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Multienergy load forecasting (MELF) is the premise of regional integrated energy systems
(RIES) production planning and energy dispatch. The key of MELF is the consideration of
multienergy coupling and the improvement of prediction accuracy. Therefore, a MELF
method considering the multienergy coupling of variation characteristic curves
(MELF_MECVCC) for RIES is proposed. The novelty of MELF_MECVCC lies in the
following three aspects. 1) For the trend stripping and volatility extraction of
multienergy load time series, the extreme-point symmetric mode decomposition-
sample entropy (ESMD-SE) method is introduced to decompose and reconstruct the
variation characteristic curves of multienergy, including trend curve and fluctuation curve.
2) Themultienergy coupling of the variation characteristic curves is considered to reflect the
variation characteristics of the multienergy loads. 3) Different methods are applied
according to different variation characteristics; i.e., the combined method based on
multitask learning and long short-term memory network (MTL-LSTM) is applied to
predict the trend curve with strong correlation and the least square support vector
regression (LSSVR) method is applied to predict the fluctuation curve with strong
volatility and high complexity. Based on the actual data set of the University of Texas
in Austin, theMELF_MECVCCmodel is simulated and verified, which shows that themodel
reduces the mean absolute percentage error (MAPE) and the root mean square error
(RMSE) and fits better with the original load and has higher prediction accuracy, compared
with current advanced algorithms.

Keywords: multienergy load forecasting, integrated energy systems, multienergy coupling, mode decomposition,
long short-term memory

INTRODUCTION

The RIES utilize the advanced technology of physical information systems and innovative
management models to integrate a variety of heterogeneous energy sources such as electricity,
heating, and cooling in a certain area to realize coordinated planning, management, and optimized
operation of diversified energy. Compared with the traditional single-energy systems, RIES integrate
diversified forms of energy supply, conversion, and storage equipment, which improve the coupling
of different types of energy in different links such as source, network, and load, and also improve the
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flexibility of the overall system energy consumption (Shi et al.,
2018). They are important parts of the new generation energy
systems to build clean, low-carbon, safe, and efficient modern
energy systems. In 2008, the United States launched the FREEDM
project, expecting to use the technology of power electronics,
information, and intelligent management to build an energy peer-
to-peer exchange and sharing network (Yuan et al., 2019). In
October 2017, the State Grid Corporation of China issued a
document to promote the company’s transformation from an
electricity supplier to an integrated energy service provider.
Therefore, with the promotion and development of RIES, load
forecasting is an important prerequisite for the optimization and
management of energy systems, and its accuracy, reliability, and
intelligence are given higher requirements. At the same time,
considering the coupling of diversified energy sources has become
one of the key points of load forecasting.

Since load forecasting plays a vital role in energy management
and optimized operation of RIES and traditional single-energy
systems, a lot of research work has been done on this topic.
Traditional load forecasting methods can be classified into two
categories: traditional methods and artificial intelligence
methods. Traditional methods are represented by regression
method and time series method, including linear regression
(Dudek, 2016), ARMA and its improvement (Fard and
Akbari-Zadeh, 2014; Liu et al., 2015; Ma et al., 2017), and
exponential smoothing (Mi et al., 2018). Artificial intelligence
methods include SVM (Zhong et al., 2019), fuzzy logic inference
(Jamaaluddin et al., 2019), and ANN (Singh and Dwivedi, 2019).
Since traditional methods have higher requirements on the time
series of historical data and often use linear methods to deal with
nonlinear loads, artificial intelligence methods have gradually
become a research hotspot in recent years. ANN and SVM are
usually used to deal with the problem of nonlinear time series
load forecasting. Literature (Ryu et al., 2017) considered the two
training ways of DNN and highlighted the good load prediction
performance of DNN through model comparison. Ouyang et al.
(2019) fitted the parametric Copula models to investigate the tail
dependence of the power load on electricity price and
temperature and completed the hourly load forecast of the
power system through the DBN model. RNN is an ANN that
has a tree-like hierarchical structure, and its network nodes
recurse the input information according to their connection
order. Although it can fully approximate complex nonlinear
relationships and completely model time series, there are
problems of “gradient disappearance” and “gradient explosion”
during training. As a result, the LSTM was created, which was
originally proposed in literature (Hochreiter and Schmidhube.,
1997). Kong et al. (2017) used the LSTM framework to predict the
short-term load of a single power customer with high volatility
and uncertainty, which showed that LSTM had higher prediction
performance than other methods. Jiao et al. (2018) proposed a
nonresidential user load forecasting method based on multiple
correlation sequence information and LSTM. It used Spearman’s
correlation coefficient to prove that the multiple time series were
correlated at similar moments, and LSTM had strong processing
capabilities for multiple time series load forecasting. In the study
by Motepe et al. (2019), ANFIS, OP-ELM, and a deep learning

technology LSTM method were accurately compared and
analyzed in the context of weather data, highlighting the
higher accuracy of LSTM in load forecasting. Chen et al.
(2020) used the error reciprocal method to integrate LSTM
and XGBoost algorithm into an ultra-short-term load
forecasting model, which showed that the long-term and
short-term memory functions of LSTM for load time series
processing made the prediction effect better. SVR is an
important application branch of SVM. Based on statistical
learning theory, it has better generalization ability and faster
convergence speed and can find the global optimal solution.
Khorram-Nia and Karimi-Khorami (2015) proposed a
prediction method based on SVR to model the load
consumption behavior and used a new firefly algorithm to
optimize the parameters of SVR. Dung and Phuong (2019)
improved the load prediction accuracy of the machine
learning method SVR by constructing the standardized load
profile curve based on the past electrical load data. LSSVR is
an improvement and extension of the standard SVR model,
replacing the inequality constraints of the SVR model with
equality constraints, speeding up the calculation speed.
According to the high volatility and multifrequency of the
power system loads, Zhang et al. (2020) proposed a load
forecasting method based on VMD, BPNN, and LSSVM
methods. Combined with the improved FOA, Li et al. (2018a)
used the combined method of LSSVR and metaheuristic
algorithm to simulate the nonlinear system of the electricity
load time series, indicating that the LSSVR algorithm was
highly adaptable and accurate in the combined model and it
had a high degree of generalization, especially for the load series
which had the characteristics of strong nonlinearity, multiple
influence factors, and large fluctuations. In addition, the
processing of raw data through signal decomposition methods
is currently a hot spot for optimizing the input of prediction
models. Zheng et al. (2017) used EMD to decompose similar daily
loads, so that each prediction model was more targeted at the
difference of each component, thereby improving the overall
prediction accuracy. Chen et al. (2018) used EMD to extract the
complex features of the electrical load and denoise the data and
then completed the half-hour power load prediction through the
ELM of the hybrid kernel. ESMD improves the “mode aliasing”
and “end effect” problems in EMD and has stronger adaptability.
In the literature (Zhou et al., 2018), wind energy was decomposed
into several IMFs and a R0 through ESMD, which improved the
prediction effect of ELM on wind energy and reflected ESMD’s
good adaptability and processing ability for energy prediction.

For RIES, the load forecasting of the traditional single-energy
systems splits the coupling relationship between the various
energy sources. It only starts from the perspective of a single
energy time series, considering its timeliness, randomness,
nonlinearity, and conditionality. Therefore, when studying
RIES, the coupling characteristic between energy sources has
become one of the important factors in load forecasting. Li et al.
(2018b) established a VAR model with cooling, electricity, and
gas loads as endogenous variables and temperature as exogenous
variables to predict the cooling, electricity, and gas loads of the
multienergy systems. It showed that there was a coupling
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relationship between loads and influencing factors, and the
prediction accuracy of the model was significantly better than
that of the univariate prediction model. In literature (Liu et al.,
2020), the key factors that affected the load in the multienergy
coupling mode were analyzed to improve the overall prediction
accuracy of the system. Shi et al. (2018) proposed a short-term
electricity, heating, and gas load forecasting method based on
DBN and MTL, which proved that MTL had good adaptability to
the coupling processing between multiple energy sources.
Gilanifar et al. (2020) proposed an MTL algorithm for a BSGP
model to enhance the processing of relevant information in
different residential communities. Since the correlation
between load data is an external manifestation of the coupling
between energy sources, considering the correlation processing of
multienergy data by MTL can dig deeper into energy coupling.

In summary, the current research on load forecasting has been
relatively in depth. And considering the precise processing of load
data and the optimal choice of forecasting models simultaneously
can promote the development of energy load forecasting to higher
accuracy and greater practicability. Therefore, summing up the
previous research experience and broadening the research ideas, a
MELF method for RIES considering multienergy coupling of
variation characteristic curves (MELF_MECVCC) is proposed.
Considering the multienergy coupling of variation characteristic
curves, we decompose and reconstruct the variation characteristic
curves through ESMD-SE, use MTL-LSTM and LSSVR to predict
the loads of the trend curve and the fluctuation curve,
respectively, according to the load characteristics of the curves,
and then obtain the load predicted results. The specific
contributions of this article are as follows.

(1) A method is proposed to decompose the multienergy load
series by ESMD-SE and reconstruct the variation
characteristic curves of the corresponding energy,
including the trend curve and the fluctuation curve. The
decomposition of multienergy load time series through
ESMD avoids the problems of “mode mixing” and
incomplete elimination of noise, reduces the influence of
the original nonstationary load series on predicted results,
and is more accurate and reliable. Then, the variation
characteristic curves of the multienergy load time series
are extracted by analyzing SE and reorganizing the
sequence, which reduces the calculation scale of MELF.

(2) The multienergy coupling of variation characteristic curves
has been considered. General MELF only considers the
temporal correlation between the overall historical load
values (Zhu et al., 2019), but the loads have trend and
volatility affected by the long-term and short-term
characteristics of the influence factors. Therefore, when a
MELFmethod is carried out in this study, the coupling of the
multienergy loads under different variation characteristic
curves is considered to reflect the variation characteristics
of the multienergy loads. By constructing different variation
characteristic curves like the trend curve and the fluctuation
curve, we use the coupled multienergy load values under the
same characteristic as the input feature of energy forecasting,
enhancing the model’s sharing and learning of coupling

information between energy sources under different
variation characteristics, and improving the overall
comprehensive analysis capability.

(3) According to the features of different variation characteristic
curves, MTL-LSTM is introduced to the trend curve for
trend load forecasting, LSSVR is introduced to the
fluctuation curve for fluctuation load forecasting, and
finally weighted reconstruction is used to obtain
multienergy load forecast value. In the trend part, we
give full play to the long-term memory function of
LSTM, deeply explore the coupling between multienergy
sources under the trend characteristic, and use MTL to
share the coupling information between multienergy
forecast tasks to reduce the overall calculation scale and
improve the prediction accuracy. In the fluctuant part,
LSSVR has strong adaptability and generalization ability
to the fluctuation loads with strong nonlinearity and large
volatility and obtains the coupling information between
multienergy sources under the fluctuation characteristic
based on accurate mathematical theory.

The rest of this research is summarized as follows. In Chapter
2, the MELF_MECVCCmodel is proposed, and the main process

FIGURE 1 | Flow chart of the MELF_MECVCC model.
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of the prediction model and the principles of ESMD, SE,
LSTM, MTL, and LSSVR methods used in the model are
briefly introduced. Chapter 3 shows the simulation
experiment analysis. First, we explain the multienergy
coupling of variation characteristic curves through the
strength of the correlation between energy sources. And
then, we introduce the error evaluation index of the
experiment and verify the experimental results through
model comparison analysis. Chapter 5 gives the conclusion
of this article.

METHODOLOGY

The main process of MELF_MECVCC model is shown in
Figure 1, which is mainly divided into four parts:

(1) Data preprocessing of the original energy load data.
(2) Construction of variation characteristic curves. According

to different load variation characteristics, the original
energy load time series are decomposed one by one
through ESMD-SE and reorganized into the trend curve
and fluctuation curve.

(3) Feature fusion of trend and fluctuation curve features and
meteorological features. Load forecasting for the trend curve
through MTL-LSTM and load forecasting the fluctuation
curve through LSSVR.

(4) Weighted reconstruction of predicted results of the trend
curve and the fluctuation curve to obtain the load forecast
value of each energy.

ESMD-SE Method
ESMD method is an improvement made on the basis of EMD
method. EMD is a data adaptive analysis method, which is
suitable for the analysis of nonlinear and nonstationary signal
sequences. It smooths complex signals and extracts IMFs and R0

parts with different characteristic scales or natural periods.
However, the decomposed trend function is too rough, and
the number of screening is difficult to determine. The
obtained modal components include inherent modalities and
abnormal events or include components of adjacent
characteristic time scale. Therefore, EMD cannot effectively
separate different modal components according to the
characteristic time scale, resulting in “mode mixing.” ESMD
replaces the outer envelope interpolation of EMD with
internal pole symmetric interpolation. And it uses the
principle of “least square” to optimize the remaining
components to become the best “adaptive global moving
average” for the entire data sequence. It can better reflect the
changing trend of the data, so as to determine the optimal
number of screening and solve the “mode mixing” problem
in EMD.

ESMD has good adaptability and local variability based on the
signal and has good processing ability for the nonstationary,
nonlinear, and periodic random load time series. Therefore, we
choose this method as the basis to decompose the load time series

of each energy into different time scale modal components and
trend residual according to frequency characteristics. The
calculation steps of ESMD (Wang and Li, 2013) are as follows:

(1) Find the maximum value points and minimum value points
of the sequence Xt and mark them as Ei(1≤ i≤ n) in turn.
Connect the adjacent Ei through the line segment, and mark
the midpoint of the line segment as Fi(1≤ i≤ (n − 1)).
Supplement the boundary midpoints at the left and right
ends, denoted as F0 and Fn.

(2) Use the (n+1) midpoints obtained in Step 1) to construct p
interpolation lines, denoted as L1, L2, . . . , Lp(p≥ 1), and
calculate the mean curve Lp from this.

Lp � (L1 + L2 +/ + Lp)/p. (1)

(3) Repeat the above steps for sequence Xt − Lp until the number
of screening reaches the preset maximum value K , or |Lp|≤ ε
(ε is the preset allowable error), and the first IMF component
IMF1 is obtained.

(4) Repeat steps (1–3) for the sequence Xt − IMF1, until R0 only
meets the preset number of poles, and the component
IMF2, IMF3, . . . , IMFm is obtained.

(5) In the integer interval [Kmin,Kmax], give themaximumnumber
of screening times K , and calculate the variance ratio H:

H � σ/σ0. (2)

In (2) σ is the standard deviation of Xt − R0 and σ0 is the
standard deviation of Xt . According to the variation of the
variance ratio with K , find the maximum number of screening
times K0 corresponding to the minimum variance ratio.
Repeat the above steps with K0 as the restriction condition,
and finally get a series of modal components and trend
residuals, so that

Xt � ∑ IMFi + R0. (3)

Among them, IMFi is the modal component of the sequence at
different time scales, and R0 is the trend remainder, that is, the
best adaptive global moving average.

SE is applied to measure the complexity of time series. From
the perspective of the complexity of time series, it measures the
probability of generating new patterns in the system and
quantitatively describes the complexity and regularity of the
system. The larger the SE, the more complex the time series,
and the greater the probability so that the system will generate a
new pattern. Conversely, the simpler the time series, the lower the
probability.

Since the RIES load characteristic curves with strong
fluctuation contingency, the original sequences of multienergy
load time series are decomposed by ESMD. After a
comprehensive analysis of SE data, the variation characteristic
curves of multienergy can be reconstructed, including trend curve
and fluctuation curve, and they are respectively modeled and
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predicted. As for the trend curve, its fluctuation period is longer
and greatly affected by the long-term series. We choose the
MTL-LSTM method for prediction. As for the fluctuation
curve, the fluctuation frequency is relatively high, and the
LSSVM method with better adaptability to the fluctuation
sequence is applied for prediction.

MTL-LSTM Prediction Model
When dealing with nonlinear problems, the traditional machine
learning method is to solve the problem by dividing the problem
into several small, relatively independent subtasks, processing
each subtask separately, and recombining them. Therefore, this
method splits the correlation between each task under the same
problem and loses a lot of useful information, so that the
concept of MTL has come into being. MTL introduces the
concept of induced migration mechanism to process all or
some of the m tasks that are related but not exactly the same
(Caruana, 1997; Nunes et al., 2019). It makes full use of the
shared information contained in m tasks and trains these tasks
in parallel to achieve the goal of improving the performance of
each task. MTL can not only improve the learning efficiency and
application performance of each task, but also greatly reduce the

model scale. In this article, we use the hard parameter sharing
mechanism in its parameter sharing mechanisms, as shown in
Figure 2. Multiple tasks share one or more common hidden
layers in the network while retaining the output layers related to
the problem, thereby improving efficiency and reducing the risk
of overfitting. For the MELF problem in RIES with many
parameters and complex structure, its parameter
characteristics and model structure are relatively simple, and
its generalization ability is stronger.

LSTM network is an improved RNN. Due to the “gradient
disappearance” problem caused by the limited memory and
storage space of RNN, LSTM inherits RNN’s good temporal
correlation for sequential data problems and also introduces
gate mechanism and memory units that make it perform well
in representing historical information and future information
and extracting the long distance dependence relation of
elements in time series data. Therefore, LSTM has become a
current popular RNN structure and can be used in many
application scenarios.

Figure 3 shows the basic unit structure of the LSTM network,
including forget gate, input gate, and output gate. The forgetting
part of the state memory unit is composed of the forget gate input
xt , the state memory unit Ct−1, and the intermediate output ht−1.
The xt in the input gate is changed by the sigmoid and tanh
functions to jointly determine the retention vector in the state
memory unit. The updated Ct and outputs ot jointly affect the
intermediate output ht . The specific calculation process is as
follows:

ft � σ(Wfhht−1 +Wfxxt + bf ), (4)

it � σ(Wihht−1 +Wixxt + bi), (5)

ot � σ(Wohht−1 +Woxxt + bo), (6)

~Ct � tan h(Wchht−1 +Wcxxt + bc), (7)

Ct � ftoCt−1 + it õCt , (8)

ht � ototan h(Ct). (9)

Here, Wfh,Wih,Woh,Wch,Wfx,Wix,Wox,Wcx is the weight
matrix; bf , bi, bo, bc is the bias term; σ is the sigmoid function; xt

FIGURE 2 | MTL of hard parameter sharing mechanism.

FIGURE 3 | Basic unit structure of LSTM network.
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is the input sequence of the current time step t; ft , it , ot are the
output vector of the forget gate, input gate, and output gate,
respectively; Ct is the unit state at the current time step t; ht is
the output of the final hidden layer.

LSSVR Prediction Model
LSSVR is a pattern recognition algorithm based on statistical
learning theory, following the principle of structural risk
minimization. It replaces the inequality constraints of SVR
with equality constraints, transforms the quadratic
programming problem into linear programming problem to
solve, so as to reduce the computational complexity and
improve the convergence speed (Suykens and Vandewalle,
1999). Compared with the neural network using heuristic
method and having empirical components in its
implementation, LSSVR has a more rigorous theoretical and
mathematical foundation, does not have a local minimum, and
has strong generalization performance. Since the time series of
the fluctuation curve fluctuates greatly in frequency, and the long-
term dependence on time is not obvious, LSSVR is more suitable
for the prediction of fluctuation curve, and the prediction
performance is better.

Here, we suppose the sample set S � {(xi, yi)}li�1. Its input and
output are xi and yi, and the sample size is l; then, the objective
function of LSSVR in the feature space is as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩minJ(ω, e) � 1

2
ωTω + c

2
∑l
i�1

e2i ,

s.t.yi � ωTφ(xi) + b + ei,

(10)

where e represents the error between the predicted value and the
true value, ω is the weight, c is the penalty factor, and b is the
bias term.

According to the above formula, the Lagrange function is
constructed as

L(ω, b, e, λ) � J(ω, e) −∑l
i�1

λi[ωTφ(xi) + b + ei + yi], (11)

where λ is the Lagrange multiplier.
After calculating the Lagrange derivative of Formula (11), we

can get

( 0 IT

I Ωij + c−1E )( b
λ
) � ( 0

y
), (12)

where Ωij � φ(xi)Tφ(xj) � K(xi, xj)(j � i) is the kernel function,
according to the Mercer condition, rewritten as

K(xi, xj) � φ(xi)Tφ(xj). (13)

By substituting into the calculation and selecting the RBF
function as the kernel function, the LSSVR prediction model is
finally obtained as

y � ∑l
i�1

λiK(xi, xj) + b � ∑l
i�1

λi exp[ − ‖x − xi‖2
2σ2

] + b. (14)

NUMERICAL ANALYSIS

Data Source and Processing of Input
Variables
The data set to verify the MELF_MECVCC algorithm in this
study is taken from the actual data set UTA—the main campus of
the University of Texas in Austin provided in literature (Powell
et al., 2014). The data set covers an area of 1.6 million square
meters and contains more than 160 buildings. The content of the
data set includes hourly cooling, heating, electricity load data, and
corresponding meteorology influence factor data like dry bulb
temperature, wet bulb temperature, and relative humidity.

The training set time selected in this research is from 1:00 on
September 10, 2011 to 24:00 on March 9, 2012, and the test set
time is from 1:00 on March 10, 2012 to 24:00 on March 16, 2012.
Suppose the current time step is t, and the load feature set is
cooling, heating, and electricity load values LC , LH , LE at time
t − 1, t − 2, and t − 3, in units of ton, pound mass per hour (lbm/
hr), and megawatt (MW), respectively. And due to the current
weather forecast data is almost accurate, the feature set of
meteorology influence factors is the dry bulb temperature TD,
wet bulb temperature TW , and relative humidity H at time t. At
the same time, in order to improve the efficiency of the prediction
algorithm and prevent the single data from overflowing in the
calculation process, the normalization method is adopted for
the data.

Construction of Variation Characteristic
Curves and Explanation of Its Multienergy
Coupling
tThe influence factors of multienergy in RIES have long-term
and short-term characteristics. The long-term characteristics
such as periodic changes on climate of regional characteristics
and cultural customs make the loads have trend characteristic,
and the short-term characteristics such as current weather
changes and human life activities make the loads have
fluctuation characteristic. The trend can effectively
characterize the changing trend of the total load curve, and
volatility can highlight load fluctuations caused by accidental
factors. When performing MELF, considering the variation
characteristics can not only effectively grasp the changing
characteristics of multienergy sources and improve the
accuracy of prediction, but also further explore the coupling
information between energy sources under the variation
characteristics and strengthen the learning of multienergy
coupling characteristic. Therefore, the trend curve and
fluctuation curve of each energy load time series are
constructed by the ESMD-SE method. First, the load time
series of the three energy sources are separately decomposed
by ESMD to obtain IMFs and R0. Then, by comprehensively
analyzing the SE of the original sequence and each component
sequence, as shown in Table 1, we reconstruct the trend curve
and fluctuation curve of each energy sequence.

It can be seen fromTable 1 that the SE of the sequence IMF1 of
each energy source is too large, far exceeding the original
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sequence, so it is regarded as the noise part of the sequence and
discarded to avoid greater errors. In this article, based on the SE of
each sequence, sequence IMF2 and IMF3 are combined and
reconstructed into the fluctuation curve, and the remaining
component sequences are combined and reconstructed into
the trend curve. The fluctuation curves, trend curves, and
original load sequence curves of each energy are shown in
Figure 4.

RIES’s multienergy sources have interactive responses and
complementary features of generation, conversion, consumption,
etc., which have strong coupling. Therefore, we consider the
multienergy coupling of variation characteristic curves for MELF
to enhance the coupling information sharing and learning. Here,
the Pearson correlation coefficient is used to measure the
multienergy coupling of the trend curve or the fluctuation
curve. Pearson’s correlation coefficient is expressed as

rxy � ∑n
i�1(xi − x)(yi − y)�����������∑n

i�1(xi − x)2
√ �����������∑n

i�1(yi − y)2√ . (15)

In (15), x represents the average value of x and y represents the
average value of y. The value of rxy is [−1,1].

As shown in Table 2, in the trend curve part, the correlation
coefficients between the load at historical moments t − 1, t − 2,
and t − 3 (hereafter referred to as historical moments) and the
load itself at the current moment t are not less than 0.98. The
correlation coefficients between heating and electricity are not
less than 0.80, and the other coefficients are not less than 0.88. It
can be seen that the coupling between the energy sources is very
strong in the trend curve part. Therefore, all energy load features
are selected as energy input features. In addition, because of the
strong coupling between the trend energy sources, the MTL
method is applied to the LSTM prediction model to improve
the processing effect of the coupling between energy sources. In
the fluctuation curve part, the correlation coefficients between the
load at the historical moment and the load itself at the current
moment gradually increase, and the closer to the current time, the
stronger the correlation. Except for the weak correlation between
heating at the historical time and cooling or electricity at the
current time, the rests are close to or greater than 0.4, which are
regarded as moderately correlated. So that there is a strong
coupling between energy sources under different variation
characteristic curves, and it is of great research significance to
use it reasonably for MELF.

TABLE 1 | The SE of the original energy sequences and each component sequence.

Load IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 IMF11 IMF12

Cooling 0.5004 1.7778 0.7935 0.6687 0.6350 0.3911 0.4024 0.1663 0.0246 0.1149 0.0017 0.0009
Heating 0.6089 1.6405 0.8357 0.6074 0.4470 0.3635 0.0060 0.1708 0.0914 0.0590 0.0022 0.0011 0.0011
Electricity 0.3786 1.1150 0.4961 0.4388 0.2284 0.1938 0.0096 0.0011 0.0299 0.0267 0.0008 0.0004

FIGURE 4 | Original load curves and variation characteristic curves of cooling, heating, and electricity.

TABLE 2 | Multienergy correlation coefficient of variation characteristic curves.

Pearson LC,t−3 LH,t− 3 LE,t− 3 LC,t− 2 LH,t− 2 LE,t−2 LC,t− 1 LH,t− 1 LE,t− 1

Trend Curves LC,t 0.983 –0.885 0.915 0.995 –0.887 0.918 0.999 –0.889 0.921
LH,t –0.886 0.994 –0.802 –0.888 0.997 –0.804 –0.889 0.999 -0.805
LE,t 0.917 –0.802 0.990 0.920 –0.804 0.995 0.921 –0.805 0.999

Fluctuation Curves LC,t 0.576 –0.239 0.597 0.785 –0.370 0.708 0.941 –0.464 0.763
LH,t –0.369 0.561 –0.503 –0.459 0.785 –0.533 –0.511 0.942 -0.518
LE,t 0.371 –0.132 0.672 0.541 –0.257 0.845 0.674 –0.370 0.959
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Experimental Evaluation Index
The prediction effect of the MELF_MECVCCmodel in this study
is measured by the RMSE, the MAPE, and the RE as evaluation
index. The formula of RMSE, MAPE, and RE is as follows:

εRMSE �
������������
1
n
∑n
i�1

(ŷi − yi)2√
, (16)

εMAPE � 1
n

���������∑n
i�1

∣∣∣∣ŷi − yi
∣∣∣∣

yi

√√
× 100%, (17)

εRE �
∣∣∣∣ŷi − yi

∣∣∣∣
yi

× 100%. (18)

In (16–18), n is the total number of data, yi is the actual load
value, and ŷi is the predicted load value at the corresponding time
of yi.

Comparison and Analysis of Forecast
Results
In the experimental verification of the MELF-MECVCC
model, the explanation is divided into two parts. The first
part is to analyze and compare the predicted results of multiple

models to verify the prediction accuracy and improvement
advantages of the model proposed here. We select BPNN, OP-
ELM as unused method comparison items and LSTM, LSSVR,
ESMD-SE-LSTM-LSSVR as used method comparison items.
The second part is to analyze and compare the decomposition
algorithm in the construction of the variation characteristic
curves. We select EMD and VMD as comparative verification.
The methods and numbers of the selected comparison models
are shown in Table 3.

Comparison and Analysis of Multiple Models
When testing and verifying the experiment, theMELF_MECVCC
model as M6 is obtained by training the training set, and the
model prediction effect is tested on the test set. The experimental
data set and model acquisition steps of M1–M5 are the same as
those of M6. Figure 5 is a comparison diagram of the actual load
curves and the predicted load curves of the six models based on
the cooling, heating, and electricity data in the test set. Figure 6 is
a comparison diagram of the actual load curves and the predicted
load curves based on the subsample sequence in the test set with a
time span of one day.

As shown in Figure 5, the six models all fit well with the actual
load curves. Due to the relatively large amount of data, the
subsequence samples in Figure 6 are used for illustration.
Figure 6 gives the comparison between actual and predicted
curves in the test set on March 13. M1 and M3 are relatively flat,
so they cannot adapt to actual load curve fluctuations, while M2
and M4 have larger fluctuations. For example, at 7:00 (0 scale
point of the abscissa in the figure represents 1:00), the predicted
curves of M2 and M4 for electricity and cooling fluctuate greatly.
But from an overall perspective, it is also obvious that LSSVR has
good generalization characteristics for sequences with large
fluctuations. It can be seen from the figure that the predicted
values of M5 and M6 are closer to the actual load values of
cooling, heating, and electricity, and when the actual loads
fluctuate, the fitting effect of M1–M4 to the actual load curves

TABLE 3 | The list of compared models.

Model number Model methods

M1 BPNN
M2 OP-ELM
M3 LSTM
M4 LSSVR
M5 ESMD-SE & LSTM & LSSVR
M6 ESMD-SE & MTL-LSTM & LSSVR (MELF-MECVCC)
M7 EMD & MTL-LSTM & LSSVR
M8 VMD & MTL-LSTM & LSSVR

FIGURE 5 | Actual load curves and predicted load curves of M1-M6 based on the test set.
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is lagging compared to M5 or M6. M5 and M6 can improve the
fitting effect of the predicted curve by considering the
multienergy coupling of variation characteristic curves.

The three subgraphs in Figure 7 show the prediction errors of
cooling, heating, and electricity based on M1-M6. For the
prediction error evaluation indexes RMSE and MAPE, the
prediction errors of M1-M6 from large to small are M1, M3 >
M2, M4 > M5 > M6. Compared with M3 and M4, the MAPE of
M5 is reduced by 25.94 and 20.24% for cooling, 27.75 and 14.81%

for heating, and 24.14 and 6.38% for electricity. On the basis of
M5 considering the multienergy coupling of variation
characteristic curves, M6 introduces MTL method for the
trend curve, and the MAPE of M6 is reduced by 4.06, 23.19,
and 6.06%, respectively, for cooling, heating, and electricity,
compared with M5. M6 makes full use of the sharing
information and further improves the prediction accuracy.
Among the six models, M6 has the smallest error value
indicating the best fitting effect.

FIGURE 6 | Actual load curves and predicted load curves of M1-M6 on March 13.

FIGURE 7 | Model prediction errors of (A) cooling, (B) heating, and (C) electricity.
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Figure 8 is a box diagram of the RE percentage distribution of
cooling, heating, and electricity based on M1–M6. The REs of M5
and M6 are reduced compared with M1–M4, and the error
distribution range of M5 and M6 is also significantly reduced. It
shows that considering themultienergy coupling under the variation
characteristics can reduce the RE of the prediction model. Among
the six models, M6 has the smallest RE and fewer outliers, which
highlights that the MELF_MECVCC model proposed in this article
has a certain effect on the accuracy of MELF and has more research
and application value.

Comparison and Analysis of Decomposition
Algorithms
On the basis of other algorithms remaining unchanged, the
decomposition algorithm is changed to EMD and VMD. We
denote their models as M7 and M8, respectively, and compare
them with the proposed M6 whose decomposition algorithm is
ESMD. Figure 9 is a comparison diagram of the actual load
curves and the predicted load curves of M6, M7, andM8 based on
the cooling, heating, and electricity data in the test set. Table 4 is
the prediction errors of M6–M8 and the comparison of the error

reduction relative to M3 and M4. Figure 10 shows the
distribution curves of the RE percentage of M6–M8 for
multienergy loads.

As shown in Figure 9, under the premise of considering the
multienergy coupling of variation characteristic curves, the predicted
load curves ofM6–M8 all have a higher degree of fit to the actual load
curves. However, the curves of M7 and M8 still have more outliers,
and the degree of fit is worse than M6. In Table 4, the reductions of
MAPE and RMSE of M6, M7, and M8 relative to M3 and M4 are
compared respectively. For example, in line 2, column 3, the data 1.89
(28.95, 23.48) means that the MAPE of M6 is 1.89% and it is 28.95%
less than that of M3 in cooling load forecasting calculated by
(MAPEM3-MAPEM6)/MAPEM3, and it is 23.48% less than that of
M4 in cooling load forecasting calculated by (MAPEM4-MAPEM6)/
MAPEM4. Except that the heating RMSE ofM7does not decrease, the
prediction errors of M6-M8 are significantly reduced compared with
M3 and M4. Taking MAPE as an example, the cooling error is
reduced by more than 15%, the electricity error is reduced by more
than 20%, and the heating errors of M6 and M8 are both reduced by
more than 30%, which further proves that considering the
multienergy coupling of variation characteristic curves can deeply

FIGURE 8 | Model relative error distribution box diagram of cooling, heating, and electricity.

FIGURE 9 | Actual load curves and predicted load curves of M6-M8 based on the test set.
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explore the coupling information elements in the context of physical
information interconnection of the RIES and improve the accuracy of
MELF. Moreover, M7 has a better effect on cooling and electricity
load information processing, andM8 has better effect on heating and
electricity load information processing, but M6 has better effect on
the three kinds of energy load information mining and energy
forecasting than M7 and M8, with the error reduction greater
than 12, 17, and 3% for cooling, heating, and electricity, respectively.

According to Figure 10, the prediction RE distribution curves
of the three models, M6 has a smaller error distribution range
than M7 and M8, and its RE value is lower. In addition, the value
and number of outlier points of M6 are significantly smaller than
those of M7 and M8. Therefore, after comprehensively analyzing
the performance of the decomposition algorithms for
constructing the variation characteristic curves of cooling,
heating, and electricity, we choose ESMD to better meet the
accuracy requirement of the research.

CONCLUSION

In this research, the MELF_MECVCC combined model designed
for RIES was investigated. The obtained results are as follows.

(1) The multienergy variation characteristic curves are
decomposed and reconstructed through ESMD-SE, and the
load variation features and energy coupling information are
deeply excavated. Compared with EMD and VMD as the
decomposition algorithm, the errors of the model proposed
which uses ESMD are reduced by more than 12, 17, and 3%
for cooling, heating, and electricity.

(2) This method considers the multienergy coupling of
variation characteristic curves. According to the analysis of
Pearson’s correlation coefficient, the closer to the current
moment of prediction, the stronger the coupling between
energy sources. Also, there is a very strong correlation
between the loads of the trend curve and a moderate
correlation between the loads of the fluctuation curve.

(3) Compared with BPNN, OP-ELM, LSTM, and LSSVR, the
prediction results of the MELF_MECVCC model are
reduced by more than 23, 34, and 12% respectively for
cooling, heating, and electricity. This model has the highest
prediction accuracy and the smallest distribution range of
prediction errors. It can better fit the actual load curves and
deeply explore the load temporal and spatial characteristics
and energy interconnection coupling characteristics due to
the variation characteristics of the energy sources.

TABLE 4 | The errors of M6-M8 and their error reduction compared with reference M3 and M4.

Loads Errors (%) (Relative
to M3, M4 %)

M6 M7 M8

Cooling MAPE 1.89 (28.95, 23.48) 2.17 (18.42, 12.15) 2.25 (15.41, 8.91)
RMSE 1.10 (31.25, 26.67) 1.25 (21.88, 16.67) 1.24 (22.50, 17.33)

Heating MAPE 1.06 (44.50, 34.57) 1.67 (12.57, -3.09) 1.28 (32.98, 20.99)
RMSE 0.36 (46.27, 36.84) 0.60 (10.45, -5.26) 0.55 (17.91, 3.51)

Electricity MAPE 1.24 (28.74, 12.06) 1.34 (22.99, 4.96) 1.28 (26.44, 9.22)
RMSE 0.60 (25.93, 14.29) 0.67 (17.28, 4.29) 0.60 (25.93, 14.29)

FIGURE 10 | Model relative error distribution curves of cooling, heating, and electricity.
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In summary, the method proposed further improves the
prediction accuracy of multienergy load forecasting and has
certain research value and practical application value. Its
predicted results can provide accurate data support for energy
planning and dispatch and then ensure the safe and stable
operation of the multienergy systems.
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GLOSSARY

ANFIS Adaptive neurofuzzy inference system

ANN Artificial neural network

ARMA Autoregressive moving average

BPNN Back propagation neural network

BSGP Bayesian spatiotemporal Gaussian process

DBN Deep belief network

DNN Deep neural network

ELM Extreme learning machine

EMD Empirical mode decomposition

ESMD Extreme-point symmetric mode decomposition

FOA Fruit fly optimization algorithm

IMF Intrinsic mode function

LSSVM Least square support vector machine

LSSVR Least square support vector regression

LSTM Long short-term memory network

MAPE Mean absolute percentage error

MELF Multienergy load forecasting

MELF_MECVCC A MELF method for RIES considering multienergy
coupling of variation characteristic curves (the model proposed)

MTL Multitask learning

OP-ELM Optimally pruned extreme learning machine

R0 Residual error

RE Relative error

RIES Regional integrated energy systems

RMSE Root mean square error

RNN Recursive neural network

SE Sample entropy

SVM Support vector machine

SVR Support vector regression

VAR Vector autoregressive

VMD Variational mode decomposition

XGBoost Extreme gradient boosting.
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