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Accurate short-term wind power forecasting is crucial for the efficient operation of power
systems with high wind power penetration. Many forecasting approaches have been
developed in the past to forecast short-term wind power. Artificial neural network-based
approaches (ANNs) have become one of the most effective and popular short-term wind
speed and wind power forecasting approaches in recent years. However, most
researchers have used only historical data from a specific station to train the ANNs
without considering meteorological variables from many neighboring stations on the
forecasting performance. Using additional meteorological variables from neighboring
stations can contribute valuable surrounding information to the forecasting model of
the target station and improve ANNs performance. In this paper, a mixed input features-
based cascade-connected artificial neural network (MIF-CANN) is used to train input
features frommany neighboring stations without encountering overfitting issues caused by
many input features. Multiple ANNs train different combinations of input features in the first
layer of the MIF-CANN model to produce preliminary results, then cascading into the
second phase of the MIF-CANN model as inputs. The performance of the proposed MIF-
CANN model is compared with the ANNs-based spatial correlation models. Simulation
results show that the proposed MIF-CANN has better performance than the ANNs-based
spatial correlation models.
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INTRODUCTION

In recent years, conventional fossil fuels that have severe impacts on the global ecological systems
have gradually been replaced by renewable energy (Chai et al., 2015). The wind is one of the most
available, affordable, and efficient renewable sources. A total of 60.4 GW of wind power capacity was
installed globally in 2019, a 19% increase from installations in 2018 (Global Wind Energy Council,
2020). However, power systems with high wind penetration will have to deal with many challenges,
including real-time grid operations, competitive market designs, stability, and reliability of power
systems (Soman et al., 2010). Accurate short-term wind power forecasting can be utilized to identify
wind power fluctuations in advance to mitigate the impact of wind intermittency on the power
system with high wind penetration (Soman et al., 2010; Peng et al., 2016).

In the literature, various wind power forecasting approaches have been proposed to improve the
accuracy of short-termwind power forecasting (30 min to 6 h ahead). Most of the existing forecasting
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models (Wang et al., 2017; Hao and Tian., 2019; Sideratos and
Hatziargyrious, 2007; Ren et al., 2016; Wu and Peng, 2017;
Zameer et al., 2017; Liu et al., 2018) are using historical data
from a specific target station without considering the effect of
meteorological variables such as wind speed, wind direction,
temperature, pressure and air density of the neighboring
stations on the performance of forecasting model of the target
station. Alexiadis et al. (1998) and Focken et al. (2002) found that
the inclusion of meteorological variables from neighboring
stations in the prediction model outperformed the models that
only use the historical data of a single station. In Alexiadis et al.
(1998); Ye et al. (2017), the authors used a mathematical
equation-based spatial correlation method to learn the
relationship between wind speeds at a target station and
neighboring stations and utilized this relationship to enhance
the forecasting model performance of the target station. However,
the parameters of the mathematical equation-based spatial
correlation models need to be tuned for each turbine, which is
complicated and impractical (Ye et al., 2017). Instead of using
complex mathematical equations to model the relationships
among wind speeds at a target station and its neighboring
stations, Alexiadis et al. (1998) and Zhu et al. (2018) have
used ANNs to determine the relationships. Alexiadis et al.
(1999) used a feedforward-ANN model to determine the wind
speed relationship between a target station and neighboring
stations. Zhu et al. (2018) used a predictive deep convolutional
neural network as a spatial correlation model to learn the wind
speed relationships of different stations.

However, most of the existing machine learning spatial
correlation models have only used variables from a few
neighboring stations (i.e., less than 5) (Alexiadis et al., 1999;
Zhu et al., 2018). Furthermore, the majority of the existing spatial
correlation models have used only wind speed from neighboring
stations as inputs, other meteorological variables such as wind
direction, temperature, atmospheric pressure, and air density are
seldomly considered (Alexiadis et al., 1998; Alexiadis et al., 1999;
Ye et al., 2017; Zhu et al., 2018). It has been shown in (Chen and
Folly, 2019) that meteorological variables from neighboring
stations such as wind direction, temperature, and atmospheric
pressure can also affect the target station’s wind speed forecasting.
Target station is the station where wind power forecasting is
required. Therefore, it is essential to include meteorological
variables as input variables into the target station’s forecasting
model. Zhou et al. (2017) and Chen and Folly (2020) have used
multiple meteorological variables to measure the spatial
correlation between two stations to enhance the spatial
correlation model’s prediction performance. However, the
number of neighboring stations involved in (Zhou et al., 2017)
and (Chen and Folly, 2020) was relatively small (i.e., less than 5).
Although using meteorological variables from many neighboring
stations (i.e., larger than 25 stations) could allow the forecasting
model to better learn the spatial characteristic of wind speed and
provide better forecasting results, it is challenging. One of the
disadvantages of using many neighboring stations’ meteorological
variables to train ANN-based models is model overfitting (Li et al.,
2015). ANNs might over-fit the model or not recognize patterns
from the input data with many input variables (Wimmer and

Powell, 2016). Therefore, a model that can both take a large
number of inputs and avoid model overfitting issues is proposed.

In this paper, a mixed input features-based cascade-connected
artificial neural network (MIF-CANN), consisting of 30 first layer
predictors and a single second layer predictor, is used to obtain
input features from 30 neighboring stations. For example the first
predictor only takes inputs from the target station. The second
predictor takes inputs from the target station and a neighboring
station. The third predictor takes input from the target station
and two neighboring stations. Preliminary outputs of all 30
predictors were cascaded to the second layer of the proposed
model as inputs, which the second layer predictor then trains to
produce a final output. In this way, the proposed MIF-CANN
model was able to obtain meteorological information from many
neighboring stations and avoid overfitting.

The main contributions of this paper are as follows. The
impact of various meteorological variables from many
neighboring stations on the performance of ANN-based
forecasting models is evaluated. A mixed input features-based
cascade-connected artificial neural network is proposed to
effectively learn useful information of a large number of input
features and at the same time avoid model overfitting issues. More
advanced forecasting models can apply the same model structure
as the proposed model to minimize overfitting issues.

The rest of this paper is organized as follows. Training Data
briefly introduces data collection, data preprocessing, and input-
output pairs for supervised learning. Artificial Neural Networks
Based Spatial Correlation describes the configuration selection of
an ANN model, the building block of the proposed model, and
explains the ANN-based spatial correlation model structure. The
Proposed Mixed input feature-Based Cascade-Connected Artificial
Neural Network Model presents the construction steps of the
MIF-CANN Model. Simulation Results and Discussions discuss
the evaluation metrics and simulation results of short-term wind
speed and wind power forecasting. Finally, the findings of the
paper are summarized in the Conclusion section.

TRAINING DATA

Date Collection
The acronyms used in this paper are shown in Table 1. The
flowchart of the methodology is shown in Figure 1. As shown in
Figure 1, the first step is collecting and preprocessing the data.
The second step is to determine a suitable basic ANN model
configuration which is shown in Artificial Neural Networks . The
third step is to construct both the ANN-based spatial correlation
model and the proposed MIF-CANN. Data used in this paper
were collected from the National Renewable Energy Laboratory
(NREL). The NREL datasets consist of wind power, wind speed,
wind direction, temperature, barometric pressure, air density.
NREL’s wind power data are generated from the Weather
Research and Forecasting (WRF) model version 3.4.1. Table 2
summarizes the variables’ descriptive statistics from the NREL:
ID61118 dataset (Wind Prospector, 2019). In our opinion, the
quality of the dataset used in this study is good because it does
not contain any missing values and outliers. The quality of
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the meteorological variables and wind power of the NREL datasets
is also validated by NREL (King, Clifton, and Hodge, 2014; Draxl
et al., 2015). The tenminutely data of each station from January 2007
to October 2009 (150,000 samples) are used for the model training
and validation. Data from April 2011 to October 2012 (75,000
samples) are used for model testing.

Normalization
Variables with larger values might suppress the impact of the one
with smaller values on the forecasting model. The normalization

TABLE 1 | Summary of acronyms used in this paper.

Acronyms

Artificial neural networks ANNs
Artificial neural networks based spatial correlation ANN-SC
Artificial neural networks based spatial correlation with input features from 4 stations ANN-SC-4
Artificial neural networks based spatial correlation with input features from 30 stations ANN-SC-30
Final output FO
Levenberg-marquardt LM
Mean absolute percentage error MAPE
Mean square error MSE
Mixed input features-based cascade-connected artificial neural network MIF-CANN
National renewable energy laboratory NREL
Normalized mean absolute error NMAE
Normalized root mean square error NRMSE

FIGURE 1 | Flowchart of the methodology.

TABLE 2 | Summary of the descriptive statistics of the NREL: ID61118 dataset.

Variables Unit Min.-Max Mean Std. Dev

Wind power (WP) MW 0.0–16.0 6.4 5.5
Wind speed (WS) m/s 0.0–23.9 6.7 3.3
Wind direction (WD) °TNa 0.0–360.0 220.4 89.5
Temperature (T) °C −2.6–43.0 14.3 7.0
Pressure (P) hPa 976.8–1032.1 1012.8 5.3
Air density (AD) kg/m3 1.1–1.3 1.2 0.0

aTN, the unit of wind direction, which stands for the degree from true north in clockwise.
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technique minimizes the impact by scaling the values of different
input variables into the same range (usually from 0 to 1 or from -1 to
1) to improve the model convergence rate and forecasting accuracy.

Linear mapping over a specified range is the most commonly
used normalization method. A minimum-maximum normalization
technique, which is defined as Equation 1, is used in this paper.

X ’
i � ( Xi − Xmin

Xmax − Xmin
)(X ’

max − X ’
min) + X ’

min (1)

where Xi, Xmin, Xmax , X ’
i, X

’
min, X

’
max , is the mean, minimum, and

maximumof the actual input data and the corresponding normalized
values, respectively. In this paper, X ’

min is set to 0 and X
’
max , is set to 1

to match the range of the logistic sigmoid function of ANNs.

Input-Output Pairs for Supervised Learning
The time interval between samples denotes forecast interval (data
resolution), and the forecasting horizon is the length of time into
the future for which forecasts are to be prepared. This paper
focuses on short-term wind speed and wind power forecasting
ranging from 30 min to 6 h ahead (Soman et al., 2010; Chang,
2014; Jung and Broadwater, 2014). The data resolution of the
NREL dataset is 10 min per sample. For example, for two hours
ahead forecasting, the gap between input and output samples is 12
steps (12 × 10 min � 120 min � 2 h). Table 3 shows input-output
pairs for ANN models. As can be seen, all five of the
meteorological variables shown in Table 2 were used as inputs
and wind speed as the output. The sample gap between inputs and
the output is 12 steps which are represented by using t-12. Other
than meteorological variables, time of day [time indicator (TI)] is
also used as an input because it contains a cyclic characteristic.
Therefore, it is essential to label the input data with time of day so
the forecasting models can recognize the daily cycle within the
wind speed time series. The range of time indicator (TI) is
between 1 and 144 (cover 24 h of a day)

ARTIFICIAL NEURAL NETWORKS BASED
SPATIAL CORRELATION

Artificial Neural Networks
A simple but efficient feedforward-ANN with two hidden layers,
each containing ten hidden neurons, was used by Chen and
Folly (2019) to effectively handle the complicated relationship
between wind speed and other meteorological variables such as
wind direction, temperature, temperature gradient, pressure and
relative humidity. The number of hidden layers and hidden
neurons were selected using the rule-of-thumb and trial and
error approach (Karsoliya, 2012). Different combinations of
hidden layers and hidden neurons were tested. The best

performer was chosen for the final model configuration.
Examples of some varieties of numbers of hidden layers and
hidden neurons that have been considered in this article are
listed in Table 4. The simulation results indicate that a
feedforward-ANN with two hidden layers, each contain ten
hidden neurons, was adequate for the short-term wind power
forecasting. As a result, the feedforward-ANN with two hidden
layers, each with ten hidden neurons, was used in this study as
the core structure of the ANN-SC model and the first-layer
predictors of the proposed MIF-CANNmodel. As can be seen in
Figure 2, the feed-forward ANN contains two hidden layers,

TABLE 3 | Input-output pairs for ANN model.

Model Forecasting time horizon (h) Input variables Output

ANNs in the first layer of 2 h ahead (12 steps ahead) WSt-12 WDt-12 Tt-12Pt-12 ADt-12 TIa WSt

ANNs in the second layer 2 h ahead (12 steps ahead) ŴS1
t ŴS2

t
̂

. . .WS29
t ŴS30

t TI WSt

aTI: time indicator which is used to represent the time of day.

TABLE 4 | Some combinations of different numbers of hidden layers and hidden
neurons tested in this research.

Number of hidden layers Number of hidden neurons

1 5
1 10
1 15
1 20
1 25
2 [5, 5]
2 [10, 10]
2 [15, 15]
3 [5,5,5]
3 [10,10,10]
3 [15,15,15]
4 [5, 5, 5, 5]
4 [10, 10, 10, 10]
4 [15, 15, 15, 15]

FIGURE 2 | Structure of a feed-forward ANN model with two hidden
layers each contains ten hidden neurons.
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and each hidden layer contains n hidden neurons. The
relationship between the inputs and output of each node is
defined as (Tesfaye et al., 2016):

Yi � fi⎛⎝∑n
j�1

Wij.Xj + bi⎞⎠ (2)

where Xj is the j
th input, Yi is the output, W

ij is the connection
weight, bi is the bias, and fi is the activation function.

The next step was to find a suitable training algorithm. The
back-propagation algorithm is one of the most commonly used
algorithms for ANNs. Levenberg-Marquardt (LM) is a popular
training algorithm. It is the combination of the Gauss-Newton
method and the steepest descent method. LM is defined as:

XK+1 � XK − [JT J + µI]−1JTe (3)

where x is the training weight, µ is the damping factor, J is the
Jacobian matrix of the first derivatives of the network errors with
respect to the weights and biases, I is the identity matrix, and e is a
vector of network errors. Thus, when µ is zero, LM becomes
Newton’s method. On the other hand, when µ is large, LM
becomes gradient descent with a small step size (MathWorks,
2019). As a result, LM has the speed advantage of the Gauss-
Newton method and the stability advantage of the steepest
descent method. Therefore, Levenberg-Marquardt back-
propagation algorithm was utilized in this study.

Artificial neural networks use activation functions to map the
relationship between input data and output targets (Santos and
Da Silva 2014). The logistic sigmoid function, a nonlinear
function, was used in this paper’s hidden layer to capture the
nonlinear relationship between inputs and outputs. The range of
normalized variables is also from 0 to 1. The logistic sigmoid
function is defined as:

f (x) � 1

(1 + e−x) (4)

A linear activation function was used to return the weighted
sum of the input in the output layer. The initial weights and biases
of the ANNs are generated randomly. The minimization of the
mean square error (MSE) between the input data such as wind
speed, wind direction, temperature, pressure, air density, time
indicator, and the target data, wind speed of the target station, is
the objective function.

Artificial Neural Networks-Based Spatial
Correlation
In this paper, station ID61118 from the NREL datasets was used as
the target station due to its central location. The surrounding stations
of Station ID61118 were used as the neighboring stations. It has been
shown in (Chen and Folly, 2019) that all the available meteorological
variables have different levels of impact on the short-term wind
speed and wind power forecasting performance. Therefore, all the
meteorological variables shown inTable 2were used as inputs in this
study. The selection of neighboring stations wasmainly based on two
criteria. The first one was based on the wind speed correlation

coefficient between the target and neighboring stations. The second
one was based on the stations’ geographical location. Spearman rank
correlation is preferred to describe the monotonic nonlinear
relationship between two variables (Schober, Boer, and
Schwarte, 2018). Wind speed frequency distribution graphs of
different stations were different, some of them were similar to the
normal distribution curve, and some were not. Therefore, the
Spearman rank correlation determines the wind speed
correlation between two stations in this paper. The neighboring
stations with high wind speed correlation with the target station
and low wind speed correlation with the selected neighboring
stations were added to the ANN-SC model.

Spearman rank correlation is defined as Equation 5 (Mukaka,
2012):

ρs(x, y) � 1 − 6∑N
i�1 (di)2

N(N2 − 1) (5)

where di is the difference between the ranks of the ith variables; N
is the total number of observations.

In our previous work (Chen and Folly, 2020), we used an
ANN-based spatial correlation model to forecast short-term wind
power. It was suggested that the ANN-based spatial correlation
model’s forecasting performance could be further improved if
meteorological variables from more neighboring stations were
used as inputs. However, it was found that the model’s
performance improved up to a certain number (i.e. 15) of
neighboring station before started to deteriorate, as we will
show later. Figure 3 shows the structure of the forecasting
model of the ANN-SC used. As can be seen in Figure 3,
meteorological variables from 30 stations were used. That is,
input features from a target station and 29 neighboring stations
were considered. Meteorological variables from neighboring
stations allow the ANN-SC model to learn the upwind and
downwind information to enhance forecasting performance.
The ANN-SC model used in this paper is similar to the one
used in (Chen and Folly, 2020), except that more meteorological
variables are used in this paper. In (Chen and Folly, 2020), the
ANN-SC model used meteorological variables from four stations
(herein called ANN-SC-4), whereas in this paper, meteorological
variables from 30 (herein called ANN-SC-30) are used.

THE PROPOSED MIXED INPUT
FEATURES-BASED
CASCADE-CONNECTED ARTIFICIAL
NEURAL NETWORK MODEL

Although the ANN-SCmodel can utilize the information provided
by the meteorological variables of neighboring stations to enhance
forecasting performance, the ANN-SC model can only handle a
limited number of input features. A large number of input features
might over-fit ANNs. Therefore, the proposed MIF-CANN model
uses 30 feed-forward ANNs, each with two hidden layers as the
first-layer predictors, and a feed-forwardANNwith a single hidden
layer at the second layer to mitigate the overfitting effect arising
from using the ANN-SC model.

Frontiers in Energy Research | www.frontiersin.org July 2021 | Volume 9 | Article 6346395

Chen and Folly Wind Power Forecasting Using MIF-CANN

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


The parallel structure of the MIF-CANN model mimics the
structure of ANNs, which allows its second layer ANN to assign
weights to the stronger predictors to mitigate the chance of
overfitting. Due to the space limitation, only a portion of the
MIF-CANNmodel’s structure is shown in Figure 4 as an example.
As shown in Figure 4, the first-layer nodes indicate the input
features sources, i.e., input features from the target station are
indicated as T1, and input features from the first neighboring
station are indicated as N1. Thus, P1 to P6 are used to identify the
predictors of the MIF-CANN model. P1 means that the predictor
uses input features from one station, whereas P6 means that the
predictor uses input features from six stations (i.e., one target
station and five neighboring stations).

Figure 5 shows the flowchart of the proposed MIF-CANN
training process, which used two main steps to obtain a final
forecasting result. The first step was to get preliminary outputs
from each of the 30 predictors (i.e., P1 to P30). The output of each
predictor was obtained by using Equation 6.

Yi � f ∑10
h2�1

f ⎡⎢⎢⎣ ∑10
h1�1

W⎛⎝∑i
j�1

(Xj) + TI⎞⎠ + b⎤⎥⎥⎦ (6)

where Yi is the output of the ith predictor; f is the activation
function; W is the connection weight; Xj is the meteorological
variables from i stations, TI is the time indicator, b is the bias. In
the second step, the outputs of 30 first layer predictors were
cascaded into the second layer as inputs, which were trained by
the second layer ANN to obtain the final results. The second
layer ANN nonlinearly assigned bigger weights to the outputs of
the stronger first layer predictors and smaller weights to the
outputs of the weaker predictors. The final output (FO) of MIF-
CANN was obtained by using Equation 7.

FO � f⎛⎝∑30
i�1

W.Yi + b⎞⎠ (7)

where f is the activation function; W is the connection
weight; Yi is the preliminary output of the ith predictor; b
is the bias.

The proposed MIF-CANN model can obtain meteorological
information from a large number of neighboring stations.
Simultaneously, it can select only useful information to
enhance forecasting performance and mitigate the overfitting
problem of large models.

SIMULATION RESULTS AND
DISCUSSIONS

All the simulations were run in MATLAB R2020a on a computer
with an Intel(R) Xeon (R) E-2104G CPU @ 3.20 GHz and 16 GB

FIGURE 3 | Structure of the ANN-SC with the input features from 1 target station and 29 neighboring stations.

FIGURE 4 | The structure of the proposed MIF-CANN model with input
features from one target station and the structure of the proposed MIF-CANN
model neighboring stations.
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of RAM. Forecasting time horizons of all the simulation results
presented for this study were 2 hours ahead forecasting.

Three of the most commonly used forecasting evaluation
metrics (i.e., NRMSE, NMAE, MAPE) were applied for this
study to evaluate the proposed models’ forecasting performance.
Normalized root mean square error (NRMSE) is more sensitive to
large errors when compared to normalized mean absolute error
(NMAE) because the errors are squared before they are averaged
(Wesner, 2016; Uniejewski, Marcjasz, and Weron, 2019). Mean
absolute percentage error (MAPE) is preferred when the forecast
error cost has a higher correlation with the percentage error than
the numerical size error (Azadeh et al., 2011). NRMSE, NMAE
equations can be found in (Chen and Folly, 2019). MAPE is
defined as:

MAPE � 100
N

∑N
t�1

∣∣∣∣∣∣∣etP
∣∣∣∣∣∣∣ (8)

P � 1
N

∑N
t�1

Pt (9)

where et the is the forecasting error of sample t, N is the total
number of samples, Pt is wind speed or wind power in this paper.

The summary of the model structure and training time of the
three forecasting models is shown in Table 5. As shown in
Table 5, the ANN-SC-4 model and ANN-SC-30 model have a
more straightforward model structure than the proposed MIF-
CANN model. However, a longer time is required to train the
more complex MIF-CANN model.

FIGURE 5 | Flowchart of the proposed MIF-CANN model.

TABLE 5 | Summary of the model structure and training time of three forecasting models.

Forecasting model Number of input features Number of first layer predictors Number of second layer predictors Training time (s)

ANN-SC-4 21 1 0 26.9
ANN-SC-30 151 1 0 1607.6
MIF-CANN 151 30 1 2204.5
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Short-Term Wind Speed Forecasting
The simulation results of 2 h-ahead wind speed forecasting of
three forecasting approaches are shown in Table 6. The ANN-
SC-4 proposed in (Chen and Folly, 2020) used input features
from one target station and three neighboring stations. Both the
ANN-SC-30 model and the MIF-CANN model used input
features from a total of 30 stations. As shown in Table 6, the
proposed MIF-CANN model has the best short-term wind speed
forecasting performance, followed by the ANN-SC-30 model.
The forecasting performance of the MIF-CANN model and the
ANN-SC-30 model improved by 25.35% and 6.62% with respect
to the ANN-SC-4 model, respectively. This result suggests that
additional input features from more neighboring stations can

enhance the ANN-based model. The significant improvement of
the MIF-CANN model compared to the ANN-SC-30 model
indicates that the model with mixed input features and
cascaded structure can further enhance the forecasting
performance of the ANNs-based spatial correlation model
(ANN-SC). Figure 6 shows the training time of ANN-SC and
MIF-CANN against the number of stations involved. As can be
seen from Figure 6, both the proposed model and ANN-SC take
longer to train with a larger number of input features.

The NRMSE, NMAE, and MAPE values of 2 h-ahead wind
speed forecasting of the ANN-SC model (i.e., from ANN-SC-1 to
ANN-SC-30) and the MIF-CANN model are shown in Table 7.
The simulation results of every 5th additional station are shown in
Table 7 to shorten the tables’ length. As shown in Table 7, there is
an advantage in using the MIF-CAN model over the ANN-SC
model when the number of neighboring stations involved
becomes larger than 15. The average value of three evaluation
metrics of the MIF-CANN model with input features from 30
stations improved by 7.97% compared to the ANN-SC-30 model.

Figure 7 shows the evaluation results of the ANN-SC and the
MIF-CANN models against the number of stations used to train
the forecasting models. The downward trend of all the evaluation
metrics suggests that the neighboring stations’ input features do
have a positive impact on the forecasting performance of the
target station. However, when the number of neighboring stations
involved in the ANN-SC model training become too large
(i.e., more than 25 stations), the improvement in the target
station’s forecasting performance stopped. This is due to the
model overfitting caused by using many input features from the
neighboring stations.

The advantage of using MIF-CANN is not very obvious when a
small number of neighboring stations (i.e., less than 15) is used in
the forecasting model training. However, both the ANN-SC and
the MIF-CANN can handle a small number of input features.

TABLE 6 | Simulation results of 2 h-ahead wind speed forecasting of the three forecasting approaches.

Forecasting model NRMSE (%) NMAE (%) MAPE (%) Average of three metrics (%) % Improvement with respect to ANN-SC-4

ANN-SC-4 6.95 4.88 13.85 8.56 0.00
ANN-SC-30a 6.54 4.54 12.90 7.99 6.62
MIF-CANNa 6.11 4.15 11.80 7.36 25.35

aBoth ANN-SC-30 and MIF-CANN used input features from 30 stations.

FIGURE 6 | The training time of ANN-SC and MIF-CANN against the
number of stations.

TABLE 7 | Simulation results of 2 h-ahead wind speed forecasting of the ANN-SC and MIF-CANN.

No. of stations used ANN-SC MIF-CANN % Improvement with respect to ANN-SC

NRMSE NMAE MAPE NRMSE NMAE MAPE

1a 7.19% 4.96% 14.06% 7.17% 4.95% 14.07% 0.04%
5 6.89% 4.78% 13.58% 6.90% 4.75% 13.49% 0.43%
10 6.75% 4.60% 13.02% 6.70% 4.59% 13.04% 0.12%
15 6.66% 4.62% 13.16% 6.44% 4.43% 12.59% 4.00%
20 6.54% 4.59% 13.01% 6.20% 4.26% 12.10% 6.53%
25 6.51% 4.60% 13.01% 6.19% 4.22% 11.98% 7.22%
30 6.54% 4.54% 12.90% 6.11% 4.15% 11.80% 7.97%

aIndicates that no neighboring station is involved.
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Although additional meteorological variables from neighboring
stations can enhance the forecasting model’s performance, using
too many input features can overfit the forecasting model. The

proposed MIF-CANN model performs better than the ANN-SC
model when the number of neighboring stations used for training
becomes larger than 15 stations. The first layer predictors of the

FIGURE 7 | The evaluation results of the ANN-SC and MIF-CANN against input features from different numbers of stations: (A), NRMSE, (B), NMAE, (C), MAPE.

TABLE 8 | Simulation results of 2 h-ahead wind power forecasting of the three forecasting approaches.

Forecasting model NRMSE (%) NMAE (%) MAPE (%) Average of three metrics (%) % Improvement with respect to ANN-SC-4

ANN-SC-4 15.78 10.17 23.80 16.58 0.00
ANN-SC-30a 14.85 9.38 21.94 15.39 7.20
ANN-SC-IFEa 13.68 8.55 20.00 14.08 15.12

aBoth ANN-SC-30 and ANN-SC-IFE used input features from 30 stations.

FIGURE 8 | Error histograms of ANN-SC-4, ANN-SC-30, MIF-CANN.
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MIF-CANNmodel with different input features produce relatively
diverse outputs. The MIF-CANNmodel used a second layer ANN
model to train the outputs of the first layer predictors. Thus, using a
total of 30 outputs which contain useful information from 30 first
layer predictors as input features to train the second layer
predictors can provide useful information from 151 input
features and at the same time avoid over-fitting issue.

Although the MIF-CANN is more complicated than the
ANN-SC-30 model, the parallel structure of the MIF-CANN
model allows all 30 predictors to be trained simultaneously.
Therefore, the MIF-CANN model’s training time is equal to
the sum of the longest training time of its first layer predictors and
the training time of the second layer model. The MIF-CANN

model requires a slightly longer training time than the ANN-SC-
30 model. Both forecasting models were trained offline, and
forecasting accuracy is a more critical performance measuring
factor than the training time. As a result, the MIF-CANN is
preferred over the ANN-SC-30 model for short-term wind power
forecasting.

Short-Term Wind Power Forecasting
The forecasted wind speed was converted to wind power. The
benefit of using the MIF-CANN model is verified by comparing
its forecasting performance to the ANN-SC-4 model and the
ANN-SC-30 model. The simulation results of 2 h-ahead wind
power forecasting of the three models are shown in Table 8. As

FIGURE 9 | Graph of simulated wind power and forecasted wind power of the ANN-SC-4 model, the ANN-SC-30 model, and the MIF-CANN model.

FIGURE 10 | 95% forecasting confidence interval of the proposed MIF-CANN.
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can be seen in Table 8, the MIF-CANN model performs better
than the two ANN-SC models. The average value of the three
evaluation metrics of the MIF-CANN model improved by 8.51%
and 15.12% compared to the ANN-SC-30 model and the ANN-
SC-4 model, respectively. The performance of the three models
was evaluated by checking the error histogram. Figure 8 shows
the forecasting error histograms of ANN-SC-4, ANN-SC-30, and
MIF-CANN. As shown in Figure 8, most forecasting errors
(indicated in red) of MIF-CANN are concentrated near the
Zero Error line. Therefore, the red color is much less than the
green or blue color on the sides of the graph.

Figure 9 shows the simulated wind power and the forecasted
wind power of the ANN-SC-4 model, the ANN-SC-30 model,
the MIF-CANN model. As shown in Figure 9, the two hours
ahead forecasted wind power of all three models could closely
track the simulated power. The forecasting error of the MIF-
CANN model is smaller than that of the ANN-SC-4 model and
the ANN-SC-30 model for the peaks and downward regions
(i.e., between hour 1 and hour 3; between hour 12 and hour 15).
The results suggest that the MIF-CANN model can take
additional information from many neighboring stations to
provide the best results. Therefore, both spatial correlation
and cascaded structure can be used together to handle several
input features and avoid overfitting issues. Figure 10 shows the
95% forecasting confidence interval of the proposed MIF-
CANN. As shown in Figure 10, the forecasted wind power
can track the simulated wind power closely for most of the
samples. The 95% prediction confidence interval covers most of
the simulated wind power except hour 8 and hour 20 which is
due to the unexpected sudden changes in wind speed. Wind
ramp events need to be considered in further studies to improve
the forecasting performance further.

CONCLUSION

In this paper, a mixed input features-based cascade-connected
artificial neural network (MIF-CANN) was used to enhance the
short-term wind speed and wind power forecasting performance
of ANN-based spatial correlation (ANN-SC) models. The ANN-
SC model improved the forecasting performance by using
meteorological variables such as wind speed, wind direction,
temperature, pressure and air density from neighboring
stations compared to the case where a small amount or none
of the meteorological variables from neighboring stations were
used. However, the ANN-SC model's performance deteriorates
when the input features are too large (i.e., input features from

more than 25 neighboring stations). The proposed MIF-CANN
model utilized 30 feed-forward ANNs in the first layer to obtain
surrounding meteorological information frommany neighboring
stations. It then employed a second layer ANNmodel to train the
outputs of 30 first-layer ANN predictors to enhance the
forecasting performance. Although the structure of the
proposed MIF-CANN is much larger than ANN-SC, it mimics
the parallel structure of ANN, which can train input features in
parallel. Therefore, the training time of MIF-CANN is very
similar to ANN-SC. The simulation results indicate that the
proposed MIF-CANN model can obtain useful information
from many input features without encountering the model
overfitting issues. Thus, the spatial correlation and cascaded
techniques can be applied together to more advanced artificial
intelligence-based models to enhance short-term wind speed and
wind power forecasting performance.
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