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FeCrAl alloy is one of the most promising nuclear fuel claddings among many accident
tolerant fuel (ATF) materials due to its excellent oxidation resistance and good mechanical
properties. However, the effect of process conditions on the creep properties of the FeCrAl
alloy is not clear till now. In this study, the impact of a process condition of hot-rolling on the
creep properties of FeCrAl alloy was investigated using a nano-indentation creep test
under a temperature of 350°C. The microanalysis results indicated that the grain size
became smaller with the increase of the hot-rolling thickness reduction. The nano-
indentation creep test results showed that the creep power-law stress exponent was
about four, and the creep resistance increased when the hot-rolling thickness reduction
increased.
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INTRODUCTION

The core of a nuclear reactor exposes to a high-temperature steam environment when the nuclear
reactor is in a loss of coolant accident. In this way, zirconium alloys are no longer the best choice of
the cladding material in the cores of light-water reactors because the zirconium alloys react with
steam over the high temperature of 1,200°C, and the reaction releases a lot of heat and hydrogen gas
(Moalem and Olander, 1991; Pint et al., 2013; Yamamoto et al., 2015; Gamble et al., 2017). Accident
tolerant fuel (ATF) materials hence have been proposed to avoid the disadvantage of the zirconium
alloys (Zinkle et al., 2014; Terrani et al., 2014).

The high-strength wrought material of FeCrAl alloy is one of the materials that can meet the
required conditions of ATF, which have high melting temperature and good mechanical and
chemical properties, especially the excellent oxidation resistance at high temperature (Tang
et al., 2018). The creep properties of FeCrAl alloy have been extensively investigated to achieve
the goal of using the FeCrAl alloy as a cladding material. The power-law creep constitutive model
was obtained at the temperature lower than 600°C (Saunders et al., 1997) and at the temperature
above 600°C for the FeCrAl alloy (Terrani et al., 2016); the power-law creep stress exponent of n
was a constant value of 5.5, but the power-law creep constant was dependent on the temperature.
Two rupture regimes were observed under the long-term creep and the oxidation test for the
FeCrAl foils (Dryepondt et al., 2012). The creep deformation mechanism of FeCrAl oxide
dispersion strengthened (ODS) alloy was divided into three regions; n ranged from two to five in
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TABLE 1 | Chemical composition of FeCrAl alloy, wt%.

Fe Cr Al Si Y C P N S O

81.3417 13.06 5.4 0.13 0.053 0.005 0.004 0.0035 0.002 0.0008

FIGURE 1 | FeCrAl alloy plates: (A) 60% total thickness reduction and (B) 90% total thickness reduction.

FIGURE 2 | Optical microscope images of FeCrAl alloy. (A) Low magnification with 60% total thickness reduction, (B) high magnification with 60% total thickness
reduction, (C) low magnification with 90% total thickness reduction, and (D) high magnification with 90% total thickness reduction.
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region II but was around 20 in regions I and III (Masuda et al.,
2016; Kamikawa et al., 2018). The creep deformation
mechanism of the cooperative grain boundary sliding was
found for FeCrAl ODS alloy (Kamikawa et al., 2018), and
the creep constitutive model related to the interparticle
distance was proposed for FeCrAl ODS alloy (Ukai et al.,
2020). However, little work has been done to examine the
effect of process conditions on the creep properties of the
FeCrAl alloy.

The nano-indentation test can obtain the mechanical
properties such as hardness, elastic modulus, and residual
stress (Fischer-Cripps, 2006; Sebastiani et al., 2011). In
comparison to the traditional creep test which takes thousands
of hours to obtain the creep properties, the nano-indentation
creep test just needs tens of minutes. Therefore, the nano-
indentation creep test has been widely accepted and used to
test the creep properties for many materials (Thornby et al., 2021;
Zhang et al., 2019; Li et al., 2019).

In this study, the effect of a process condition of hot-rolling
thickness reduction on the creep properties of FeCrAl alloy was
investigated using a nano-indentation creep test. The
microstructure of the FeCrAl alloy was analyzed using an
optical microscope first. After that, a nano-indentation creep
test was carried out. The effect of the hot-rolling thickness
reduction on the power-law creep model was finally obtained.

EXPERIMENTAL PROCEDURE

The as-received sheet material of FeCrAl alloy, which was
prepared using induction melting, followed by forging at
1,200°C, and hot-rolling down to thickness of 5 mm at
1,100°C, was used in this research. The chemical composition
of the alloy is shown in Table 1. Due to the low ductility at room
temperature, the alloy was rolled under the temperature of 300°C

FIGURE 3 | Nano-indentation creep test results of the indentation load
and the corresponding displacement for FeCrAl alloys at the temperature of
350°C: (A) 60% total thickness reduction and (B) 90% total thickness
reduction.

FIGURE 4 | Nano-indentation creep test results of FeCrAl alloys at the
temperature of 350°C: (A) 60% total thickness reduction and (B) 90% total
thickness reduction.
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in order to avoid cracking and recrystallization. The rolling
thickness reduction was fixed at 0.5 mm for each time.
Therefore, two different thicknesses of 2 and 0.5 mm of the
FeCrAl alloy plates were obtained after 6 and 9 times of the
hot-rolling, respectively, as shown in Figure 1. This meant that
the two plates showed 60 and 90% total thickness reduction,
respectively, after hot-rolling. Several samples were mechanically
polished, and then were electropolished using perchloric, an acid
and alcohol mixed liquid. After that, parts of the samples were
etched in a solution of 30 ml HCl, 10 ml HNO3, and 20 ml
C3H8O3 to characterize the alloy’s microstructures using an
optical microscope, and the remaining samples were used to
carry out nano-indentation creep tests. Note that there were no
oxides on the nano-indentation creep test samples because the
samples were polished.

Nano-indentation tester with the thermal drift of 0.05 nm/s
was used to carry out the test. The diamond Berkovich indenter
with the three-sided pyramid was used in this study. In a light-
water reactor, light water was used as the primary coolant, with a
temperature of about 350°C (Saunders et al., 1997; Park et al.,
2015). Therefore, the nano-indentation creep tests were carried

out at the temperature of 350°C. Four different applied loads of
100 mN, 200 mN, 300 mN, and 400 mN were used for creep
generation. The loading time from the 0 mN to the applied loads
was fixed as 30 s, the holding time of the applied loads was set as
600 s, and the unloading time from the applied loads to 0 mNwas
fixed as 60 s. The time, displacement, and applied loads were
recorded automatically during the tests.

RESULTS

Microstructure of FeCrAl Alloy
The microstructure of FeCrAl alloy is shown in Figure 2. As
shown in Figures 2A,B, the grain boundaries were clear for the
alloy, with 60% total thickness reduction. The grain deformation
was slight, and the grain size was about 220 μm, even though it
was slightly elongated to the rolling direction. For the alloy with
90% total thickness reduction, as shown in Figures 2C,D, the
grain deformation was very significant, and it was challenging to
find an equal-axis grain. All grains were elongated to the rolling
direction, and the grain size was about 100 μm, which was smaller
than that of the alloy with 60% total thickness reduction. The
grain size was not uniform, and the grain length was much larger
in the rolling direction. Therefore, the grains became flat and
were elongated along the rolling direction after the hot-rolling
due to the rolling force perpendicular to the rolling surface. This
phenomenon accounted for the rolling process providing the
energy for the dynamic recrystallization of the crystal. The larger
the rolling thickness reduction was, the more energy was
provided to the crystal and the more grains completed the
dynamic recrystallization process. Similar results were also
found by Yamamoto et al., (2015) and Zheng et al., (2019). In
addition, the tiny black dots were defects or inclusions which
were produced during metallurgy.

Nano-Indentation Creep Test
The steady-state creep strain rate also satisfies the power-law
creep model in the nano-indentation creep test as follows
(Goodall and Clyne, 2006):

_ε � Aσn, (1)

where _ε is the creep strain rate, σ is the applied stress, A is the
power-law creep constant, and n is the power-law creep stress
exponent. In the nano-indentation creep test, σ is calculated using
the same function as the traditional tension creep test by

σ � F/S, (2)

where F is the applied load and S is the projected contact area. For
the used Berkovich indenter in the tests, S � 24.56h2pc, where hpc is
the contact displacement.

_ε is defined as follows during the indentation period (Park
et al., 2015):

_ε � 1
hc

dhc
dt

, (3)

FIGURE 5 | Variation of n under different applied loads for the FeCrAl
alloy at the temperature of 350°C: (A) 60% total thickness reduction and (B)
90% total thickness reduction.
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where hc is the creep displacement. Substituting Eqs. 2, 3 into Eq.
1, the creep power-law stress exponent n is calculated by the
following:

n � zln _ε
zln σ

� zln( 1
hc

dhc
dt )

zln( F
24.56h2pc

)
. (4)

The values of F, hc, and hpc can be measured from the nano-
indentation creep test. When these values were obtained, the
value of n can be calculated using Eq. 4.

The nano-indentation creep test results of the indentation
load and the corresponding displacement are shown in
Figure 3. As shown in Figure 3, the displacement
increased with increase of load. When the load was larger
than 100 mN, the displacement first decreased to a certain
value and then kept on increasing in the load holding stage or
the creep stage. The possible reason was that the loading rate
was slightly large, because this phenomenon did not appear in
the load of 100 mN.

The nano-indentation creep test results are shown in Figure 4
for the variation of the creep displacement with the creep time at
the temperature of 350°C. As shown in Figure 4, the creep
displacement increased with the applied load increase because
the creep deformation increased with the applied load. Also, as
shown in Figure 4, the creep displacement curves were similar to
those of the traditional creep tests. They could be divided into two
creep stages, that is, the primary creep stage and the steady-state
creep stage. The primary creep stage was much shorter. As shown
in Figure 4, after the time of 200 s, all curves almost reached the
steady-state creep stage. Therefore, the power-law creep model
was fitted using the curves after the time of 200 s.

When the values of F, hc, and hpc were measured from the
nano-indentation creep test, the values of ln_ε and ln σ could be
calculated according to Eq. 4. According to Eq. 4, the value of n
was the slope of the ln_ε–ln σ curve. The fitted results of n under
different applied loads are shown in Figure 5, for the FeCrAl alloy
at the temperature of 350°C. As shown in Figure 5A, the value of
n was slightly affected by the applied load for the 60% total
thickness reduction, where the maximum value of nwas 5.58 with
the applied load of 200 mN, and the minimum value of nwas 3.16
with the applied load of 400 mN. However, the value of n was
almost not affected by the applied load for the 90% total thickness
reduction, as shown in Figure 5B. The average value of nwas 4.25
and 3.24 for the 60 and 90% total thickness reduction,
respectively. The values of n ranging from three to seven were
also obtained by other researchers using traditional tension creep
tests for FeCrAl alloy (Kamikawa et al., 2018; Ukai et al., 2020;
Kang andMercer, 2007). Therefore, the obtained values of n were
reasonable using the nano-indentation creep test. The values of A
were also calculated as shown in Table 2 and Table 3 for FeCrAl
alloys with 60 and 90% total thickness reductions.

Based on the test results of Table 2 and Table 3, the power-law
creep model for the FeCrAl alloy was obtained as follows:

_ε � 4.66 × 10−18σ4.25 (5)

with 60% total thickness reduction,

_ε � 2.78 × 10−17σ3.24 (6)

TABLE 2 | Nano-indentation creep test results for FeCrAl alloy with 60% total thickness reduction.

Parameter Applied load (mN) Average value

100 200 300 400

N 4.52 5.58 3.73 3.16 4.25
λ (MPa−n/h) 1.15 × 10–22 1.70 × 10–25 4.37 × 10–19 1.82 × 10–17 4.66 × 10–18

TABLE 3 | Nano-indentation creep test results for FeCrAl alloy with 90% total thickness reduction.

Parameter Applied load (mN) Average value

100 200 300 400

N 3.20 3.32 3.42 3.01 3.24
λ (MPa−n/h) 1.05 × 10–17 5.11 × 10–18 4.14 × 10–18 9.14 × 10–17 2.78 × 10–17

FIGURE 6 | Comparison of _ε under different values of σ for the FeCrAl
alloys with 60 and 90% total thickness reductions.

Frontiers in Energy Research | www.frontiersin.org June 2021 | Volume 9 | Article 6635785

Lai et al. Hot-Rolling Effect on Creep Properties

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


with 90% total thickness reduction. The variations of _ε under
different values of σ are shown in Figure 6 for the FeCrAl alloy
with 60% total thickness reduction and 90% total thickness
reduction, where _ε was calculated using Eqs. 5,6, and the
value of σ was ideally chosen from 100 to 130 MPa. As shown
in Figure 6, _ε of the 60% total thickness reduction was
larger than that of the 90% total thickness reduction.
Therefore, the hot-rolling thickness process could increase the
creep resistance of the FeCrAl alloy. The possible reason was that
the grains became smaller under the large rolling thickness
reduction, as shown in Figure 2. After the grains became
smaller, the corresponding number and length of the grain
boundaries were significantly increased, and the dislocation
also increased. In this way, the creep behavior was restricted
because more resistance needed to be overcome during the
creep process. Therefore, the creep resistance was increased
with increase of the rolling thickness reduction. However,
further microscopic observations, such as SEM and EBSD, are
necessary to support this opinion.

CONCLUSION

The effect of a process condition of hot-rolling thickness
reduction on the creep properties of FeCrAl alloys was
investigated using a nano-indentation creep test at the
temperature of 350°C. The microanalysis results indicated that
grain size became smaller with the increase of the hot-rolling
thickness reduction, and the grain elongated to the hot-rolling

direction. The power-law creep model was obtained using the
nano-indentation creep tests. The test results showed that the
power-law creep stress exponent was about four, and the creep
resistance increased by the increase of the hot-rolling thickness
reduction.
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