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Increasing penetration of distributed generation (DG) has brought more uncertainty to the
operation of active distribution networks (ADNs). With the reformation of the power
system, increasingly more flexible loads access to distribution network through load
aggregators (LAs), which becomes an effective way to solve these issues. Since LAs and
ADNs are separate entities with different interests, the traditional centralized and
deterministic optimization methods fail to meet the actual operational requirements of
ADNs. Based on the linear power flow model, a robust optimal dispatching model of
ADNs considering the influence of renewable DG’s uncertain output on voltage security
constraints is established. Then, an independent optimal scheduling model for LAs is
modeled based on the analysis of the composition and characteristics of flexible load in
LAs. LAs and ADNs, as two different stakeholders, use a distributed modeling method to
establish different economic optimization goals. The optimization problem is solved by
decoupling the coupling exchanging power between LAs and ADNs into virtual
controllable loads and virtual DGs. Finally, with the case study of a modified IEEE 33-
bus system, the correctness and effectiveness of the proposed method are verified. The
effects of the robust level and demand response incentive on the results are also
analyzed.

Keywords: distributed generation, active distribution network, load aggregator, robust optimization, distributed
optimization, demand response

INTRODUCTION

With continuously increasing penetration of renewable energy, the uncertainty and intermittency of
clean energy challenge the operation of distribution network (Ehsan and Yang, 2019). With the
marketization of electric power industry on the demand side and the development of new
information and communication technology in recent years, flexible resources in demand side
have attracted extensive attention due to its economy and flexibility (Asensio et al., 2018a; Asensio
et al., 2018b), which provides a solution for the economic and stable operation of ADNs in the
accommodation of renewable energy. Different from the traditional inelastic load, the flexible load,
such as smart home appliances, electric vehicles, and energy storage, can respond to the dispatching
requirements of the power grid by adjusting its power or transferring its power consumption time
(Zhang G. et al., 2019). With Demand Response (DR) technology, the flexible load can improve the
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economy and stability performance of the distribution system
(Parizy et al., 2019; Delavari and Kamwa, 2018) and provide
auxiliary services like frequency regulation (Wang et al., 2017),
voltage regulation (Zhong et al., 2019), and reserve capacity
(Tomasson and Soder, 2020).

Since the low electricity consumption level and DR efficiency
of an individual user (Adrian et al., 2018), the flexible load can
participate in the DR program through the load aggregators (LAs)
(Herre et al., 2020), which promotes the massive participation of
flexible loads in the demand side and in guiding the users to
consume electricity properly and economically (Wang et al.,
2020).

There are many studies on the role of flexible load in the
operation of ADNs. In Jiang et al. (2018), the working mode of
integrated smart buildings with heating, ventilation, and air-
conditioning (HVAC) systems is proposed according to the
heat storage characteristics of thermostatically controlled loads.
The power loss and voltage fluctuation of the ADN can be
decreased by utilizing the flexibility of the smart buildings. A
multi-objective scheduling model for ADN based on source-
network-load coordination scheduling is proposed in the
article(Yong et al., 2018). The operating cost, renewable energy
utilization rate and users’ satisfaction are considered as the
optimization objectives. In the study by Kong et al. (2020),
interruptible loads (ILs) are applied to increase the power
supply capability and renewable energy utilization rate of the
ADN, considering the uncertainty of distributed generation
(DG). The above studies greatly exploit and utilize the
capacity of demand side resources and improve the
operational status of the ADN. However, most of the present
works adopt centralized optimization methods, which are hard to
adapt to the widely spread and scattered regional distribution
system due to their heavy computational burden and poor
expansibility with the increasing access of the flexible load.
And in the centralized optimization, the benefits of different
subjects are hard to be reconciled. To reflect the different interests
of diverse subjects and the decentralized and autonomous
characteristics of ADNs, the distributed optimization methods
are applied into the optimal scheduling of ADNs.

In the studies of distributed optimization, the article by Meyer-
Huebner et al. (2019) proposes a distributed optimal power flow
algorithm of the ADN with multiple distributed resources but
ignores the different interests of diverse stakeholders. In the study
by Du et al. (2018), as a new distributed demand side resource, the
source-load dual characteristic of Microgrid (MG) is discussed, and
cooperative game theory is applied to realize the benefit assignment
between the MG and the ADN. The article by Yu and Hong (2017)
proposes a novel incentive-based demand response model from the
view of a grid operator to enable system-level dispatch of demand
response resources by adjusting the electricity price. Those literatures
take the dynamic game process between two stakeholders into
consideration. However, some private information, such as cost
functions and network topologies, needs to be exchanged in the
bargain process, which makes it hard to guarantee the privacy of
data. In the study by Wang Z. et al. (2016), the distributed optimal
scheduling of the ADN is realized withmerely the knowledge of each
MG’s expected exchange power in case of securing privacy of each

MG. However, the effect of economic incentives to DR participants
has not been taken into fully consideration. In the study byWang D.
et al. (2016), the marginal cost of proper constraints is utilized to
form an updated price, with which the electricity cost can be reduced
and the frequent transitions between battery charging/discharging
states can be avoided. However, the method is essentially “source
changing with load”mode and lack of interaction, which results in a
low DR efficiency.

At the same time, the risk brought by renewable energy’s
uncertain output cannot be ignored. At present, stochastic
programming and robust optimization are two main methods to
deal with the uncertainty of DGs’ output. In the study by Zhang Y.
et al. (2019), the ellipsoid set is applied to describe the uncertainty of
photovoltaic (PV) and wind turbine (WT), and the terminals of the
ellipsoid are introduced into the stochastic optimization as extreme
scenarios. The uncertainty of WT is considered by Cobos et al.
(2018), and a robust scheduling model is established, which
introduces variable cost depending on the uncertain WT output
into the objective function. In the study by Liu et al. (2018), a two-
stage robust optimization model of the min-max-min structure is
established to obtain the scheduling scheme with the lowest
operating cost under the worst scenario. However, stochastic
programming and robust optimization methods still have their
limitations. A large amount of calculation is inevitable in stochastic
optimization, and the optimization effect heavily depends on
scenarios selection. The traditional robust optimization mostly
adopts the Soyster framework, which is also known as the
completely robust optimization, whose feasible solutions are too
conservative (Wang et al., 2018). Besides, the mentioned studies
mainly focus on the power unbalance problem caused by the
uncertain output of renewable DG, without considering whether
the power flow security constraints of the system can be satisfied
under the uncertainty.

To this end, two main questions arise:

(1) The traditional centralized optimization model failed to
give full consideration of the benefits and autonomous
characteristics of the LA inside the ADN. Therefore, a
research question is raised on how tomake use of the LA’s
DR ability while giving consideration to the different
benefits and autonomous characteristics of both the ADN
and the LA.

(2) How to reduce the conservativeness of traditional robust
optimization and make the effective optimal scheduling
plan for the ADN while considering the influence of
uncertain parameters on the power flow constraints?

This article tries to answer these questions and presents an
effective, robust, and distributed optimal scheduling for ADNs
connected with multiple LAs by coordinating the controllable
devices in power supply and demand sides, while addressing the
uncertain DG output. The contributions of this article are
summarized as follows:

(1) This study proposes a distributed optimal scheduling
model with DR incentive. In this model, the ADN and
LAs are modeled as several stakeholders with different
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benefits and solve their own optimal scheduling problem
autonomously and independently.

(2) A robust optimization method is applied to deal with the
uncertainty brought by renewable DG in the power flow
constraints of the ADN. Via the robust optimization, the
schedules with different robust levels can be obtained to
make a trade-off between the voltage violation rate and
power supplying cost by adjusting the robust coefficient,
which can make the result less conservative.

(3) Analytical target cascading (ATC) theory is applied to
solve the distributed optimization problem without the
knowledge of private data inside the LA and the ADN.
The impact of DR incentive on LAs and ADNs is also
analyzed. The ADN can further improve DR efficiency by
adjusting DR incentive to an appropriate value.

The remainder of this article is organized as follows. In Optimal
Scheduling Models of Active Distribution Network and Load
Aggregator, the dispatching model of the ADN and the LA and
the interaction model between them are established. The Bertsimas
robust optimization and ATC theory are applied to solve the
proposed problem in Solution Process. In Case Study, case studies
are conducted to demonstrate the correctness and effectiveness of
the model. Concluding remarks are presented in Conclusion.

OPTIMAL SCHEDULING MODELS OF
ACTIVE DISTRIBUTION NETWORK AND
LOAD AGGREGATOR
The structure of ADNs connected with LAs is shown in
Figure 1. To improve the DR capacity, the LA directly

combines the flexible loads (shiftable load and interruptible
load) of different users in the region, the power consumption
of which is adjusted based on the DR incentive to meet the
scheduling requirements of the ADN. Through direct load
control (DLC) technology, the LA properly arranges the power
consumption plan of each flexible load and coordinates the
power exchanged with the distribution network, so as to
minimize the total operation cost of itself. With the goal to
minimize the total cost while meeting the total power demand,
the ADN controls the operational state and output power of
controllable units based on the power demand of LAs and
other power demand and the renewable DGs’ output in the
distribution network.

Normally, LAs and ADNs are with their own scheduling
functions and taken as different stakeholders. There is a strong
coupling relationship between the LA and the ADN, because the
power interaction between them makes their economic
dispatching affect each other. The detailed dynamic
economic dispatching models of the ADN and the LA are
given below.

Optimal Scheduling Model for Active
Distribution Network
Objective Function of the Active Distribution Network
Optimal Dispatching
The requirement of ADNs’ optimal dispatching is to reduce its
power supply cost while meeting its load. The ADN needs to
decide its electricity procurement schedule and the operation
state of its controllable unit. The ADN’s comprehensive cost FADN
can be calculated as Eq. 1, and the subentry cost of Eq. 1 can be
calculated as Eqs. 2–5

FIGURE 1 | Architecture for the ADN with LAs.
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minFADN � CDG + Cgrid + Closs + Cex (1)

CDG � ∑T
t�1

∑|NDG|

i�1
[aDGi (PDG

i,t )2 + bDGi PDG
i,t + cDGi ]Δt i ∈ NDG (2)

Cgrid � ∑T
t�1

cgridt Pgrid
t Δt (3)

Closs � ∑T
t�1

∑|Nb|
j�1

clossP
loss
j,t Δt (4)

Cex � ∑T
t�1

∑|NLA |

i�1
(cDRPDR

i,t − cDNt Pb
i,t)Δt i ∈ NLA (5)

CDG is the cost function of controllable DG in the ADN and
expressed as the quadratic function of their active output PDG

i,t .
NDG is the set of nodes with controllable DG. The function |S|
represents the number of elements in the set S. Cgrid is the
electricity purchase cost. cgridt is the time-of-use (TOU) price
of the main grid. Pgrid

t is the injected power from the main grid.
Closs is the network loss cost andcloss is the unit network loss cost.
Ploss
t is the network losses. Nb is the set of branch lines. Cex is the

interaction cost with LAs, and contains two parts: DR
compensation for LAs participating in the DR program and
the profit from selling electricity to LAs. The term cDRPDR

i,t
represents the DR compensation for LAs participating in the
DR program. PDR

i,t is the shedding power of the LA at node i. The
calculation of PDR

i,t and the mechanism of DR are illustrated in
Constraints of the Active Distribution Network Optimal
Dispatching. cDR is the DR incentive for unit shedding power
and is set by the ADN. The term cDNt Pb

i,t represents the profit from
selling electricity to LAs. Pb

i,t is the purchasing power of node i and
cDNt is the electricity price inside the ADN. NLA is the set of
LA nodes.

Constraints of the Active Distribution Network Optimal
Dispatching

(1) Constraints of controllable DG

The constraints of power output Eq. 6, ramp rate Eq. 7, and
running time Eq. 8 are considered:

{PDG
i,min · uDGi,t ≤ PDG

i,t ≤ PDG
i,max · uDG

i,t

QDG
i,min · uDGi,t ≤QDG

i,t ≤QDG
i,max · uDG

i,t
i ∈ NDG (6)

−ri,max ≤ PDG
i,t − PDG

i,t−1 ≤ ri,max i ∈ NDG (7)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
∑T
DG
i,on−1

k�1
uDGi,t+k ≥ (uDG

i,t+1 − uDG
i,t ) · TDG

i,on

∑
TDG
i,off

−1

k�1
(1 − uDG

i,t+k)≥ (uDG
i,t − uDG

i,t+1) · TDG
i,off

i ∈ NDG (8)

uDGi,t is the binary variable representing the running state of
controllable DG at node i equal to 1 when controllable DG is
on, while 0 means the DG is off. PDG

i,max and PDG
i,min (QDG

i,min,Q
DG
i,max)

are its maximum and minimum active (reactive) output. ri,max is
the maximum ramp rate. TDG

i,on and TDG
i,off are the minimum

continuous working time and the minimum off time.

(2) Constraints of renewable DG

The cubic set is adopted to define the uncertain output of PV
and WT (Ding et al., 2017).

⎧⎪⎪⎨⎪⎪⎩
PPV
i,t � P̂

PV

i,t + μPVt ξPVt,max i ∈ NPV

PWT
i,t � P̂

WT

i,t + μWT
t ξWT

t,max i ∈ NWT∣∣∣∣μPVt ∣∣∣∣≤ 1, ∣∣∣∣μWT
t

∣∣∣∣≤ 1
(9)

PPV
i,t and PWT

i,t are the actual outputs of PV and WT at node i. P̂
PV
i,t

and P̂
WT
i,t are the predicted outputs. ξPVt,max and ξWT

t,max are the
maximum prediction errors of PV and WT. μPVt and μWT

t are
the uncertain variables used to adjust the range of uncertain
prediction error.NPV andNWT are the sets of nodes installed with
PV and WT.

(3) Power flow constraints

A distribution network is normally configured to be a radial/
tree-like topology, which means that each network node has only
one parent node. Figure 2 shows a line diagram of a radial power
network. The power flows corresponding to Figure 2 can be
described by DistFlow branch equations. However, the traditional
DistFlow model is nonlinear, which makes the problem
difficult to solve. To make relevant problems computationally
tractable and meanwhile guarantee an acceptable calculation
result, the linearized DistFlow model is adopted here (Song
et al., 2019).

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Pbr
n,t � Pbr

n+1,t + Pnd
n,t

Qbr
n,t � Qbr

n+1,t + Qnd
n,t

Vn+1,t � Vn,t −
(rn+1Pbr

n+1,t + xn+1Qbr
n+1,t)

V0

(10)

Pbr
j,t andQ

br
j,t are the active and reactive power at the sending end of

branch j, while rj and xj are the resistance and reactance of the
same branch line. Pnd

i,t and Qnd
i,t are the total active and reactive

load at node i, while Vi,t is the voltage magnitude. V0 is the rated
voltage magnitude of the distribution system.

According to the definition of robust optimal scheduling, the
voltage security must be ensured as the prediction errors of
renewable DG change, which is expressed as follows:

⎧⎪⎨⎪⎩
max

μ
Vn,t(P,Q, μ)≤Vmax

min
μ
Vn,t(P,Q, μ)≥Vmin

(11)

Except for the voltage safety constraint, the branch current
constraint is also considered in some studies. However, the
current carrying capacity of the branch line is usually two to
three times larger than its rated current. Besides, the voltage drop
will increase as the branch current increase. Therefore, the branch
current constraint will also be satisfied if the voltage security
constraint is satisfied.

For node i, its total active and reactive load can be calculated as
follows:
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{ Pnd
i,t � Pb

i,t − Pr
i,t − PPV

i,t − PWT
i,t − PDG

i.t

Qnd
i,t � Qb

i.t − QDG
i.t

(12)

Since the network losses are much smaller than line flow terms
Pbr
n,t and Qbr

n,t , the node voltage is insensitive to the network loss
terms which can be neglected in the voltage constraints Eq. 10 of
the linear DistFlow model (Zhong et al., 2019). However, to
accurately calculate the cost of the ADN, this article considers the
network losses in the objective function of the ADN. By using the
approximation Vn,txV0, the network loss power of the ADN can
be expressed as Eq. 13, which is a commonly used expression with
the employment of the adopted linear DistFlow constraint (Fu
and Chiang, 2018).

Ploss
j.t ≈

rj(Pbr
j,t)2 + xj(Qbr

j,t)2
V2

0

j ∈ Nb (13)

(4) DR constraint

When the TOU price of the main grid is higher than the selling
price inside the ADN, the higher cost will be caused by the higher
power purchasing price from the main grid. Therefore, the ADN
hopes to reduce its cost by compensating and encouraging LAs to
reduce their power consumption in the above period or to
transfer their power consumption time to other periods. In
this article, the ADN releases DR incentive in the
corresponding period to encourage LAs to participate in the
DR program. After LAs reduce their power consumption in the
DR period set by the ADN, they will get DR compensation
according to their reduction. The DR mechanism is shown in
Eq. 14

PDR
i,t � uDRt · (P0

i,t − Pb
i,t) i ∈ NLA (14)

uDRt is the binary variable which represents the DR period set
by the ADN, while 1 means the DR program is implemented in
the period t. P0

i,t is the load of LA node i before DR. Eq. 14
describes the DR mechanism: LAs will only gain DR
compensation by reducing their power consumption in the
DR period set by the ADN, but will not gain any DR
compensation if they reduce their power consumption in
other periods. This DR mechanism encourages LAs to
reduce their power in the DR period or transfer their load

to other periods, which will reduce the cost of the ADN by the
means of peak shifting and valley filling.

There is a product form of the binary variable and continuous
variable in Eq. 14. We apply the Big-Mmethod to transfer Eq. 14
into a linear constraint Eq. 15whereM is a large enough constant.

{ 0≤ PDR
i,t ≤M · uDR

t

P0
i,t − Pb

i,t −M · (1 − uDR
t )≤PDR

i,t ≤ P0
i,t − Pb

i,t +M · (1 − uDRt ) (15)

Thus, in the optimal scheduling model for ADNs, the decision
variables are xADN � [PDG

i,t ,Q
DG
i,t , u

DG
i,t , P

grid
t , uDRt , PDR

i,t , P
b
i,t]. The

objective is to minimize Eq. 1 while satisfying the constraints
Eqs. 6–13, 15.

Optimal Scheduling Model for Load
Aggregator
Objective Function of Load Aggregator’s Optimal
Dispatching
Based on the electricity selling price and the DR incentive of the
ADN, the LA adjusts its power consumption plan of the flexible
load to minimize its comprehensive cost Eq. 16, which includes
electricity purchasing cost, DLC cost and the profit from
participating in the DR program. The subentry cost can be
calculated as Eqs. 17–19

minFLA,i � Cb,i + CDLC,i − CDR,i (16)

Cb,i � ∑
t

cDNt Pb
i,tΔt (17)

CDLC,i � ∑
t

[ail,i(Pil
i,t)2 + bil,iP

il
i,t]Δt +∑

t

[ash,i∣∣∣∣Psh
i,t − Psh0

i,t

∣∣∣∣2 + bsh,i
∣∣∣∣Psh

i,t − Psh0
i,t

∣∣∣∣]Δt (18)

CDR,i � ∑
t

cDRP
DR
i,t Δt (19)

Pil
i,t is the shedding power of the interruptible load. Psh0

i,t and Psh
i,t

the power of the shiftable load before and after DR. ail,i and bil,i
(ash,i, bsh,i) are the quadratic and linear cost coefficient of the
interruptible load (shiftable load). It is assumed that all LAs have
reached their optimal scheduling plan without DR incentive,
which means that LAs cannot further reduce their cost by
changing its power consumption plan without DR incentive
(Guo et al., 2020). As a result, the linear cost coefficients of
the interruptible load and shiftable load in Eq. 18 must obey the
following constraint:

FIGURE 2 | Diagram of a radial power network.
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{ bil,i ≥ cDNt
bsh,i ≥max{∣∣∣∣∣cDNt1 − cDNt2

∣∣∣∣∣} t1, t2 ∈ [1,T] (20)

Constraints of Load Aggregator’s Optimal Dispatching
(1) Constraints of interruptible load

In order to meet the basic demand of users, the shedding
power of the interruptible load cannot be larger than the
maximum shedding power.

0≤ Pil
i,t ≤ αil · Pil,0

i,t (21)

Pil,0
i,t is the consumption power of the interruptible load before

DR. αil is the maximum shedding ratio.

(2) Constraints of shiftable load

0≤ Psh
i,t ≤ P

sh,max
i,t (22)

∑
t

Psh
i,tΔt � ∑

t

Psh0
i,t Δt (23)

Constraint Eq. 22 represents the power range of the shiftable
load. Constraint Eq. 23 indicates that the total energy
consumption of the shiftable load remains unchanged after
load shifting. In order to remove the absolute value function
in Eq. 18, an auxiliary variable ΔPsh

i,t and a relevant constraint are
introduced into the model.

ΔPsh
i,t ≥max{Psh

i,t − Psh0
i,t ,−Psh

i,t + Psh0
i,t } (24)

Equation 18 can be transferred into Eq. 25

CDLC,i � ∑
t

[aili (Pil
i,t)2 + bili P

il
i,t]Δt +∑

t

[ashi (ΔPsh
i,t)2 + bshi ΔPsh

i,t]Δt
(25)

When FLA,i reaches its optimal value, the equality ΔPsh
i,t �

∣∣∣∣Psh
i,t −

Psh0
i,t

∣∣∣∣ is satisfied.
(3) DR constraint

PDR
i,t � uDRt · (P0

i,t − Pb
i,t) (26)

The Big-Mmethod is applied to linearize constraint Eq. 26, which
is the same as the linearization of Eq. 14.

(4) Power balance constraint in LA

Pb
i,t � Pfix

i,t + Psh
i,t + Pil0

i,t − Pil
i,t (27)

Pfix
i,t is the inelastic load of LA.
Thus, in the optimal scheduling model for LAs, the decision

variables are xLA,i � [Pil
i,t , P

sh
i,t ,ΔPsh

i,t , P
DR
i,t , P

b
i,t]. The objective is to

minimize Eq. 16 while satisfying the constraints Eqs. 21–27.

SOLUTION PROCESS

Robust Counterpart for Power Flow
Constraints
If node n is the leaf node of ADN, Pbr

n+1,t � 0 and Qbr
n+1,t � 0 can be

derived according to Figure 2. As a result, the first two equations
in Eq. 10 can be further expanded as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Pbr
n,t � Pbr

n+1,t + Pnd
n,t � Pnd

n,t

Pbr
n−1,t � Pbr

n,t + Pnd
n−1,t � Pnd

n,t + Pnd
n−1,t

«
Pbr
1,t � Pbr

2,t + Pnd
1,t � Pnd

n,t + Pnd
n−1,t + . . . + Pnd

1,t

(28)

We denote Nn as the set of nodes in the distribution network
topology. According to Eq. 28, the linear relationship between
line transmitting power and node load can be obtained:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Pbr
k.t � ∑Nn

i�k
Pnd
i,t

Qbr
k.t � ∑Nn

i�k
Qnd

i,t

(29)

The last equation in Eq. 10, which represents the relationship
between the line transmission power and the node voltage
magnitude, can be further expanded into:

Vn+1,t � Vn,t −
(rn+1Pbr

n+1,t + xn+1Qbr
n+1,t)

V0

� Vn−1,t −
(rnPbr

n,t + xnQbr
n,t)

V0
− (rn+1Pbr

n+1,t + xn+1Qbr
n+1,t)

V0

«

� V0 −
(r1Pbr

1,t + x1Qbr
1,t + . . . + rn+1Pbr

n+1,t + xn+1Qbr
n+1,t)

V0

(30)

According to the graph theory, we can obtain |Nb| � |Nn| − 1
from the radial topology of distribution network. By plugging
Eqs. 12 and 29 into Eq. 30, the relationship between node voltage
magnitude and each controllable resource’s power can be gained,
which can be described in a matrix expression:

V t � V0 − BR
1P

br
t − BX

1 Q
br
t � V0 − BR

1B2Pt − BX
1 B2Qt

� V0 − BX(Qb
t − QDG

t ) − BR(Pb
t − P̂

PV

t − P̂
WT

t − ξPVt,maxμ
PV
t − ξWT

t,maxμ
WT
t − PDG

t )
� V0 + ξPVt,maxBRμ

PV
t + ξWT

t,maxBRμ
WT
t + [BR BX ][ PDG

t − Pb
t

QDG
t − Qb

t

] + [BR BX ][ P̂
PV

t + P̂
WT

t

0
]

� V0 + Axt + ~A
PV

t μPV
t + ~A

WT

t μWT
t + A[ P̂

PV

t + P̂
WT

t

0
]

(31)

⎧⎪⎪⎨⎪⎪⎩
A � [BR BX ]
~A
PV

t � ξPVt,maxBR, ~A
WT

t � ξWT
t,maxBR

xt � [ − Pb
t + PDG

t , QDG
t − Qb

t ]T
(32)

The uncertain variables and controllable variables are separated
in Eq. 31. V t � [V2,t . . .Vn,t] is a vector consisting of nodes’
voltage magnitude of the nodes except the root node (assuming
that the voltage magnitude of substation node is always equal to
V0). V0 is a vector whose elements are all equal to V0. Pbr

t andQbr
t

are the active and reactive line flow vectors. Pt and Qt are the
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active and reactive node load vectors. BR
1 and BX

1 are the
coefficient matrixes of Eq. 30. B2 is the coefficient matrix of
Eq. 29. We denote BR � BR

1B2 and BX � BX
1 B2.

Soyster intially gained the solutions under the worst situation of
uncertain parameters through linear robust optimization (Wang
et al., 2018). The traditional robust optimizationmethods adopt the
Soyster robust framework (Peng et al., 2014; Liang et al., 2019),
which is too conservative in most situations. To reduce the
conservativeness, this article adopts the Bertsimas robust
optimization framework in which the result with different
robust levels can be obtained by adjusting the robust coefficient.
According to the principle of the Bertsimas robust optimization
and Eq. 31, the voltage security constraints Eq. 11 have to be
satisfied despite of the uncertainty of renewable DG’s output. As a
result, the robust counterpart of voltage security constraints of
node i is expressed as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A(i, :)xt + max
μPVt ,μWT

t

θt(i)≤ bt(i)
A(i, :)xt + min

μPVt ,μWT
t

θt(i)≥ b t(i)

bt(i) � Vmin − V0 − ∑
j ∈ NPV∪NWT

BR(i, j) · (P̂PV

j,t + P̂
WT

j,t )
bt(i) � Vmax − V0 − ∑

j ∈ NPV∪NWT

BR(i, j) · (P̂PV

j,t + P̂
WT

j,t )
θt(i) � ∑

j ∈ NPV

~A
PV

t (i, j)μPVt + ∑
j ∈ NWT

~A
WT

t (i, j)μWT
t

−1≤ μPVt , μWT
t ≤ 1

zPVt ≥max{ − μPVt , μPVt }, zWT
t ≥max{ − μWT

t , μWT
t }

zPVt + zWT
t ≤ Γ

(33)

zPVt and zWT
t are the auxiliary variables, which are introduced

to remove the absolute value function in Eq. 9. Γ is the robust
coefficient. Γ belongs to [0, |Nun| ] , where Nun is the set of
uncertain sources. Assuming that the prediction error
percentage of same kind renewable DGs at different nodes
is same at the same time, we can derive |Nun| � 2. The optimal
result under different robust levels can be obtained by
adjusting Γ. By introducing auxiliary variables, the
uncertain variables in the robust counterpart Eq. 33 can be
eliminated according to strong dual theory. Constraint Eq. 33
is converted into the constrain types with only deterministic
variables and controllable variables, which is shown in Eq. 34.
Besides, the constraints of auxiliary variable, which is shown
in Eq. 35, should also be considered in the optimization
model.

{A(i, :)xt + αPV
t (i) + αPV

t (i) + αWT
t (i) + αWT

t (i) + Γγt(i)≥ bt(i)
A(i, :)xt + αPV

t (i) + αPV
t (i) + αWT

t (i) + αWT
t (i) + Γγt(i)≤ bt(i)

(34)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

αPV
t (i) − αPV

t (i) + β
PV

t (i) − βPV

t
(i)≥ ∑

j ∈ NPV

~A
PV

t (i, j)
αWT
t (i) − αWT

t (i) + β
WT

t (i) − βWT

t
(i)≥ ∑

j ∈ NWT

~A
WT

t (i, j)
−βPVt (i) − βPV

t
(i) + γt(i)≥ 0, − β

WT

t (i) − βWT

t
(i) + γt(i)≥ 0

(35)

αPVt (i), αPVt (i), βPVt (i), βPV
t
(i), αWT

t (i), αWT
t (i), βWT

t (i), βWT
t

(i),
and γt(i) are the nonnegative dual variables corresponding to
inequality constraint in Eq. 33.

Distributed Optimization Based on
Analytical Target Cascading Method
Since the ADNs and LAs are physically connected to each
other, the power interaction Pb

i,t + jQb
i,t between the ADN and

the LA makes the optimal scheduling of the ADN and the LA
affects each other and difficult to be solved independently.
To decouple the problem, the exchanging power is
equivalent to the virtual controllable load and virtual
controllable DG. The decoupling scheme is shown in
Figure 3. From the perspective of the ADN, the
purchasing power of each LA Pb

i,t + jQb
i,t can be regarded as

a virtual controllable load PD
i,t + jQD

i,t which is controlled by
the ADN. From the perspective of the LA, the purchasing
power at the bus can be regarded as a virtual controllable
generator PG

i,t + jQG
i,t supplying electricity to its users and

controlled by the LA at the same bus. As a result, the
coupling purchasing power Pb

i,t + jQb
i,t can be decoupled

into virtual controllable load PD
i,t + jQD

i,t and virtual
generator PG

i,t + jQG
i,t , and solved in the optimal scheduling

model of the ADN and the LA, respectively.
ATC is a parallel processing algorithm to solve the

coordination problem with distributed hierarchy and
performs well in convergence and stability despite the
system scale. ATC can realize the parallel coordinated
solution of different stakeholders and can ensure the
security of private data inside each stakeholder. In the
iterative process of ATC, the upper system (which is the
ADN in this article) solves its scheduling problem and sends
target information to the lower system (which is the LA in this
article). The lower system calculates the response information
according to the target information and feeds it back to the
upper system. The upper system updates its scheduling
problem based on the feedback results. The optimization is
processed alternately in these two hierarchies, until the setting
convergent condition is met. Since the ADNs and LAs only
need to interact with expected exchange power with each other
in the framework of ATC, the private data, like the topology
parameter of the ADN and the cost functions of LAs, will not be
exposed.

When the ADN solves its own optimal scheduling problem,
the virtual controllable load term PD

i,t + jQD
i,t is optimized by the

ADN, and the optimized value PD
i,t + jQD

i,t of the virtual load
variable is sent to LA i in the form of parameters. While
minimizing its own cost, the LA needs to consider the
coordination between the virtual controllable DG and virtual
controllable load. The Lagrange penalty function is introduced to
the objective function of the LA to express the deviation between
the virtual DG PG

i,t + jQG
i,t and the virtual load P

D
i,t + jQD

i,t optimized
by the ADN. As a result, the objective function of the LA is
relaxed into Eq. 36
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minFLA,i + c∑T
t�1

⎡⎣(PG
i,t − PD

i,t)
2

+ (QG
i,t − QD

i,t)
2⎤⎦ +∑T

t�1
[ωi,t

(PG
i,t − PD

i,t) + τi,t(QG
i,t − QD

i,t)]
(36)

c, ωi,t , τi,t are the Lagrangian multipliers. If the deviation between
the virtual generator PG

i,t + jQG
i,t of LA i and the virtual load PD

i,t +
jQD

i,t optimized by the ADN is not small enough, the Lagrange
penalty function will increase the cost of LA i, which makes the
result not optimal.

Similarly, if the ADN is connected with |NLA| LAs, |NLA|
Lagrangian penalty functions are introduced into the objective
function of the ADN, representing the deviation between the
virtual load PD

i,t + jQD
i,t controlled by the ADN and the optimized

virtual generator PG
i,t + jQG

i,t of each LA. The objective function of
the ADN is relaxed into Eq. 37

minFADN + c∑T
t�1

∑|NLA |

i�1
⎡⎣(PG

i,t − PD
i,t)

2

+ (QG
i,t − QD

i,t)
2⎤⎦ +∑T

t�1

× ∑|NLA |

i�1
[ωi,t(PG

i,t − PD
i,t) + τi,t(QG

i,t − QD
i,t)] (37)

Therefore, in the scheduling model based on ATC, the
optimal scheduling of the LA consists of Eqs. 36, 21–27,
and the optimal scheduling of the ADN consists of Eqs. 37,
6–13, 15. Each system solves its own optimal scheduling
problem independently and exchanges boundary variables

PD
i,t + jQD

i,t and PG
i,t + jQG

i,t until the convergence condition is
satisfied.

Based on the principle of ATC, we can obtain the parallel
solving process which is shown in Figure 4. The setting
convergence condition of the coupling constraint is expressed as:

∑T
t�1

∑|NLA|

i�1
[∣∣∣∣∣∣∣∣PG

i,t(k) − PD
i,t(k)

∣∣∣∣∣∣∣∣
2

+
∣∣∣∣∣∣∣∣QG

i,t − QD
i,t(k)

∣∣∣∣∣∣∣∣
2]≤ ε (38)

ε is the convergence accuracy. k is the iteration times. When the
convergence condition is not satisfied, the Lagrangian multipliers
will be updated as follows:

⎧⎪⎪⎨⎪⎪⎩
ωi,t(k + 1) � ωi,t(k) + c[PG

i,t(k) − PD
i,t(k)]

τi,t(k + 1) � τi,t(k) + c[QG
i,t(k) − QD

i,t(k)]
(39)

Considering that LA will not participate in the DR program when
there is no DR incentive (cDR � 0),the coefficients of augmented

FIGURE 3 | Decomposition scheme of the ADN and the LA.

FIGURE 4 | Flow chart of distributed economic dispatch based on ATC.
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Lagrangian penalty in LA’s optimal dispatching problem are
modified as follows:

{ cLA � cDRηc
ωLA
i,t � cDRwi,t , τLAi,t � cDRτi,t

(40)

η is the constant whose value is larger than 1. By applying Eqs 20,
40, LA will participate in the DR program only when cDR > 0.

CASE STUDY

Case Introduction
This section focuses on simulation in the case of grid-tied LA. The
IEEE 33-bus distribution system connected with three LAs is used
as the simulation system, shown in Figure 5. The normalized
daily load and forecast output of PV and WT can be found in the
article by Yong et al. (2018). The ADN is a 12.66 kV system. The
upper and lower limit of voltage magnitude are set to 1.05 and
0.95 pu, respectively. The total load of the ADN is 3.715 MW +
j·2300 MVar. The installed capacity of PV and WT are both
300 kW. The maximum prediction error is 30% of its predicted
value. The robust coefficient Γ is set to 1.2. The DR incentive is
0.4 ¥/kWh. The interruptible load and shiftable load are both 20%
of the total load in LA. The trading price between the ADN and
the LA is 0.55 ¥/kWh. The parameters of controllable DG and
flexible load are shown in Tables 1 and 2. The TOU price of the
main grid is given in the article (Liang et al., 2019). The problem is
solved by adopting commercial software CPLEX 12.9.0 through
YALMIP in MATLAB on a 1.8 GHz, 16 GB machine, whose
convergent gap value is set to 10−4. The convergence accuracy of
ATC is set to 10−4.

Result Analysis
Optimal Scheduling Result
Figure 6 shows the output of controllable DG. DG1 is off during
1–7 h and t � 24 h, as the TOU price in the main grid during
these periods are lower than the unit cost of DG1. Due to the

ramping rate constraints, DG1 gradually increases its output
since t � 6 h until it reaches its maximum value before the peak
period. Compared to DG1, DG2 starts increasing its output at t
� 2 h due to its higher capacity. DG1 and DG2 both maintain
high output during 10–21 h and gradually decrease their output
since t � 21 h, with the end of the peak period. Seen from the
DGs’ marginal price in Figure 7, the marginal cost of
controllable DGs is higher than the TOU price in some
period. This is because the controllable DGs have to generate
more power to protect the ADN from voltage violation caused
by the fluctuating output of renewable DG. With the increasing
output of DG, the voltage drop on the distribution line will be
decreased due to the less power transmitted through the
distribution line.

According to the result, uDRt is equal to 1 during 7–23 h, as the
trading prices between the ADN and the LA during these periods
are lower than the TOU price in the main grid. Denote ΔPLA

i,t as
the variation of the LA’s purchasing power after the DR program.
The calculation of ΔPLA

i,t is given as follows:

ΔPLA
i,t � Pb

i,t − P0
i,t (i ∈ NLA) (41)

Figure 8 shows ΔPLA
i,t of each LA. Under the DR incentive, the LA

reduces its power consumption in the flat and peak periods and
transfers part of the load from the DR period to the valley period,
which demonstrates LA’s role in peak shifting and valley filling
under DR incentive. The LA can obtain additional income by
participating in DR, which will also help the ADN reduce its
higher power supplying cost in peak and flat periods and make
extra electricity selling profit in the valley period.

Performance of ATC
Figure 9 illustrates the convergence performance of the ATC
algorithm for the ADN-LA power exchange. The applied
distributed optimization scheduling method is stably
convergent after 112 times iteration, which means it does not
require many computing resources. By applying the ATC
algorithm, the optimization times of the LA and the ADN and

FIGURE 5 | Topology of a modified 33-bus system connected with three LAs.
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the communication burden between them can be reduced.
Besides, the LA and the ADN only need to send their
expected purchasing power to each other in the iteration
process. The privacy data inside the LA, such as the cost
function of the LA, is unknown to the ADN. As a result, the
privacy and security of users’ data can be guaranteed.

To further demonstrate the effectiveness of the proposed
method, three scheduling models are used to calculate the
operating costs of the ADN and each LA. The three
scheduling models are as follows:

(1) Centralized DLC model: assuming that the ADN can
directly control the flexible load of users and that the
ADN and LAs are regarded as the same stakeholder, the
total cost of the ADN and LAs is taken as the objective
function, and the centralized optimization method is
applied to solve the problem.

(2) The “Source changing with load” model (Wang D. et al.,
2016): LAs solve their optimal scheduling problem based

on the electricity price and DR incentive of the ADN.
Then the ADN makes its scheduling plan according to
the result of LAs’ optimal scheduling problem.

(3) The distributed optimization method based on ATC in
this article.

The results of different scheduling models are compared in
Table 3. The total cost of the centralized DLC method is the lowest

TABLE 1 | Parameters of controllable DG.

No. Technical parameters Cost coefficients

PDG
i,max/kW PDG

i,min/kW ri.max/(kW/h) aDG
i /(¥/kW2) bDG

i /(¥/kW) cDG
i /¥

1 500 0 100 0.0005 0.46 0
2 800 100 100 0.0007 0.50 0

TABLE 2 | Parameters of flexible load in LA.

LA Interruptible load Shiftable load

ail
i /(¥/kW

2) bil
i /(¥/kW) ash

i /(¥/kW2) bsh
i /(¥/kW)

1 0.008 0.55 0.010 0.15
2 0.010 0.55 0.012 0.18
3 0.013 0.55 0.015 0.20

FIGURE 6 | Output of controllable DG.

FIGURE 7 | Marginal cost of controllable DG.

FIGURE 8 | Variation of LA’s purchasing power afterthe DR program.
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among Table 3, but the cost of each LA is higher than that of other
methods, which means the total cost is decreased at the expense of
each LA. Besides, the ADN needs to collect the relevant parameters
of the flexible load under the centralized DLC model, which makes
it difficult to guarantee the privacy of users. The benefits of each LA
can be ensured under the “source changing with load” model.
However, the cost of the ADN and total cost of this model are the
highest due to the lack of enough interaction between the ADNs
and LAs. Under the distributed optimization model based on ATC
where the optimal scheduling problems of the ADNs and LAs are
decoupled and solved independently, the economic benefits of LAs
and the ADNs can be reconciled, and the privacy and security of
users’ electric power data can be guaranteed. Although it takes more
time to gain the results through distributed optimization due to
its iterative process, the distributed method based on ATC is still
fast enough to be applied in the day-ahead optimal scheduling and
is more applicable than the centralized optimization for its
advantage in guarantying the security of the private data inside
each subject.

Robustness and Economy Analysis
To further study the influence of robust level on the optimization
results, uncertainty analysis is presented in this article. We denote
the violation rate to quantitatively measure the influence of
uncertain parameters on voltage security. The violation rate is
calculated as Eq. 42 through the Monte Carlo simulation where
all uncertain parameters are assumed to follow uniform
distribution.

αvio � |Nvio|
|Ntotal| × 100% (42)

Ntotal is the set of 1,000 renewable DGs’ output scenarios
generated by the Monte Carlo simulation. The randomly
generated output of renewable DG and the optimal scheduling
results are substituted into the topology of the ADN for power

flow calculation to obtain the power flow distribution of the
ADN. Nvio is the set of scenarios where the voltage safety
constraint is not satisfied.

When Γ takes different values, different solutions with
different levels of robustness can be obtained (compared in
Table 4). For the ADN, different levels of robustness make it
possible to make trade-offs between the economy and
voltage level.

It can be seen from Table 4 that the cost of the ADN increases
with the increasing Γ. The rise in cost was mainly due to the
increasing cost of controllable DG. Controllable DG needs to
increase its output and reduce the transmission power through
distribution network lines, which indicates the role of controllable
DG in voltage supporting under uncertain environment. When Γ
is less than 1.2, the violation rate goes on declining rapidly, while
the cost of the ADN rises with the increasing Γ. This result
demonstrates that the ADN has to cost more to improve its power
quality under an uncertain environment. However, declining
speed of the violation rate is close to 0 when Γ is larger than
1.2, which means the ADN has to cost much more to reach a
higher robust level when the current robust level is relatively high.

The robust optimization model proposed in this article is
equivalent to the deterministic optimization model when Γ is
equal to 0. The cost of the ADN is the least in Table 4 when no
uncertainties are considered. However, it does not mean that the
solution obtained by deterministic optimization is better than
that by robust optimization. The voltage violation rate of
deterministic optimization exceeds 90%, which results in the
poor power quality caused by insufficient voltage support. The
robust optimization model is equivalent to the completely robust
optimization model when Γ is equal to 2 in which all uncertainty
is considered. While short time voltage violation is allowed in the
practical operation of distribution network, the result of
completely robust optimization model is too conservative for
considering every possible situation, resulting in its highest cost.
However, the completely robust optimization model is applicable
in the system with high reliability and quality requirements.
Therefore, the ADN can select the appropriate robust level
according to the practical operation requirements for power
supplying.

Effect of DR Incentive
Table 5 shows the effect of DR under different DR incentive.
With the increase of DR incentive, the total DR power is also
increasing, which means that LAs are more willing to participate
in the DR program with higher incentive. LAs can help the ADN
reduce power supply cost by peak shifting and valley filling.When
the cDR is less than 0.4, the operating cost of the ADN will
decrease with the increasing DR incentive. Although the ADN
has to pay more compensation to LAs with the higher cDR, more
benefit will be brought to the ADN by the higher participation of
LAs in the DR program. However, when cDR is larger than 0.4, the
benefit brought by the higher DR participation is less than the
compensation. As a result, the cost of the ADN starts to increase
as cDR increases from 0.4. Therefore, the ADN can further reduce
its operation cost by making the appropriate DR incentive
according to the response of LAs.

FIGURE 9 | Convergence curve of ATC.
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CONCLUSION

In this article, a distributed and robust optimal scheduling model
of the ADN with LAs is proposed. The global optimal scheduling
of the whole distribution system is realized by the autonomous
energy management of the ADN and the LA. In the meanwhile,
the influence of renewable DG’s uncertain output on the voltage
security constraints is also considered in the optimal scheduling
model of the ADN.

Numerical simulations on a modified IEEE 33-bus system
have verified the effectiveness of the proposed method. The
simulation results show that the proposed distributed
optimization framework of ADN with LA performs well in
convergence and reconciling the interest of the LA and the ADN
compared to the traditional centralized DLC model and “source

changing with load” model. Besides, the economy and the
voltage violation rate of scheduling plans with different
robust levels are compared quantitatively. The proposed
robust optimization method allows the ADN to make a
trade-off between the economy and voltage level, by choosing
the schedules with different robust levels. Finally, the costs of
the ADN under different DR incentive are also compared. The
ADN can further reduce its operation cost by making
appropriate DR incentive according to the response of LAs.
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