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Porous carbon materials, derived from biomass wastes and/or as by-products, are
considered versatile, economical and environmentally sustainable. Recently, their high
adsorption capacity has led to an increased interest in several environmental applications
related to separation/purification both in liquid- and gas-phases. Specifically, their use in
carbon dioxide (CO2) capture/sequestration has been a hot topic in the framework of gas
adsorption applications. Cost effective biomass porous carbons with enhanced textural
properties and high CO2 uptakes present themselves as attractive alternative adsorbents
with potential to be used in CO2 capture/separation, apart from zeolites, commercial
activated carbons and metal-organic frameworks (MOFs). The renewable and sustainable
character of the precursor of these bioadsorbents must be highlighted in the context of a
circular-economy and emergent renewable energy market to reach the EU climate and
energy goals. This mini-review summarizes the current understandings and discussions
about the development of porous carbons derived from bio-wastes, focusing their
application to capture CO2 and upgrade biogas to biomethane by adsorption-based
processes. Biogas is composed by 55–65 v/v% of methane (CH4) mainly in 35–45 v/v% of
CO2. The biogas upgraded to bio-CH4 (97%v/v) through an adsorption process yields after
proper conditioning to high quality biomethane and replaces natural gas of fossil source.
The circular-economy impact of bio-CH4 production is further enhanced by the use of
biomass-derived porous carbons employed in the production process.

Keywords: biomass, porous carbons, adsorption, biogas upgrading, pressure swing adsorption, biomethane,
CH4, CO2

INTRODUCTION

Biogas produced from several biomasses is a renewable fuel source of methane that after proper
conditioning can be injected into the gas pipeline networks or used as energy for transport (Scarlat
et al., 2018; Ferella et al., 2019). However, CO2 removal from biogas is a critical step for biogas
upgrading and limits its application. Upgrading technologies comprise absorption, adsorption,
membrane permeation, and cryogenic strategies (Zhou et al., 2017; Kapoor et al., 2019). Among
them, adsorption has attracted attention due to its environmentally friendly nature, low energy
demand and capital costs (Surra et al., 2019a; Lombardi and Francini, 2020). The key element in
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adsorption-based processes is the need for an effective adsorbent
with high adsorption capacities for the species to capture, low
productions cost and low environmental impacts. Specific surface
area and pore volume are the critical properties for these
materials. Recent developments were achieved concerning
adsorbents for CO2 removal (Zhou et al., 2017),
complemented with molecular simulations (Peng and Cao,
2013) to predict/produce the best materials (Esteves et al.,
2008; Surra et al., 2019b; Bernardo et al., 2020; Liu et al.,
2020b). Moreover, fresh overviews devoted to the state of the
art of adsorbents for CO2 removal have been focused on biomass
derived porous carbons (Singh et al., 2019; Xu and Strømme,
2019; Sher et al., 2020). However, much of the research lacks the
use of biomass-derived adsorbents employed themselves as key-
materials to capture CO2 and upgrade biogas to bio-CH4 by
adsorption-based processes (PSA), in a concept of a circular-
economy (Cheng et al., 2020; Sherwood, 2020; D’Adamo et al.,
2021; Kumar and Verma, 2021). Hence, this mini-review offers a
succinct summary of this topic presenting the most recent
literature (2020–2021) of CO2 uptake with biomass-derived
porous carbons and the last 5 years literature of biocarbons
application in PSA technology for biogas upgrading. The
existing gaps and potential future paths are also discussed.

Biomass-Derived Porous Carbons
Converting the biomass into porous carbons involves
carbonization (pyrolysis) and activation that can be of
physical and/or chemical types. Physical-activation is a two-
step process: the raw material is carbonized in the absence of O2

at temperatures between 400–850°C, followed by activation of
the resulting char with oxidant/gasifying gases like steam, air,
N2, O2, NH3, CO2 or a mixture of these gases, at temperatures
around 600–1000°C (Marsh and Rodriǵuez-Reinoso, 2006;
González-García, 2018). The activation with CO2 produces
porous carbons with narrow micropore size distribution,
providing optimum pore size for CO2/CH4 separation, while
steam activation generates carbons with wider pore size
distribution and smaller micropore volume (Marsh and
Rodriǵuez-Reinoso, 2006). Nevertheless, in the physical-
activation there is a poorer control of the porosity. The
reactions during physical-activation can form surface oxygen
functional groups, while activation with NH3 adds N-containing
groups on carbon surface; however, this is usually coupled with
other gas to provide more porosity (Tan et al., 2017). The high
temperatures usually used in physical-activation represent an
energetic disadvantage.

Chemical-activation can be a one-step or two-step method
since the impregnation with the activating chemical (dehydrating
agents and/or oxidants) can be made directly in the biomass or in
the resulting char from the first step of carbonization. After
impregnation, the mixture of precursor and activating agent is
heated under inert atmosphere at temperatures between
400–800°C (Marsh and Rodriǵuez-Reinoso, 2006; González-
García, 2018). As physical-activation, chemical-activation
provides porosity development and functional groups at
carbon surface. Acids, alkalis, and salts like H3PO4, H2SO4,
ZnCl2, K2CO3, NaOH, and KOH are usually used in chemical-

activations of biomass precursors (Yahya et al., 2015; González-
García, 2018).

Chemical-activation usually provides biomass-derived porous
carbons with high surface areas and a good control of the
porosity, but washing the produced carbon to remove the
residual activating agent present in the carbon matrix turns
the process into a time- and energy-consuming one, and
environmentally less friendly.

Tailoring Carbon Surface Chemistry
When producing biomass-derived porous carbons, it is possible
to tune their properties by an appropriate choice of the precursor
and activation conditions. Nonetheless, the resulting material can
be further tailored, specifically the surface chemistry properties to
increase the CO2 uptake capacity. Modification treatments can be
envisaged to add and/or increase relevant functional groups on
the surface of the carbon to enhance CO2 retention. Increasing
the basicity of the carbon is the most efficient way to improve the
adsorption efficiency toward CO2 uptake, namely through the
removal of acidic functional groups from carbon surface and/or
introduction of nitrogen groups that provide basic sites able to
attract the acidic CO2 (Adelodun et al., 2015; Rashidi and Yusup,
2016). Depending on the biomass precursor and if an acid is used
as activating agent, several oxygen functional groups with strong
ormild acidity might be present on the carbon surface. To remove
these oxygenated groups, heat treatments under inert (N2, Ar,
He) or H2 atmosphere are usually performed, but this requires
very high temperatures (800–1000°C) (Shafeeyan et al., 2010).

Heat treatment with ammonia can be employed at
temperatures between 200 and 1000°C (Rashidi and Yusup,
2016). Since carbon surface is typically non-reactive to NH3,
pre-oxidation of the surface is required prior to amination. After
the treatment, the carbon surface is usually enriched with
nitrogen functionalities like −NH2−, −CN, pyridinic, pyrrolic,
and quaternary N2 (Shen and Fan, 2013). Nitrogen-rich biomass
precursors, such as chitosan (Fujiki and Yogo, 2016), crab and
prawn shell (Chen et al., 2015; Gao et al., 2016), and protein
enriched biowaste (Huang et al., 2015; Shi et al., 2019), can
directly provide porous carbons enriched with nitrogen
functionalities.

Metal impregnation has been also employed to increase the
carbon CO2 uptake capacity and selectivity, although this strategy
is not usual as nitrogen-doping. Metal oxides of alkaline-earth
and transition elements can provide catalytic active sites able to
interact with CO2 although the presence of ultra microporosity
remains an important feature.

Table 1 presents the most recent works (2020–2021) dealing
with biomass derived-porous carbons for CO2 uptake. The
biomass precursor, activation conditions, textural properties
and CO2 uptake capacity are shown. It should be highlighted
that most of the studies use powder carbons, and static CO2

adsorption measurements are performed volumetrically using gas
sorption apparatus or through thermogravimetric analysers. Pure
CO2 or synthetic gas mixtures under controlled conditions are
typically used. Dynamic CO2 adsorption breakthrough tests and
real gas samples are scarcely studied for the biomass-based
adsorbents, although these conditions are closer to industrial
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applications. Also, dynamic adsorption/desorption/regeneration
cycles allow a more efficient utilization of the adsorbent capacity;
however, most of the published studies do not consider this
important feature. Considering the lack of knowledge about the
performance of biowastes derived porous carbons in continuous
flow systems and their regeneration, it is of utmost importance
that studies move forward to reflect realistic applications.

Biogas Upgrading to Biomethane and CO2

Capture
The selection of a biogas upgrading technology depends mainly
on plant location, investment availability, biogas composition,
bio-CH4 aim quality, and plant productivity. Adsorption-based
processes like Pressure-Swing Adsorption (PSA) is one of the
most established know-how used in gas separation/purification/
capture applications (Riboldi and Bolland, 2017). Its compacted
set of fixed-bed adsorption columns, operating with pressure
modulation in a cyclic mode, use the adsorbent(s) to selectively
adsorb and desorb the undesired gases like CO2 in biogas
(Esteves, 2005; Esteves and Mota, 2007; Augelletti et al., 2017;
Canevesi et al., 2018). The selective adsorption occurs due to
different equilibrium capacities of the species (equilibrium
adsorbent) or distinct gas uptake rates (kinetic adsorbent) in
the adsorbent’s surface. Activated carbons have demonstrated to
perform effectively in relevant operating conditions, surpassing
zeolites when CO2 partial pressure overpasses a certain threshold

(ca. 1.7 bar) (Riboldi and Bolland, 2017). This means that what
really matters is not the total CO2 adsorption capacity of the solid
adsorbent at a given pressure, but the pressure difference
necessary to be applied between adsorption and desorption to
obtain a satisfactory gas separation in PSA (adsorption
isotherms). Carbons have higher adsorption capacity than
zeolites at high pressure, but zeolites are regenerated by
vacuum desorption with very small pressure variation. Carbon
materials have the advantages of high thermal/chemical/
mechanical/moisture stabilities, electrical and heat
conductivities and reasonable cost. Their affinities for CO2 can
be improved with functionalization (Lee and Park, 2015). Achieve
higher CO2 selectivities requires the development of better
adsorbents that, additionally, need to be easy regenerable for
proper application in a PSA system that, otherwise, would require
reduction in partial pressures or increase in the operating
temperature. Recently, MOFs appeared as potential highly
selective materials for gas separation/capture (Ferreira et al.,
2019; Ribeiro et al., 2019), although they still need further
research related with their cost, particle shaping, and stability
(structural, mechanical, moisture, aging, etc.).

Upon this scenario, the use of porous biocarbons opens a
double opportunity, in the sense that biomass turns to be a useful
resource that can contribute, thereafter, to capture CO2 and
separate it from biogas, aiming to upgrade it to bio-CH4

(Álvarez-Gutiérrez et al., 2014). This pathway closes the loop
regarding carbon neutrality and contributes significantly to the

TABLE 1 | Recent literature (2020—2021) of CO2 uptake with biomass-derived porous carbons.

Biomass precursor Activation
conditions

SBET (m2/g) Vmicro (cm3/g) CO2 uptake
(mmol/g)

References

Alligator weed KOH, 800°C, 2 h 1779 0.60 6.4 (273 K, 1 bar) (Singh et al., 2021)
Tobacco stem KOH, 800°C, 2 h 1922 0.79 7.9 (273 K, 1 bar) (Ma et al., 2020c)
Peanut shell KOH, 750°C, 1 h 900 0.33 3.9 (298 K, 1 bar) (Sher et al., 2020)
Palm sheath NaNH2, 550°C 1 h 2181 0.65 5.8 (273 K, 1 bar) (Liu et al., 2020a)
Citrus Aurantium leaves + Spirulina Platensis ZnCl2 + CO2, 800°C, 2 h 937 0.30 8.4 (273 K, 1 bar) (Balou et al., 2020)
Acai fruit stone KOH, 850°C, 1 h 2612 0.84 6.0 (273 K, 1 bar) (de Souza et al., 2020)

CO2, 850°C, 8 h 1150 0.39 3.0 (298 K, 1 bar)
Tobacco stem + urea KOH, 600°C, 1 h 2690 0.81 3.5 (298 K, 1 bar) (Ma et al., 2020b)
Starch CO2, 900°C, 3 h 1096 0.39 2.5 (298 K, 1 bar) (Wu et al., 2020)
Garlic peel KOH, 700°C, 1 h 1248 0.52 5.1 (273 K, 1 bar) (Huang et al., 2020)

4.1 (298 K, 1 bar)
Oil residue NaNH2, 500°C 1 h 2113 0.94 5.6 (273 K, 1 bar) (Yang et al., 2020b)

3.5 (298 K, 1 bar)
Pine sawdust KOH, 700°C, 2 h 1729 0.67 4.2 (298 K, 1 bar) (Quan et al., 2020)
Banana sheets KOH, 800°C, 1 h 1988 0.67 5.3 (273 K, 1 bar) (Li et al., 2020)

4.2 (298 K, 1 bar)
Grape marc KOH, 800°C, 2 h 1727 0.59 6.7 (273 K, 1 bar) (Ismail et al., 2020)

3.9 (298 K, 1 bar)
Lotus stalk KOH, 600°C 1188 0.43 5.1 (273 K, 1 bar) (Yang et al., 2020a)

3.7 (298 K, 1 bar)
Olive mill waste KOH, 700°C, 0.5 h 1036 0.35 5.1 (273 K, 1 bar) (González and Manyà, 2020)

CO2, 850°C, 3 h 1135 0.37 2.3 (273 K, 1 bar)
Sugarcane bagasse Air, 850°C, 2 h 99 0.03 1.6 (298 K, 1 bar) (Guo et al., 2020)

CO2, 850°C, 2 h 622 0.30 2.6 (298 K, 1 bar)
H3PO4, 750°C, 1.5 h 873 0.18 2.7 (298 K, 1 bar)
NaOH, 850°C, 1.5 h 1149 0.08 4.3 (298 K, 1 bar)

Palm kernel shell + urea N2, 700°C, 0.5 h 1700 0.56 5.3 (298 K, 1 bar) (Ma et al., 2020a)
Walnut shell + urea KOH, 850°C, 1 h 2354 0.97 5.1 (273 K, 1 bar) (Yang et al., 2020c)

3.0 (298 K, 1 bar)
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field of renewable energy. In the last 5 years, when crossing PSA,
biogas upgrading and activated carbon topics in Web of Science
(WOS) Core Collection, one gets only 16 publications. Adding
CO2 capture topic to this search, only nine articles are found.
From those papers, only four of them are about biomass-derived
porous carbons applied to PSA. Table 2 depicts those
publications. The lack of research on bioadsorbents followed
by their effective transfer to adsorption-based processes
applied to biogas upgrading is still noticed in a sector so
relevant to answer to the renewable energy and environmental
concerns of the 21st century.

Despite the good potential demonstrated by porous carbons
developed from cherry stones, pine wood pellets, silver fir
sawdust and modo bamboo, the few studies published in the
last 5 years emphasizes the need to gather more data on biomass-
based activated carbons for biogas upgrading under operational
conditions similar to real cases. Besides exhibiting high selectivity
and optimal uptake capacity for CO2, one of the features to be
considered is to obtain porous carbons with the desired particle
size to be directly packed in fixed bed columns. This avoids high
pressure drops in columns that turn the process unfeasible. Some
of these biomass derived adsorbents are obtained as powders and
therefore their shaping into pellets, granules or spheres is another
challenge for the near future.

CONCLUSIONS AND POTENTIAL FUTURE
DEVELOPMENTS

A succinct mini-review of current understandings about the
development of porous carbons derived from bio-wastes,
focusing their application to capture CO2 and upgrade
biogas to biomethane by adsorption-based processes (PSA)
is carried out in this paper. Porous carbons derived from
several biomass precursors as CO2 adsorbents had a huge

development only in the last year of 2020, confirming that
in fact this is a hot topic. However, the works were mainly
directed to use pure CO2 or synthetic mixtures in static
experiments, neglecting the importance of studying the
dynamic behavior of the new developed adsorbents as well
as their performance in regeneration cycles. Further research
in this field is highly recommended. Additional assessments on
the effective use of biocarbons in adsorption processes need to
be undertaken and explored, especially regarding their use in
the inherent dynamic PSA process operation. Moreover,
shaping of the porous carbons powders is a challenge to
overcome, and the impact of that shaping procedure on the
efficiency of the adsorbent must also be assessed. Finally, but
not less important, an interesting concept that should be
explored in this subject is an integrated techno-
environmental evaluation of biomethane production from
biogas (obtained by biocarbons in PSA), combined with
CO2 capture and storage (CCS), to check the potential for
net negative greenhouse-gas emissions.
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TABLE 2 | Last 5 years literature of biocarbons application in PSA technology for biogas upgrading.

Biomass
precursor

SBET (m2/g) Vmicro

(cm3/g)
Includes CO2 uptake

(mol/kg)
References

Cherry stones 1045.0 (CS-CO2) 0.40 Dynamic column breakthrough measurements with 50/
50 vol% CO2/CH4 feed mixture

3.60 (CS-CO2,
303 K, 5 bar)

(Álvarez-Gutiérrez et al.,
2016)

998.0 (CS-H2O) 0.38 3.53 (CS-CO2,
303 K, 5 bar)

Pine wood
pellets

561.0 0.22 Breakthrough experiments with 60/40 vol% CO2/CH4 feed
mixture

2.14 (303 K, 1.5 bar) (Vivo-Vilches et al., 2017)

Silver fir sawdust 881.0 (HCA_200_0) 0.24a Breakthrough runs with 50/50 vol% CO2/CH4 and CO2/N2

feed mixture
6.57 (in N2, 5 bar) (Gallucci et al., 2020)

284.0
(HCA_200_120)

0.11a 3.64 (in N2, 5 bar)

Moso bamboo 370.5 (BC 300) n.a Breakthrough and PSA experiments with 60/40 vol% CO2/
CH4 feed mixture

2.26b (Seo et al., 2016)
419.9 (BC 500) 2.70b

494.0 (BC 900) 2.76b

288.1 (BC 1000) 1.61b

aBJH Desorption Pore Volume (VBJH, cm3/g).
bAt saturation.
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