional differences in the
growth rate of TCP fell from 10.77% to 2.86%, and the growth
rate showed convergence trends, which means that China’s
regional energy productivity has astringency (Zhang and Lu,
2017).

In general, there are great regional differences in the industrial
TCP in eastern China. All regions’ TCP increases year by year.
The changes in its growth rate and the increment value tend to
converge, which means that the potential for improvement in the
industrial TCP is relatively limited. As we all know, the different
levels of economic development lead to different industrialization
processes in various regions, so the energy utilization technology
and utilization efficiency of each region are also different (Steven,
1997). The reason why Hainan Province has the largest growth
rate at the beginning is because the base number is small and it is
in the growth period, while the other regions are in the mature or
decline period of the life cycle and the TCP base is relatively large,
so the growth rates and increments are not significant. Therefore,
it is necessary to identify the key influencing factors and
improvement paths that affect regional TCP.

TABLE 1 | Results of TCP in eastern China from 2000 to 2018.

Year Beijing Tianjin Hebei Liaoning Shanghai Jiangsu Zhejiang Fujian Shandong Guangdong Hainan

2000 0.258 0.300 0.432 0.304 0.376 0.502 0.458 0.381 0.490 0.555 0.177
2001 0.289 0.332 0.464 0.336 0.409 0.532 0.489 0.413 0.521 0.583 0.205
2002 0.321 0.365 0.495 0.369 0.441 0.561 0.520 0.446 0.550 0.610 0.235
2003 0.354 0.398 0.526 0.401 0.473 0.589 0.550 0.477 0.579 0.637 0.265
2004 0.387 0.430 0.555 0.434 0.504 0.617 0.578 0.508 0.607 0.661 0.297
2005 0.419 0.462 0.584 0.465 0.534 0.642 0.606 0.538 0.633 0.685 0.329
2006 0.451 0.493 0.611 0.497 0.563 0.667 0.632 0.568 0.658 0.707 0.362
2007 0.483 0.524 0.637 0.527 0.591 0.690 0.657 0.596 0.682 0.729 0.395
2008 0.514 0.554 0.662 0.557 0.618 0.712 0.681 0.622 0.704 0.748 0.427
2009 0.544 0.582 0.686 0.585 0.644 0.733 0.704 0.648 0.726 0.767 0.459
2010 0.573 0.610 0.708 0.612 0.669 0.753 0.725 0.672 0.746 0.785 0.491
2011 0.600 0.636 0.729 0.638 0.692 0.771 0.745 0.695 0.765 0.801 0.521
2012 0.627 0.661 0.749 0.663 0.714 0.789 0.764 0.717 0.782 0.816 0.551
2013 0.652 0.684 0.768 0.687 0.735 0.805 0.782 0.738 0.799 0.830 0.580
2014 0.677 0.707 0.785 0.709 0.754 0.820 0.798 0.757 0.814 0.844 0.607
2015 0.699 0.728 0.801 0.730 0.773 0.834 0.814 0.775 0.828 0.856 0.633
2016 0.716 0.747 0.817 0.748 0.791 0.846 0.828 0.792 0.842 0.869 0.659
2017 0.733 0.765 0.832 0.767 0.808 0.858 0.842 0.809 0.856 0.884 0.686
2018 0.748 0.783 0.847 0.786 0.824 0.869 0.854 0.825 0.871 0.897 0.714
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Empirical Results of TCP Influencing
Factors
The unit root test is usually used to judge the data stationarity to
avoid spurious regression (Harris et al., 2020). According to the
IPS, Fisher-ADF, and Fisher-PP tests, the results in Table 2 show
that the first-order difference terms of all variables are stationary.
Further, the results of the Kao test show that the null hypothesis
of “no co-integration relationship” is rejected at 1% significant
level, so the co-integration relationship exists among the
variables.

On this basis, this article uses the Hausman test to determine
the type of panel data model. According to the test results in
Table 3, F1>F0.05 (70,132), F2>F0.05 (60,132). Therefore, this
paper chooses the variable coefficient model to analyze the
influencing factors of industrial TCP.

Because of the serial correlation and the cross-sectional
heteroskedasticity of panel data, this paper uses the CS-SUR
method to make an empirical test on the panel data of 11 eastern
provinces from 2000 to 2018. The results show that the model
passes the F-statistic at the 1% significance level, and most of the
estimated coefficients in the panel data model pass the t-test,
which indicates that the model fits well (Table 4).

Overall, there are noticeable regional differences in the
influence of different factors on industrial TCP. From the
perspective of the contribution of various factors to TCP, the
coal consumption structure and R&D investment level have a
positive effect on the industrial TCP; the energy intensity and
R&D investment intensity have a negative effect on the industrial
TCP; and the impact of industrial economic structure and
economic development level has large regional differences. The
contribution of each influencing factor is discussed in
detail below.

DISCUSSION

Influencing Factors of TCP in Eastern China
Based on the empirical test results, this article further discusses
the influencing factors of the industrial TCP in eastern China to
clarify the possible paths for the promotion of regional TCP.

Regional Differences in the Impact of EDL on TCP
From the test results, the economic development level (EDL) has
significant impacts on the TCP. Its influence effect is positive in
some provinces such as Beijing, Tianjin, Hebei, Guangdong,
and Hainan, and the elasticity coefficients are 0.415, 0.633,
0.599, 0.097, and 1.219, respectively. In contrast, the EDL of
Shanghai, Jiangsu, Zhejiang, Fujian, and Shandong provinces
has inhibited the increase in industrial TCP, and the elasticity
coefficients were −0.511, −0.481, −0.406, −2.313, and −1.464,
respectively.

FIGURE 1 | Changes in the annual growth rate of TCP in eastern China.

TABLE 2 | The results of the unit root test.

Index IPS Fisher-ADF Fisher-PP Stationarity

ln TCP −2.9820b 18.7286a 0.0496 No
Δ ln TCP −12.7601a 115.3870a 88.5362a Yes
ln IES 3.6472 11.6710 3.4914 No
Δ ln IES −2.9398b 46.3082b 89.0702a Yes
lnEDL 3.1670 9.9395 9.8583 No
Δ lnEDL −2.3400b 43.4766a 58.6162a Yes
lnECS 0.8804 13.8137 10.0288 No
Δ lnECS −4.9269a 58.7223a 87.1128a Yes
lnECI 1.7520 15.2304 11.6352 No
Δ lnECI −7.5163a 86.6457a 104.9300a Yes
lnRII −0.8554 24.9478 25.5056 No
Δ lnRII −9.0698a 100.9880a 135.7480a Yes
lnRIL 1.9537 25.7019 22.6375 No
Δ lnRIL −5.7128a 71.9536a 131.9630a Yes

Note: Δ represents first difference.
ap < 0.01.
bp < 0.05.
cp < 0.10.

TABLE 3 | Results of covariance analysis and Hausman test.

Residual
sums of square

F statistics Critical
value (0.05)

Chi-sq.
statistic

Prob

S3 � 6.035987 F1 � 139.63 F (70,132) � 1.40 176.03 0
S2 � 0.868,801 F2 � 22.03 F (60,132) � 1.42
S1 � 0.060526
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In fact, due to the regional differences in the industrial
structure, resource endowments, and economic development
of eastern China, the U-shaped relationship between economic
development and energy efficiency is usually not uniform in
different regions and economic planning period (Huang and
Wang, 2017; Zhou et al., 2018). Meanwhile, the impact of the
EDL on TCP in Liaoning Province does not pass the significance
test, and it may be caused by data falsification in recent years.

Regional Differences in the Impact of IES on TCP
According to the empirical results, the influence of industrial
economic structure (IES) on TCP shows significant regional
differences. It can be seen that, in Tianjin and Zhejiang, the
IES is not a critical factor affecting TCP, while in other provinces,
the IES is an essential factor affecting TCP. In comparison, IES
greatly influences the industrial TCP in Beijing, Hebei, Liaoning,
Fujian, Guangdong, and Hainan provinces, but it has relatively
small effects in Shanghai, Jiangsu, and Shandong provinces. As
shown in Table 4, the IES of Shanghai, Jiangsu, Fujian, Shandong,
Guangdong, and Hainan provinces significantly promoted the
improvement of industrial TCP, while it had a negative impact on
Beijing, Hebei, and Liaoning provinces. Table 4 shows that there
are significant regional differences in the promotion effect of
industrialization on total-factor coal productivity.

The root cause lies in the different stages of industrialization in
11 provinces in eastern China. When the degree of
industrialization is not high enough, regional development
pursues more economic development, ignoring the utilization
of coal resources and the protection of the ecological environment
(Long et al., 2016). In the post-industrial stage, the economic level

reaches a certain height. The region pays more attention to the
improvement of coal resource productivity and the coordinated
development of social economy, energy utilization, and ecological
environment (Li and Dewan, 2017).

Regional Differences in the Impact of ECS on TCP
From the empirical results, there are spatial differences in the
impact of ECS on TCP. The ECS in Shanghai, Liaoning, and
Fujian Province has a negative impact on the TCP, while the ECS
in other provinces has a positive impact on the TCP. It is found
that the ECS of Hebei and Hainan provinces has a greater impact
on the TCP, while the ECS of Jiangsu and Shandong provinces
has a relatively small effect on the TCP. According to the
definition, the ECS represents the proportion of coal
consumption in total energy consumption. The larger the ECS,
the higher the proportion of industrial coal consumption in the
total energy consumption, which means that the degree of
centralized utilization of coal resources will be greater. In fact,
the centralized utilization of coal resources is more conducive to
promoting and applying energy saving technology and improving
energy efficiency (Li and Dewan, 2017).

In comparison, the impact of ECS in Shanghai and Fujian does
not meet the theoretical expectations. As shown in Figure 2, with
the rapid development of high-tech industries in Shanghai, the
economic status of the secondary industry gradually gives way to
the tertiary industry, and the industrial economic structure
reached 26.61% in 2018. Meanwhile, the energy consumption
structure is gradually optimizing in Shanghai, and the coal
consumption structure is declining year by year and
concentrates in the industrial sector. According to statistics,

TABLE 4 | Regression coefficient test results of influencing factors of TCP.

Regions C Δ ln IES lnEDL Δ lnECS Δ lnECI Δ lnRII lnRIL

Beijing −11.076a −0.312a 0.415b 0.147 −0.078 −0.257 0.538a

(−16.595) (−5.382) (2.584) (1.511) (−0.994) (−1.553) (3.504)
Tianjin −9.754a −0.065 0.633a 0.105a −0.033 −0.290a 0.133

(−12.115) (−0.830) (6.415) (3.770) (−0.777) (−3.253) (1.443)
Hebei −6.420a −0.392a 0.599 0.278a −0.058 0.012 −0.072

(−8.509) (−3.358) (1.572) (3.287) (−1.157) (0.024) (−0.144)
Liaoning −6.344a −0.295b −1.675 −0.010 0.134 −2.063 2.316

(−8.049) (−2.163) (−0.576) (−0.099) (1.453) (−0.692) (0.790)
Shanghai −6.432a 0.101b −0.511a −0.191a 0.160a −0.836a 1.165a

(−5.187) (1.994) (−3.016) (−3.401) (2.938) (−4.080) (6.223)
Jiangsu −1.824a 0.171a −0.481a 0.077a −0.057a −0.522a 0.680a

(−12.831) (12.346) (−5.869) (4.289) (−5.803) (−6.453) (8.386)
Zhejiang −2.576a −0.004 −0.406a 0.044 −0.039 −0.505a 0.664a

(−3.707) (−0.098) (−3.520) (0.923) (−1.139) (−4.195) (5.795)
Fujian −3.680a 0.301a −2.313a −0.138a 0.136a −2.599a 2.704a

(−12.662) (3.239) (−9.415) (−4.363) (6.924) (−10.920) (11.237)
Shandong −2.201a 0.100b −1.464a 0.060b −0.014 −1.572a 1.697a

(−6.675) (2.267) (−4.597) (2.389) (−0.958) (−4.959) (5.351)
Guangdong −2.727a 0.381a 0.097a 0.030 −0.047b −0.092a 0.187a

(−12.376) (7.530) (3.319) (1.253) (−2.525) (−3.227) (7.095)
Hainan −11.457a 0.624a 1.219c 0.275b −0.121c −0.004 −0.110

(−9.531) (6.985) (1.616) (2.434) (−1.700) (−0.005) (−0.149)
Note: t-statistics are given in parentheses.
ap < 0.01.
bp < 0.05.
cp < 0.10.
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the coal consumption of Shanghai’s industrial sector in 2018 was
31.51 million tons of standard coal, accounting for 99.78% of the
total coal consumption and 3.02% of the total energy
consumption. It can be argued that, in Shanghai, the shrinkage
of economic structure and the centralized utilization of coal
resources in the industrial sector are the reasons that cause the
coal consumption structure to have a negative impact on the
industrial TCP.

For Fujian Province, the industrial economic structure
changed slightly during the investigation period, from 37.50%
in 2000 to 39.61% in 2018. In terms of the coal consumption
structure, coal consumption in Fujian Province is mainly
concentrated in the industrial sector. In 2018, the industrial
sector’s total coal consumption was 57.50 million tons of
standard coal, accounting for 44.04% of the total terminal
energy consumption and 66.36% of the total industrial energy
consumption. It can be considered that the excessive
concentration and scale effect of the industrial coal
consumption are the fundamental reasons for the negative
impact of the ECS on the industrial TCP. Therefore,
promoting economic transformation and intensive utilization
of coal resources are the important ways to improve the
industrial TCP in Fujian Province (Xie et al., 2015).

Regional Differences in the Impact of ECI on TCP
According to Table 4, there are noticeable regional differences in
the impact of ECI on industrial TCP in eastern China. The impact
of ECI on TCP has not passed the significance test in sample areas
such as Beijing, Tianjin, Hebei, Liaoning, Zhejiang, and Shandong
provinces, which shows that whether the energy efficiency driven
by technological innovation in these regions can improve the
industrial TCP has not been supported by empirical data.

In comparison, the ECI in Shanghai, Jiangsu, Fujian,
Guangdong, and Hainan has significant effects, but there are
noticeable regional differences. The ECI of Jiangsu, Guangdong,
and Hainan has negative impacts, which is in accord with
theoretical expectations, while the ECI in Shanghai and Fujian
has positive impacts. According to the analysis, ECI is a biased
single-factor indicator of energy efficiency, with the implicit
assumption that economic growth is mainly driven by energy
consumption and technological progress, without considering the

substitution elasticity of various production factors and energy
input structures for economic growth (Norman, 2017; Adom
et al., 2018). According to the empirical results of Shanghai and
Fujian, the increase in ECI leads to an increase in the industrial
TCP. Considering the bias of energy intensity indicators, the
reduction of regional energy efficiency does not mean the
decrease of industrial TCP (Cao et al., 2017).

Regional Differences in the Impact of RII on TCP
As we all know, advanced equipment utilization and higher
technological input help reduce inefficient energy systems,
which is beneficial in improving total-factor energy
productivity (Beyzanur et al., 2018). According to the test
results, the impact of RII on TCP in Hebei, Liaoning, and
Hainan provinces does not pass the significance test. In
contrast, the RII in other provinces has a significant negative
effect on the TCP, which does not meet the theoretical
expectations.

There are two reasons for this result. On the one hand, the
utilization efficiency of R&D investment in the eastern provinces
is relatively low. The transformation and application of R&D
achievements are relatively few, leading to the fact that the
industrial TCP does not improve with the growth of RII.
Especially in Hebei, Liaoning, and Hainan provinces, RII has
no significant impact on TCP, and their RII is less than the
national average of 2.07% (as shown in Figure 3), which indicates
that RII needs to cross a certain threshold to promote the increase
in TCP significantly. Therefore, improving the utilization
efficiency of R&D funds and promoting the transformation
and application of R&D achievements are important ways to
improve the industrial TCP (Medina et al., 2016). On the other
hand, the imbalance of the investment structure of R&D
expenditure is also not conducive to the increase in TCP. In
fact, the R&D expenditure in the eastern regions is mainly for
high-tech industries and emerging industries. In contrast, the
proportion of the total R&D expenditure in the energy-intensive
industrial sector is relatively small. In other words, due to the
imbalance of the input structure of R&D funding, high-tech
industries have a certain crowding-out effect on energy-
intensive industries in terms of total-factor energy efficiency
improvement.

FIGURE 2 | Comparison of IES and ECS between Shanghai and Fujian Province. (A) Industrial economic structure. (B) Coal consumption structure.
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Regional Differences in the Impact of RIL on TCP
According to the empirical results, the RIL of Beijing, Tianjin,
Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, and Guangdong
provinces has significantly positive effects on industrial TCP,

while in Hebei, Liaoning, and Hainan provinces, the RIL does not
pass the significance test. As shown in Figure 4, the R&D
expenditure of 11 provinces in eastern China has increased
year by year, but each province’s growth rate is quite different.
The RIL of Beijing, Tianjin, and Shanghai is relatively large, while
that of Hebei, Liaoning, and Hainan is relatively low. Taking 2018
as an example, the RIL of Hebei, Liaoning, and Hainan was
505.55, 689.61, and 121.74 yuan per capita, respectively, being far
lower than the average level of 1,419.53 yuan per capita in eastern
China. It implies that the quantitative changes will cause
qualitative changes; that is, when R&D expenditure reaches a
certain scale, it can promote the increase in industrial TCP.
Therefore, we can conclude that increasing R&D investment is
an important way to improve the industrial TCP.

Promotion Paths for TCP in Eastern China
Determining the critical factors of industrial TCP and its upgrade
path will help achieve the win-win goals of energy conservation
and pollution reduction in eastern China. According to the
empirical results, due to the regional differences in economic
development, energy utilization, and R&D investment in the 11
eastern provinces of China, there are significant regional

FIGURE 3 | Regional comparison of RII in eastern China.

FIGURE 4 | Changes in RIL in eastern China in 2000–2018.

TABLE 5 | Analysis of the critical paths to improving the industrial TCP in eastern
China.

Provinces IES EDL ECS ECI RII RIL

Beijing ↓ ↑ ↑↑
Tianjin ↑↑ ↑ ↓ ↑
Hebei ↓ ↑
Liaoning ↓ ↑
Shanghai ↑ ↓↓ ↓ ↑ ↓↓ ↑↑↑
Jiangsu ↑ ↓ ↑ ↓ ↓↓ ↑↑
Zhejiang ↓ ↓↓ ↑↑
Fujian ↑ ↓↓↓ ↓ ↑ ↓↓↓ ↑↑↑
Shandong ↑ ↓↓↓ ↑ ↓↓↓ ↑↑↑
Guangdong ↑ ↑ ↓ ↓ ↑
Hainan ↑↑ ↑↑↑ ↑ ↓

Note: ↑ and ↓ indicate that some factors promote or inhibit TCP, respectively. The
number of ↑ or ↓ indicates the fluctuation range of elasticity coefficient

∣∣∣∣βi
∣∣∣∣,q/+ indicates

0<
∣∣∣∣βi
∣∣∣∣≤ 0.5, qq/++ indicates 0.5<

∣∣∣∣βi
∣∣∣∣≤1.0, and qqq/+++ indicates

∣∣∣∣βi
∣∣∣∣> 1.0.
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differences in the impact of various influencing factors on
industrial TCP. We compared the contribution of various
influencing factors to TCP, and the results are shown in
Table 5.

According to Table 5, it can be seen that the contribution of
the influencing factors of industrial TCP in eastern China is not
consistent. Overall, the IES, EDL, ECS, and ECI have
heterogeneous effects on industrial TCP in the 11 provinces
in eastern China. The RII has a negative inhibitory effect, while
RIL has a positive promotion effect. Promoting R&D
investment and the transformation of scientific research
results are the generic ways to increase the industrial TCP.
Therefore, to improve the TCP of the industrial sector in eastern
China, differentiated adjustment policies should be formulated
in law and market according to local conditions (Liu et al.,
2016). In terms of the 11 provinces in eastern China, each
province has a different critical path to promote the
industrial TCP.

• For Beijing, the IES, EDL, and RIL have a significant impact
on TCP. Therefore, the key to improving industrial TCP in
Beijing lies in optimizing its industrial structure, promoting
economic development, and increasing R&D investment.

• For Tianjin, the factors EDL, ECS, and RII have a significant
impact on industrial TCP. Therefore, the key to improving
industrial TCP in Tianjin is to accelerate economic
development, promote the centralized utilization of coal
resources, and increase R&D investment and the
transformation and application of its achievements.

• For Hebei Province, considering the significant impact of
IES and ECS on industrial TCP, the key to improving
industrial TCP in Hebei Province is to optimize the
economic structure and the coal consumption structure
in its industrial sector.

• For Liaoning Province, the impact of IES and ECI on
industrial TCP is slightly significant. Therefore, the key
to improving industrial TCP in Liaoning Province is to
optimize the industrial structure and intensive utilization of
energy.

• For Liaoning Province, the impact of IES on industrial TCP
is more significant, while the impact of ECI on TCP is
slightly significant. Therefore, the key to enhancing
industrial TCP in Liaoning Province in the future is to
optimize the industrial structure and pay attention to the
intensive utilization of energy resources.

• For the Shanghai Municipality and Fujian Province, the
industrial TCP is mainly affected by EDL, RII, and RIL.
Therefore, accelerating economic development, increasing
R&D expenditures, and accelerating the transformation and
application of R&D results are the critical paths to improve
their industrial TCP.

• For Jiangsu and Shandong Province, the key influencing
factors of industrial TCP in the two provinces are roughly
the same. The key to improving industrial TCP lies in
accelerating economic development, optimizing the coal
consumption structure, and increasing the R&D
investment and its achievement transformation.

• For Zhejiang Province, industrial TCP is mainly affected by
EDL, RII, and RIL. The key to improving industrial TCP lies
in further promoting economic development, increasing
R&D investment, and achievement transformation.

• For Guangdong Province, the TCP is relatively high and has
a rapid growth rate. The empirical results show that, except
for ECS, other factors significantly impact TCP, but these
factors have relatively limited potential for industrial TCP
improvement. Comparatively speaking, the factors IES and
RIL have a great influence on TCP. Therefore, the critical
path of upgrading industrial TCP in Guangdong Province
lies in optimizing the economic structure and increasing
R&D investment.

• For Hainan Province, the empirical results show that IES,
EDL, ECS, and ECI significantly impact industrial TCP.
Therefore, the key to enhancing industrial TCP in Hainan
Province lies in the improvement of industrial economic
structure and economic development level, as well as the
intensive utilization of coal resources in industrial
sectors.

Conclusions and Policy Implications
During the inspection period, the industrial TCP in 11 provinces
of eastern China increases year by year, but the regional
differences in growth margin and growth rate decrease and
show a convergence trend. The growth margin and growth
rate of the industrial TCP in Beijing, Tianjin, Liaoning, and
Hainan provinces are relatively large. In contrast, those in
Hebei, Zhejiang, Jiangsu, Shandong, and Guangdong provinces
are not obvious, but their industrial TCP ranks first in eastern
China.

The EDL and IES in eastern China have a significant impact
on industrial TCP, and there are spatial differences in this
impact. The EDL in Beijing, Tianjin, Hebei, Guangdong,
Hainan, and other provinces positively affects the industrial
TCP. In contrast, the EDL in Shanghai, Jiangsu, Zhejiang,
Fujian, and Shandong has a negative inhibitory effect. As for
IES, this factor has a positive effect on TCP in Shanghai,
Jiangsu, Fujian, Shandong, Guangdong, and Hainan
provinces, while that of Beijing, Hebei, and Liaoning
provinces does not promote the improvement of industrial
TCP. The heterogeneity of the regional industrial structure,
resource endowments, and economic development mode are
the root causes of this result.

There are spatial differences in the effect of the ECS on the
industrial TCP. The ECS in Liaoning, Zhejiang, and Guangdong
provinces has no significant impact on TCP. In contrast, ECS in
Beijing, Tianjin, Hebei, Jiangsu, Shandong, and Hainan provinces
positively affects TCP. By contrast, the ECS in Shanghai and
Fujian has a negative impact on industrial TCP. In general, the
greater the degree of centralized utilization of coal resources in
the industrial sector, the more conducive to the intensive use of
coal resources and the improvement of industrial TCP. Therefore,
promoting the intensive use of coal resources is a critical way to
improve industrial TCP.

As the source of energy technology progress, R&D investment
has a relatively consistent impact on industrial TCP in all
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provinces. The RIL plays a positive role in promoting industrial
TCP, while RII has a negative impact on industrial TCP. The root
cause lies in the imbalance of R&D investment structure, low
efficiency of R&D investment, and fewer applications of R&D
results. As the output of energy technology progress, the impact
of ECI on industrial TCP has great regional differences. The
impact of ECI on TCP is not significant in Beijing, Tianjin, Hebei,
Liaoning, Zhejiang, Shandong, and other places. In Jiangsu,
Guangdong, and Hainan, ECI has a significant negative impact
on TCP, while in Shanghai and Fujian provinces, ECI positively
impacts TCP. Considering the bias of energy intensity indicators,
the promotion of regional energy efficiency does not mean the
decrease of industrial TCP.

There are noticeable regional differences in the key influencing
factors of industrial TCP in 11 provinces of eastern China.
Therefore, it is necessary to adopt differentiated adjustment
policies to improve the industrial TCP according to local
conditions. Meanwhile, increasing the R&D expenditures,
optimizing R&D investment structure, improving R&D
utilization efficiency, and promoting the transformation and
application of R&D results are generic ways to improve the
industrial coal productivity in the eastern region.

It is necessary to note that RIL has different effects on
industrial TCP. For example, RIL in Hainan is lower than that
in eastern China, while RIL in Shanghai is higher than average
level. Only when RIL is higher than the average R&D level, it will
have a significant impact on industrial TCP, which indicates that
RIL may have a threshold effect on TCP. This problem deserves
further study. In addition, due to the close economic and trade
relationship in the eastern region, whether the spatial spillover
effect of technological progress will affect TCP also needs further
research. Therefore, spatial measurement or threshold
cointegration can be considered to test the interactive effects
of spatial heterogeneity in our next study.
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