
False Data Injection Attack Detection
in Power Systems Based on
Cyber-Physical Attack Genes
Zhaoyang Qu1,2, Yunchang Dong1,2*, Nan Qu3, Huashun Li4, Mingshi Cui5, Xiaoyong Bo1,2,
Yun Wu6 and Sylvère Mugemanyi1

1School of Electrical Engineering, Northeast Electric Power University, Jilin, China, 2Jilin Engineering Technology Research Center
of Intelligent Electric Power Big Data Processing, Jilin, China, 3State Grid Jiangsu Electric Power Co., Ltd., Nanjing, China, 4State
Grid Jilin Electric Power Co., Ltd., Jilin, China, 5State Grid Inner Mongolia Eastern Electric Power Co., Ltd., Hohhot, China,
6Zhejiang Windey Co., Ltd., Hangzhou, China

In the process of the detection of a false data injection attack (FDIA) in power systems,
there are problems of complex data features and low detection accuracy. From the
perspective of the correlation and redundancy of the essential characteristics of the attack
data, a detection method of the FDIA in smart grids based on cyber-physical genes is
proposed. Firstly, the principle and characteristics of the FDIA are analyzed, and the
concept of the cyber-physical FDIA gene is defined. Considering the non-functional
dependency and nonlinear correlation of cyber-physical data in power systems, the
optimal attack gene feature set of the maximum mutual information coefficient is
selected. Secondly, an unsupervised pre-training encoder is set to extract the cyber-
physical attack gene. Combined with the supervised fine-tuning classifier to train and
update the network parameters, the FDIA detection model with stacked autoencoder
network is constructed. Finally, a self-adaptive cuckoo search algorithm is designed to
optimize the model parameters, and a novel attack detection method is proposed. The
analysis of case studies shows that the proposed method can effectively improve the
detection accuracy and effect of the FDIA on cyber-physical power systems.

Keywords: cyber-physical power system (CPPS), false data injection attacks (FDIAs), cyber-physical attack genes,
stacked autoencoder network, cuckoo search algorithm (CS), attack detection

INTRODUCTION

With the continuous development of information technology, the interaction between information
flow and energy flow in power systems is becoming more and more frequent (Yu and Xue, 2016; Xu
et al., 2018; Qu et al., 2019). By integrating computing systems, communication networks and
physical environments, traditional power systems have evolved into cyber-physical power systems
(CPPS) (Yang et al., 2019; He et al., 2020). In the process of production management and dispatch
control in smart grids, cyber systems are increasingly inseparable. The integration of renewables is
threatening the secure operation of today’s CPPS because of inherent uncertainties of renewable
power generations (Li et al., 2018; Li et al., 2020). At the same time, however, some vulnerabilities in
the cyber system may be exploited by attackers, posing serious threats to the physical system across
cyber-physical spaces (Li et al., 2019). They can even cause the temporary paralysis of important
infrastructure (Adhikari et al., 2017). FDIAs are advanced and sustainable data integrity attacks in
the CPPS. By modifying the collected measurement data, the system state estimation will be
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biased and the power grid will be damaged by the incorrect
action of switches (Liang et al., 2016). The cyber security of
CPPS has gradually attracted people’s attention. Furthermore,
how to effectively identify the FDIA has become an urgent
problem to be solved in the safe and stable operation of power
systems.

In recent years, FDIAs in the CPPS have become a hot
topic in power system studies. The FDIA was first proposed in
Liu et al. (2011). The relevant principles are explained. It is
assumed that the attacker can successfully attack the power
system by bypassing the traditional bad data detection
method when fully grasping the grid topology information
and related parameters. But in reality, it is more difficult for
an attacker to obtain this information. From the attacker’s
perspective, research has shown that FDIA can be launched
without fully grasping the topology information (Liu et al.,
2015). A sequential pattern mining method was proposed in
Pan et al. (2015) to accurately extract power system
interference and network attack patterns from
heterogeneous time synchronization data. This method
does not have a suitable division scheme to determine the
classification boundary. Through feature engineering to
reconstruct new features, a new method of processing
abnormal data was proposed (Wang et al., 2019), and then
a power system attack detection model based on machine
learning was constructed. Existing features were
reconstructed in that method, which increased the
computational cost. The mechanism and method of FDIA
under DC and AC models were studied, and an attack
detection method based on the CNN-GRU hybrid model
was proposed (Li et al., 2019). The optimal fusion
estimation method was designed by adding a
compensation factor to study the detection of FDIA attack
signal under CPPS (Gao et al., 2019). However, there is no
explanation on how to choose the appropriate compensation
factor.

At present, the CPPS sensing equipment is gradually
increasing, and the amount of data is increasing. The
recognition accuracy of traditional methods can no longer
meet the increasing actual demand. At the same time, new
types of FDIAs are emerging endlessly. Even if the topology
information is not fully mastered, it can bypass the traditional
detection mechanism to launch attacks.

In summary, the existing research on the detection of
FDIAs based on machine learning has the following
limitations: 1) less collaborative consideration of cyber
and physical data characteristics, unilateral attack
detection methods find it difficult to identify complex
cyber-physical attacks. 2) The features of the initial CPPS
data are complex, and feature selection and transformation
directly affect the validity and accuracy of the detection
results, and effective feature mining techniques are
required. 3) Attack detection speed is an important factor
in actual engineering, and it is necessary to increase the
model calculation speed.

According to the consideration of the complex characteristics
of the CPPS data, this paper proposes a method for identifying

the FDIA in the CPPS based on cyber-physical genes. The main
contributions of this paper are as follows:

(1) From the perspective of cyber and physical integration of
power systems, the concept of “FDIA genes” is proposed.
Through the melting processing of information features, the
largest information coefficient is introduced for feature
selection, and a subset of gene features that are useful for
attack detection are screened, and the high-dimensional
problem of data features is solved.

(2) An FDIA gene extraction model is constructed based on a
stack auto-encoding network (SAE). An unsupervised pre-
training encoder is set to extract attack genes, and a
supervised fine-tuning classifier is set to classify attacks.
Deep learning is used to automatically learn and extract
the abstract FDIA gene, which can better represent the
essential attributes of the FDIA.

(3) A self-adaptive cuckoo search algorithm (SACS) is proposed
to solve and optimize the initialization parameters of the
detection model. Historical data are trained and network
parameters are fine-tuned to accurately identify the FDIA.

The rest of this paper is organized as follows: according to the
principle and characteristics of false data injection attacks, cyber-
physical FDIA genes are defined, and the optimal attack gene
feature set is selected with the maximum information coefficient
in FDIA Gene Definition and Feature Selection. The SAE is
constructed to extract FDIA genes in .FDIA Detection Model
A self-adaptive cuckoo algorithm is proposed to solve the model
parameter optimization problem, the FDIA detection method
based on SACS-SAE is designed to identify attacks in Attack
DetectionMethod Based on SACS-SAE.Case Studies demonstrates
simulation results on case studies, and finally, the conclusions are
drawn in Conclusion.

FDIA GENE DEFINITION AND FEATURE
SELECTION

FDIAs are a new type of attack against the CPPS. The attacker
uses the measurement data of the power system as the target of
the attack, and builds the attack vector based on the state
estimation equation. Vulnerabilities in the detection
mechanism of poor state estimation data are used to tamper
with the measurement data at will, prompting the power grid to
incorrectly estimate the current operating state. In turn, it will
affect the power generation control and dispatch operation of the
CPPS, causing system malfunctions. This attack is highly
concealed and difficult to be detected. We analyze the
principles and characteristics of the FDIA in the CPPS, use
the bio-inspired concept of genes, and define the cyber-
physical FDIA gene.

Principles of the FDIA
Assuming that the attacker has obtained the complete
information of the CPPS, then an FDIA can be constructed.
Moreover, it is not discovered by the traditional bad data
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detection mechanism. As a result, the state estimation result of
the power system is wrong. The process under the direct current
system can be described in Eq. (1):

Za � Z + a � Hθ + a + e (1)

Where Za is the tampered measurement data, Z is the actual
measurement, H is the Jacobian matrix of the power system, θ is
the state of the power system, a is the false value injected by the
attacker, and e is the amount of error generated in the
measurement process.

If c is the false data, it should be satisfied in Eq. (2):

θa � (HTW−1H)− 1HTW−1Za � θ + c (2)

Where W is the diagonal matrix of the measurement error, and
the residual expression is shown in Eq. (3):

ea � Za −Hθa � Z + a −H(θ + c)
� Z −Hθ + a −Hc

(3)

From the above equation, when the attacker masters the
Jacobian matrix, as long as the injected false data satisfy a �
Hc, the measured data can be tampered with and the traditional
bad data detection method can be bypassed to realize the FDIA.

The features of the FDIA in the CPPS are summarized as
follows:

(1) The FDIA has a cross-domain interaction in the cyber-
physical space. The attacker comprehensively considers
the characteristics of cyber-physical coupling, and utilizes
cyber-attacks technology to detect, invade, elevate, and
control the cyber system. Then the attacker will launch
physical attacks such as disconnecting the knife switch to
undermine the security of the power system.

(2) The evolution mechanism of FDIA behavior is complicated.
A coordinated attack is a finely designed multi-step attack,
including the evolution of network behavior over time, and
the coordination of multiple attackers that change over space.

(3) The FDIA is hereditary and variant. The same type of attack
has the common characteristics of the family. The attack
changes the form of the attack through the outer event
encapsulation, but the nature of the attack has not
changed, making it difficult to identify the attack after the
variant.

Cyber-Physical FDIA Genes
The phasor measurement unit has been widely used in the CPPS,
providing nearly real-time voltage phase, current phase, and
other measurement values for power system personnel (Li
et al., 2019) as physical data in the attack detection process.
Simultaneously, various intrusion detection systems are deployed
in the CPPS. Among them, the collected communication flow,
network log and other data are regarded as cyber data. The data of
the physical system, and the data of the cyber system together
form the cyber-physical data.

The biological gene is the most essential factor used to
distinguish different species or different individuals of the

same species. It is also the most credible basis for judging the
same species or the same individual. Genetic recombination and
variation control the family heritability and diversity of
organisms (Hagai et al., 2018; Qu et al., 2020).

If the potential key data features that control the law of the
FDIA behavior can be found from the original cyber-physical
data, the types of attacks can be more effectively detected.
Drawing lessons from the idea of the biological gene, the
cyber-physical FDIA gene is defined as follows: in the CPPS
data set containing the attack, select the key samples in the
attack activity, and extract the characteristic data pieces that
contain the attack behavior information. First remove the
redundant and useless characteristic information, and then
perform the self-learning of the inherent law of the
characteristic combination change through the process of
mining, the genes of the nature of the attack are obtained,
and the type of attack can be detected through the uniqueness of
each attack gene.

Optimal Attack Gene Feature Set Selection
Due to the increasing number and type of controlled components,
the number of key features in the CPPS is relatively large. Data
parameters usually have complex properties such as nonlinear
correlation, non-functional dependency, and redundancy. For
example, the fluctuation of voltage, phase, and frequency show
similar fluctuations, indicating that there is a certain degree of
redundancy among them (Qu et al., 2018). However, traditional
feature selection methods find it difficult to capture the non-
functional dependency between features.

Considering that the high-dimensional characteristics,
nonlinear correlation, and non-functional dependency of CPPS
data have caused serious obstacles in the research and application
process. Under the condition of supervised learning, this paper
proposes an improved maximum correlation minimum
redundancy attack gene feature selection method considering
the maximum information coefficient (MIC). The maximum
correlation minimum redundancy algorithm determines the
optimal set of gene features by calculating the mutual
information between different features and categories (Dai
et al., 2016). Nevertheless, it is difficult to capture the non-
functional dependency between features in CPPS data (Yang
et al., 2018). The MIC between features is analyzed using the
method of grid partition and mutual information. Given feature x
with the probability density p(x) and feature y with the
probability density p(y), and the joint probability density is p
(x, y), the mutual information I (x, y) between them is shown in
Eq. (4):

I(x, y) � ∫∫ p(x, y)log p(x, y)
p(x)p(y) dxdy (4)

The set F formed by features < x, y> is cut using grid G. By
changing the position of the dividing point, the mutual
information value in each sub-grid is calculated, and the
maximum mutual information value of the entire grid G is
obtained. The maximum mutual information of F under grid
G is shown in Eq. (5):
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Ip(F, x, y) � maxI(F|G) (5)

Where F|G means that the set F is divided by the grid G, and the
maximum normalized I*(F, x, y) values obtained by changing
different cutting points form the characteristic matrixM(F)x, y in
Eq. (6):

M(F)x,y � Ip(F, x, y)
logmin{x, y} (6)

The maximum information coefficient is shown in Eq. (7):

MIC(F) � max
xy <B n( ){M(F)x,y} (7)

Where the range of MIC(F) is [0,1], and B(n) is the upper limit of
the grid size. If B(n) is too large, the data in set Fmay be gathered
in a small part of the sub-grid, and if B(n) is too small, less data
can be searched. Generally, the effect is best when B(n) � n0.6

(Law et al., 2019), and this value is also used in this paper. The
greater the MIC between features and categories, the stronger the
correlation, and the greater the impact on the final classification
results. The greater the MIC between features, the stronger the
substitutability between features, that is, the stronger the
redundancy. The process of quantitative analysis of correlation
and redundancy is shown as follows:

C(F, c) � 1

|F| ∑xi ∈FMIC(xi, c) (8)

R(F) � 1

|F|2 ∑
xi ,xj ∈F

MIC(xi, xj) (9)

Where C represents the correlation between the feature set F and
the attack category c, and R represents the redundancy between
the features in the set F. F and |F| are the feature set and the
number of features, xi represents the ith feature, and c represents
the category label. MIC (xi, c) represents the maximum
information coefficient between feature i and the target
category, and MIC (xi, xj) represents the maximum
information coefficient between feature i and feature j.

The optimal attack gene feature set realizes feature selection
from the perspective of feature correlation and redundancy. This
requires the selected set to meet the conditions of maximum
correlation and minimum redundancy. The following criteria are
used for comprehensive consideration in Eq. (10):

max∅1(C,R), ∅1 � C − R (10)

Assuming that the original feature set is F, the optimal feature
subset F(m-1) of m-1 features has been obtained. The process of
selecting the mth feature from the remaining F-F(m-1) features
should be satisfied in Eq. (11):

max

xj ∈F−Fm−1

⎡⎢⎣MIC(xj, c) − 1
m − 1

∑
xi ∈Fm−1

MIC(xj, xi)⎤⎥⎦ (11)

At the same time, with the update and development of
terminal equipment, CPPS feature information may gradually
increase, and the optimal feature set can still be supplemented
according to Eq. (8).

Gene Feature Set Selection Process
The algorithm flow is as follows:

Input: original attack feature set F, category label c.
Output: the optimal attack gene feature set F'.

(1) Discretize the continuous data in the feature set F, and the
initial value of the feature set F′ is a null value.

(2) Calculate the maximum information coefficient of each
feature and category label c, and remove irrelevant and
weakly related features.

(3) Find the feature Fi that maximizes Eq. (8) in F, add it to the
optimal attack feature set F′, and delete the feature Fi from F.

(4) Repeat step 3) and continue to select features from the
remaining features in feature set F.

(5) Obtain the optimal FDIA gene feature set F′.

FDIA DETECTION MODEL

On the basis of attack gene feature selection, the self-learning
ability of a stacked autoencoder (SAE) network is used to further
extract abstract genes.

Extracting Attack Genes with Unsupervised
Pre-Training Encoder.
An SAE detection model mainly includes two parts: an
unsupervised pre-training encoder and a supervised fine-
tuning classifier. The detection model uses the cyber-physical
optimal attack gene feature set after the above feature selection
method as the input layer, and the type of attack on the system is
used as the output layer of the neural network.Where the physical
layer includes physical factors such as voltage, current, and phase
angle, and the cyber layer includes information factors such as
communication traffic and alarm logs. The SAE detection model
is shown in Figure 1.

An autoencoder neural network is constructed. The input
layer and output layer of the network are kept as much the
same as possible, so that the low-dimensional data of the
hidden layer extracted from the intermediate gene can
represent the original data. This process does not require
labels for supervised training. The layer-by-layer greedy
training method is used to pre-train each layer of the
neural network, and the network parameters are initialized
layer by layer. The cyber and physical features are abstracted
layer by layer and coded into low-dimensional data features to
reduce the difficulty of model training.

L � S(w1X + b1) (12)

Z � S(w2L + b2) (13)

In Eq. (11) and Eq. (12), L and Z are encoders and decoders,
X � {X1, X2,....., Xn} is the feature to be encoded, w refers to the
weight parameter, b refers to the deviation value, and S refers to
the activation function sigmoid:

S(x) � 1
1 + exp(−x) (14)
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The loss function is defined as follows:

J(w, b) � 1
n
(∑n

i�1(Z − X)2) (15)

By minimizing the loss function, the most suitable set of weight
parameters (w, b) are obtained to make the neural network
optimal. The data are encoded multiple times to obtain the
cyber-physical attack gene after dimensionality reduction.

Supervised Fine-Tuning Classifier
The supervised fine-tuning classifier Softmax is constructed for
the final attack detection step. The neurons in the output layer are
set to N. For N-type CPPS attacks, each neuron represents a type
of attack. After the detection is completed, only one neuron of the
N output layer neurons has a value of 1, and the remaining N-1
neurons are all 0. The attack mode represented by the neuron
with the value of one is the detected attack. The Softmax
algorithm is defined in Eq. (16):

Yi � exi

∑N
i�1exi

(16)

Where i represents the category index, Yi represents the
probability that the detection result is the ith category, xi is
the input value of the Softmax classifier, and the total number
of categories is N.

In order to prevent the parameters from falling into the local
optimum, the labeled data set is used for reverse fine-tuning. By
comparing the label result with the classification result, the
backpropagation algorithm is used to adjust the model
parameters. All layer parameters of the entire SAE detection
model reach the global optimum as much as possible.

When the SAE detection model adjusts the optimized
parameters, the initial parameter setting requirements are
higher. The objective function of the initial parameters of the
model is expressed in Eq. (17):

E � 1
2
∑n
k�1

(y′(i) − y(i))2 (17)

Where n is the total number of samples, y′(i) represents the
expected output sample, and y(i) represents the actual output
sample.

FIGURE 1 | SAE detection model structure.
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ATTACK DETECTION METHOD BASED ON
SACS-SAE.

The initial parameter values of the model are critical to the
accuracy of the model (Xing et al., 2019). The initial parameters
after unsupervised pre-training have the disadvantages of slow
convergence and easily fall into local optimum. Aiming at this
problem, a self-adaptive cuckoo search (SACS) algorithm is
proposed to optimize the initial parameters of the SAE model.
And on this basis, a new method of FDIA detection in the CPPS
based on SACS-SAE is obtained.

Model Parameter Optimization
The cuckoo algorithm has the advantages of being a simple
model, has few parameters, and strong versatility, which is
often used to find the optimal solution of the model (Chitara
et al., 2018). However, the step size factor and discovery
probability are usually fixed values, which leads to a lack of
flexibility and adaptability in the algorithm. A self-adaptive
strategy is introduced to optimize this problem.

In the self-adaptive cuckoo algorithm, all bird nests are
calculated in each iteration to save the best bird nest storage.
The specific algorithm flow is as follows:

Step (1) Randomly generate n initial positions of the bird’s nest
[x1

(0), x2
(0),..., xn

(0)]. They correspond to the initial weight and
threshold parameters of the SAE network model, and the neural
network trains the model according to the parameter values. The
result is calculated according to Eqs. (18)Eqs. (19).

x(t+1)i � x(t)i + α⊕L(λ) (18)

α � α0(x(t)i − x(t)b ) (19)

Where xi is the position of the ith bird’s nest in the tth generation,
α is the step-length control factor, ⊕is the point-to-point
multiplication, and xb

(t)is the optimal solution of the current
generation, α0 is a fixed value of 0.01, and L(λ) is a random search
path, obeying Levy distribution:

L(λ) � ϕ × μ

|v|1/β (20)

Both μ and v obey normal distribution; β is 1.5, and the value
of ϕ is as follows:

ϕ �
⎧⎪⎨⎪⎩
Γ(1 + β) × sin(π×β2 )
Γ[(1+β2 ) × β × 2

β− 1
2 ]

⎫⎪⎬⎪⎭
1/β

(21)

Step (2) Generally, the larger the step size factor α0, the stronger
the global search ability, but the algorithm convergence accuracy
decreases; the smaller the value, the more the optimization
accuracy improves, but the convergence speed is slower. In the
standard cuckoo algorithm, this value is set to a fixed value, which
makes the algorithm’s convergence process lack self-adaptability.
This paper creates dynamic settings as shown in Eq. (22):

α0 � exp(− ti
tmax

) (22)

Where ti represents the current number of iterations, and tmax

represents the maximum number of iterations. The value of α0
will gradually decrease with the increase of the number of
iterations, to ensure that the step size is gradually reduced, the
algorithm satisfies the global search in the early stage, and the
optimization accuracy is improved in the later stage.

Step (3) Integrating the above process, the expression of the
new individual generated by the self-adaptive cuckoo algorithm is
as follows:

x(t+1)i � xi + exp(− ti
tmax

) × ϕ × μ

|v|1/β (x(t)i − x(t)b ) (23)

Step (4) Calculate all bird’s nests in each iteration, and save the
best bird’s nest position xd

(0).
Step (5) After obtaining a new generation of bird’s nest

positions, use better bird’s nest positions to replace the poorer
bird’s nest positions of the previous generation to obtain a set of
better bird’s nest positions ek � [x1

(k), x2
(k),..., xn(k)].

Step (6) Generate a random number rand in the range of [0,1].
If rand >pa, then discard some of the solutions, and use the
preferred random walk to generate the same number of new
solutions. As shown in Eq. (24):

x(t+1)i � x(t)i + rand(x(t)j − x(t)k ) (24)

Where xj
(t) and xk

(t) represent two random solutions of the t-th
generation.

Step (7) Discovery probability pa is generally a fixed value of
0.25, which determines whether the current solution is retained. In
order to prevent the algorithm from falling into the local optimum,
the cuckoo algorithm is further improved: the discovery probability
pa is dynamically set, and it gradually increases as the search
progresses. In the later stage of the evolution, the global search and
local search in the algorithm can be balanced. The convergence
accuracy of the algorithm is improved as a whole to avoid falling
into the local optimum. As shown in Eq. (25):

pa � pa,max × ( ti
tmax

)3

(25)

Where pa represents the discovery probability of the bird’s nest,
pa,max represents the maximum discovery probability, ti
represents the current iteration number, and tmax represents
the maximum iteration number.

Step (8) After obtaining a new set of bird’s nest positions,
according to the objective function, the bird’s nest position with
better performance is replaced with the bird’s nest position with
poor performance in ek. So far we get the latest set of bird’s nest
positions Qk � [x1

(k), x2
(k), . . ., xn(k)].

Step (9) Find the best bird’s nest position xd
(k) in Qk, if the

maximum number of iterations is not reached, return to step 4) to
continue searching and optimizing, otherwise output the best
position xd

(k).
Step (10) According to the value corresponding to the optimal

bird’s nest position xd
(k) as the initial parameters of the model, the

forward training and reverse adjustment of the model are
performed.
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SACS-SAE Attack Detection Steps
The SACS is employed for solving the objective function in order
to improve the convergence accuracy. So far, the attack detection
steps based on the SACS-SAE detection method are as follows.

Step (1)There are non-numerical and infinite values in the
data, which seriously affect model training. The entire data
containing non-numerical and infinite values are deleted. The
detection problem is a multi-classification problem, so the
category attribute should be converted to one-hot encoding
form. For example, the type of event 1 can be converted to (1,
0, 0,..., 0), and event 41 can be converted to (0, 0,..., 0, 1).

There is a large gap in the value of different features in the
original data, which is prone to large errors. The original data are
normalized, and the characteristic data are mapped to the range
of [−1, 1] according to Eq. (26). Where xi is the attribute value of a
certain column, xmin is the minimum value of the column
attribute, and xmax is the maximum value of the column attribute.

xnew � xi − xmin

xmax − xmin
(26)

Step (2) After obtaining the standardized data set, use the
maximum information coefficient to calculate the correlation
between the feature and the category, and the redundancy
between the feature and the category, and screen the optimal
cyber-physical attack gene feature set based on the maximum
mutual information coefficient.

Step (3) Construct an unsupervised pre-training encoder to
encode the original data and reduce the dimensionality. The
greedy training method is used to train each layer of the network
layer by layer, initialize the model parameters, and deeply extract
the abstract genes of the input gene feature set to reduce the
difficulty of model training.

Step (4) Construct a supervised fine-tuning classifier, followed
by a Softmax classifier after the coding layer. The network weights
and thresholds initialized by unsupervised pre-training are
utilized as the position vector of the bird’s nest, and the
objective function of the model is utilized as the fitness
function of the bird’s nest, and the optimal solution is
continuously iterated.

Step (5) After initializing the network parameters using the
adaptive cuckoo algorithm, on this basis, reverse adjustment and
optimization is used to train the neural network parameter
weights. CPPS data injection attacks are detected, and the
operation and maintenance personnel will take corresponding
actions based on the detection results.

CASE STUDIES

The ICS data set is used as a test of the CPPS cyber-attacks
detection system in this paper. The ICS data set is the analog
CPPS data provided by Mississippi State University (Adhikari
et al., 2016). The three-bus and two-wire transmission system
used in the data set is modified from IEEE three machines and
nine nodes. The system frame configuration is shown in Figure 2.
Various intelligent electronic devices interact, supplemented by

network monitoring equipment such as the SNORT and Syslog
systems. G1 and G2 are generators, and PDC refers to the phasor
data concentrator, which is responsible for storing and displaying
synchronized data and recording historical data of the system. R1
to R4 are intelligent electronic devices (IEDs) that can open or
close the circuit breakers (BR1 to BR4), and each IED
corresponds to a circuit breaker. The IED is used with a
distance protection scheme, which makes the circuit breaker
trip automatically when a fault is detected, but it cannot be
verified whether it is caused by an actual fault or an information
attack. At the same time, the operation and maintenance
personnel can also manually issue commands to the IED to
trip the circuit breakers BR1 to BR4 during line maintenance.

There are 15 sets of data in the ICS data set, each of which
contains about 5000 pieces of information, divided into training
set and test set according to the ratio of 8: 2. The measurement
data mainly includes PMU, snort log information, control panel,
and relay records, etc. It mainly includes six scene types:

(1) Normal: the power system is operating normally and no
abnormality occurs.

(2) Short-circuit fault: a short-circuit fault occurs on the line, and
the fault may occur in different positions of the line.

(3) Line maintenance: operation and maintenance personnel
manually issue a trip command, and usually disable one
or more IEDs.

(4) Remote trip command injection attack: command injection
attack on single relay (R1-R4) or double relay (R1 and R2, R3
and R4), and send a trip command to the IED.

(5) Relay setting change attack: by disabling the function of IED
R1/R2/R3/R4, it cannot be tripped due to faults or
commands, causing faults at different locations on the
transmission line.

(6) Data injection attack: simulate this situation by modifying
the values of parameters such as voltage, current, and
sequence components, resulting in different positions of
L1 or L2 (10%–19%, 20%–79%, 80%–90%) A failure occurs.

The proportions of data in the six scenarios are 1: 3: 1: 2: 9: 2,
which are divided into 37 event types (not including 31–34)
according to the location where the fault occurs. The details are
shown in Table 1.

Evaluation Criteria
In the process of CPPS attack detection, evaluation indicators
such as training time, test time, accuracy (AC), and precision (P)
are used to measure the performance of the model. Where the
definition of accuracy and precision are shown in Eqs. (27)
Eqs. (28).

AC � TP + TN
TP + TN + FP + FN

(27)

P � TP
TP + FP

(28)

Where TP (true positive) is the number of records that correctly
identify the normal situation, TN (true negative) is the number of
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records that correctly identify the attack, FP (false positive) is the
number of records that incorrectly identify the normal situation,
FN (false negative) is the number of records that incorrectly
identify the attack, training time is represented by Ttrain, and test
time is represented by Ttest.

Simulation Environment
This simulation is carried out in an Intel CPU 2.29 GHz, 128G
memory, 64-bit hardware environment and Windows 10
workstation environment, and is implemented using the
Python language and TensorFlow framework. Some initial
parameter settings of SAE are shown in Table 2.

Case Analysis
In order to verify the effectiveness of the proposed method of the
FDIA detection in the CPPS, this paper designs two cases:

Case 1: The influence of different network parameters is
analyzed on the accuracy of the case.

The key factors such as SACS initialization parameters, the
detection effectiveness of the selected optimal gene feature set,
and the number of hidden layers of the gene extraction network
are discussed. Under the condition of other parameters remaining
unchanged, a certain parameter is analyzed.

Case 2: The machine learning algorithm and the SACS-SAE
detection method are analyzed for differences in detection

FIGURE 2 | ICS structure.

TABLE 1 | Scene event description.

Scenario Attack type

41 Normal
1–6 Short circuit fault
13,14 Line maintenance
15–20 Remote trip command injection attack
21–30, 35–40 Relay setting change attack
7–12 Data injection attack

TABLE 2 | SAE parameters.

Parameter Value

Learning_rate 0.01
Training_epochs 1000
Batch_size 256
Display_step 50
Activation function Sigmoid
Optimizer AdamOptimizer
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accuracy and detection speed. KNN, SVM, random forest,
decision tree, XGBOOST and other algorithms, and the SACS-
SAE detection method proposed in this paper are used for
comparative analysis.

The data is divided into 15 groups. For each group of data, it
is divided into a training set and a test set at a ratio of 9: 1. At the
same time, a 10-fold cross-validation method is used to
optimize the model parameters as much as possible. The
simulation is carried out on each data set, and then the
detection accuracy of the 15 sets of data is averaged as the
final result.

(1) Influence analysis of model parameters

(1) The influence of parameter initialization on detection results

The number of hidden layers of the gene extraction network is
set to 3, and all feature parameters are used for training to analyze
the degree of influence of different initialization parameters on
the model. The result is shown in Figure 3.

The results show that the loss function and neural network
convergence speed are better than the other two methods after
SACS initialization parameters. The main reason is that the FDIA
detection process is a non-convex optimization problem, and
there are many local optimal solutions. At the same time, in the
deep network BP algorithm optimization process, the error
gradually decreases, and the problem of “gradient diffusion” is
prone to occur. After pre-training initialization, the parameters
can be initialized to a suitable place, but it is still difficult to
achieve the global optimum. The initial parameters obtained by
SACS have been fine-tuned to converge the training process to a
more ideal state, and the model training speed has also been
improved.

(2) The influence of optimal attack gene feature set selection on
detection results

The maximum correlation minimum redundancy algorithm is
improved to determine the cyber-physical optimal attack gene
feature set, and the feature correlation ranking is shown in
Figure 4.

In the process of selecting the optimal attack gene feature,
about 75% of the 128 gene features can provide high learning
value, and the two features with the highest correlation are R1 and
R2’s A phase voltage phase angle, respectively. The features are
selected according to the above content, and the optimal feature
subset is determined to include 56 features such as A-C phase
voltage, phase angle, phase current, and snort log information. In
order to verify the effectiveness of this method, three different
model structures are set up: Model 1 (the first 32 features in
relevance ranking), Model 2 (the optimal feature selection is 56
features), and model 3 (the first 96 features in relevance ranking).
The number of hidden layers of the network is set to 3, and the
adaptive cuckoo algorithm is used to initialize the parameters.
The analysis result is shown in Figure 5.

The results show that the accuracy of the model trained with
the first 32 gene features is significantly lower than the other two
models. The reason is that there are relatively few selected
features and some effective information is missing. The
accuracy of Model two is slightly higher than Model 3, and its
training time is shorter than Model 3. The reason is that Model 3
has a large gene feature dimension, and there are some redundant
features and weakly related features. The model is affected by
these features to a certain degree, which increases the complexity
of the model training process, resulting in a slight decrease in
recognition accuracy. When the optimal attack gene feature set

FIGURE 3 | Comparison of different initialization parameters.
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proposed in this paper is selected, a relatively balanced state can
be achieved between the model detection accuracy and the
training time. At the same time, the optimal cyber-physical
attack gene feature selection method proposed in this paper
has been verified not only to improve the accuracy of model
detection, but also to accelerate the effectiveness of model
training.

(1) The influence of the number of hidden layers of gene
extraction on the detection result

The number of hidden layers of the network in deep
learning is critical to the abstract gene extraction results.
On the premise that the initialization parameters and the
optimal gene feature set are determined, five different

hidden layer experiments are set up. The most suitable one
is selected as the depth of the gene extraction network for the
FDIA detection model. The comparative analysis result is
shown in Figure 6.

As shown in Figure 7, the training time increases greatly as the
number of hidden layers increases, while the test time is
maintained at about 1 s to complete. As the number of hidden
layers increases, the hidden abstract genes in the data are deeply
extracted, but at the same time, the training time in the deep
learning model increases significantly, which can easily lead to
overfitting. When the detection model is set with four hidden
layers, the accuracy rate is the largest, and the average accuracy
rate reaches 93.7%.

(2) Comparison and analysis with traditional detection
methods

FIGURE 4 | Attack gene feature correlation ranking.

FIGURE 5 | Comparison of different attack gene feature numbers.
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Six detection methods including KNN, SVM, random forest,
decision tree, XGBOOST, and SACS-SAE are selected for
comparative analysis. For other algorithms, the optimal results
are selected for comparison after multiple parameter adjustments.
As shown in Figure 8, the results show that in terms of accuracy,
the SACS-SAE detection method with four hidden layers has
better performance than the other traditional machine learning

methods. The reason is that the stack auto-encoding network has
a strong expression ability, combined with the global
optimization ability of the SACS. The recognition accuracy has
been significantly improved compared with other algorithms.

As shown in Figure 9, after the algorithm with the maximum
information coefficient is improved for genetic feature selection,
the recognition accuracy and training time are better than the

FIGURE 6 | Detection results with different hidden layers of attack gene extraction.

FIGURE 7 | Model training time with different hidden layers of gene extraction.
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original feature selection to a certain extent, which proves the
effectiveness and universality of themethod. However, in terms of
training model time, the KNN algorithm has the fastest training
speed, and the detection model proposed in this paper has a
relatively large number of hidden layers and a complex network,
and the model training speed is relatively slow. The results of AC,
P, Ttrain, and Ttest of the attack detection algorithm before and
after gene feature selection are shown in Table 3.

CONCLUSION

From a data-driven perspective, a bio-inspired concept of genes is
introduced to provide a new idea for the detection of FDIAs in the
CPPS.

(1) The maximum information coefficient is used to analyze the
correlation and redundancy in the features to determine the

FIGURE 8 | Detection results with different detection methods.

FIGURE 9 | The influence of attack gene feature selection with different methods.
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optimal attack gene feature set. The analysis of case studies
shows that the selection of gene features will affect the results
of attack detection. The attack gene feature selection method
in this paper achieves a good balance in terms of detection
accuracy and training time.

(2) A stack auto-encoding network is constructed for the abstract
extraction of genes, and a method for detecting FDIAs based on
SACS-SAE is proposed. The analysis of case studies shows that
the proposed method is suitable for CPPS attack detection in
high-dimensional space, and the detection accuracy and precision
rate are both over 90%, and the identification accuracy is better
than traditional methods. The amount of hidden layers is not as
high as it could be. In the attack identification process, a suitable
number of hidden layers needs to be selected.

(3) The loss function and the training convergence speed
perform better after SACS initialization parameters.

However, the structure of the deep network model is complex
and the model training time is long. In order to speed up the
model training process, the dynamic optimization method of the
learning rate and other parameters in the training process will be
considered in future work.
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