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A combination of Convolutional Neural Network (CNN), Long-Short Term Memory
(LSTM), and Convolutional LSTM (ConvLSTM) is constructed in this work for the
fault diagnosis and post-accident prediction for Loss of Coolant Accidents (LOCAS) in
Nuclear Power Plants (NPPs). The advantages of ConvLSTM, such as effective feature
determination and extraction, are applied to the classification of LOCA cases. The
prediction accuracy is enhanced via the collaborative work of CNN and LSTM. Such a
hybrid model is proved to be functional, accurate, and adaptive, offering quick accident
judgment and a reliable decision basis for the emergency response purpose. It then
allows NPPs to have an Artificial Intelligence (Al)-based solution for fault diagnosis and
post-accident prediction.
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INTRODUCTION

The quick and accurate response to a Nuclear Power Plants (NPP) accident is critical to the
safety of both the plant and the public. However, the accident model needed for fault diagnosis
and post-accident prediction is hard to construct due to complex physical processes, nonlinear
parameter variations, and multiple system factors. Assumptions have to be often made, whereas
the accuracy of the model has to be sacrificed. Furthermore, most of the accidents behave as a
nonlinear process, which makes the traditional statistical methods difficult to describe the system
behavior and development trend. With the progress of machine learning, especially deep learning,
describing accident behavior using data-based Artificial Intelligence (AI) models has become an
effective way to avoid the above-mentioned problems. A large amount of simulated nuclear power
plant data from previous research works has also settled a firm base to carry out AI models for fault
diagnosis and post-accident prediction.

LOCA Classification

Loss of Coolant Accident (LOCA) is a type of severe accident that could happen during the
operation of NPPs. The break of the Primary Heat Transport (PHT) system causes a fast and large
loss of coolant, leading to the overheating of the reactor core. Hence, it is of great importance
to timely determine the LOCA situation and evaluate its development. The break size has to be
confirmed first since it determines both the flowrate at the break and the post-LOCA behavior
of the system. As mentioned, building an accurate system model for this purpose is prevented by
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the complex accident process itself. Another challenge is that the
break size varies due to different circumstances when the LOCA
is taking place.

Researchers in recent years have explored possible methods
to identify the LOCA case. Both Na et al. (2004) and Santhosh
et al. (2011) trained their neural network (NN) models using a
transient dataset generated by thermal-hydraulic codes to detect
the break size of a LOCA. Later on, multi-connected Support
Vector Machines (SVMs) were utilized to estimate the break
size such that the LOCA type can be identified (Yoo et al,
2017). Tian et al. (2018) proposed a constraint-based random
search algorithm for optimizing NN architectures for detecting
the break size of a LOCA. Principal Component Analysis (PCA)
was adopted by Sun et al. (2019) to identify the LOCA case
happening at the Steam Generator (SG) tubes of a small modular
reactor. Tanim et al. (2020) uses the PCTRAN prototype software
to determine the unexpected interruption and loss of the coolant
of the VVER-1200 reactor and their possible consequences on
various parameters. Weglian et al. (2020) provides a single-
top PRA fault tree for comprehensive assessment of the risk
of various hazards such as the loss of coolant accidents. Deep
learning models, as a data-driven method, is seldom found in
previous LOCA diagnosis works. To avoid the complexity of
building analytical system models, this work take ConvLSTM as
a deep learning attempt to solve the LOCA diagnosis challenge.

The LOCA case is determined in this work using
Convolutional Long-Short Term Memory (ConvLSTM)
(Shi et al., 2015), which is improved in this work for data series
classification. ConvLSTM is a variant of LSTM. It replaces the
matrix multiplication of each gate in the LSTM unit with a
convolution operation, such that the basic spatial features can
be captured by convolution operations in multi-dimensional
data. The main difference between ConvLSTM and LSTM is
the input dimension. Input data to LSTM is one-dimensional.
However, ConvLSTM can handle data that are one-dimensional,
two-dimensional, and three-dimensional. The training dataset
is obtained using an NPP control system design and validation
platform (Sun et al., 2017). The design and validation platform
mainly uses shared memory technology and an engineering
simulator coupled with MATLAB/Simulink. Subsequently, the
performance can be evaluated through simulations of abrupt
load-transient changes and wide range-load changes. The
coupling of the engineering simulator and MATLAB/Simulink
generates an industry-grade simulation and validation platform,
providing an effective tool for research on barely happened
scenarios. The training dataset from such platform enables the
ConvLSTM model to recognize features of different break sizes
such that the LOCA type can be confirmed at an early stage
of the accident.

Post-accident Prediction

Tracing critical system parameters and predicting their post-
LOCA development assist the emergency response team to act
in advance, reserving the safety margin as expected. However,
knowing the break size is not enough to settle the decision basis.
Depending on the operation status, a certain size PHT break may
be followed with different system behaviors.

A nonlinear process, such as the post-LOCA trend, cannot be
easily predicted using traditional statistical methods. In the past
decade, various attempts have been taken for the prediction of
processes in NPPs, such as (1) predicting the counter-current
flow limitation at hot leg pipe during a small-break LOCA
(Jeong, 2002); (2) predicting the water vessel level using Group
Method of Data Handling (GMDH) (Park et al., 2013) and Deep
Neural Network (DNN) (Koo et al., 2018); (3) predicting the leak
flow rate of LOCA using Fuzzy Neural Network (FNN) (Kim
et al., 2014); (4) monitoring the real-time condition of a LOCA
using Time-Frequency Domain Reflectometry (TFDR) (Lee et al.,
2017); (5) using RELAP5/MOD3.3 code to predict the LOCA of
the main steam break (MSLB) on the third generation reactor
with passive safety features (Yang et al., 2019); and (6) utilizing
DNN/LSTM expert system to predict the loss of nuclear power
plant coolant accident (Radaideh et al., 2020).

This work proposes a deep learning model combined with
both Convolutional Neural Network (CNN) and Long-Short
Term Memory (LSTM) for the post-LOCA prediction. It is
considered that the prediction model has to understand the
variation caused by both the break size and the operation status.
To achieve this, the CNN part is introduced to deal with the
multi-dimensional dataset. It recognizes and extracts the key
features such that the prediction process is not misled. LSTM,
as a deep learning model for long-time series prediction, is
then utilized to calculate the post-LOCA development of critical
system parameters.

THE HYBRID MODEL FOR LOCA
DIAGNOSIS AND PREDICTION

The hybrid model constructed in this work consists of two
major modules. The modified ConvLSTM model is responsible
for LOCA diagnosis, followed by the “CNN+LSTM” module for
post-LOCA prediction.

Improved ConvLSTM for LOCA

Diagnosis

ConvLSTM model was originally proposed for prediction
purposes (Shi et al., 2015). It has been widely applied to image
and video processing areas (Feng et al., 2019; Mukherjee et al.,
2019; Niu et al.,, 2019). In this work, it is chosen as the classifier
for LOCA diagnosis due to the following considerations:

1. LOCA scenario consists of complicated system variations,
such as uncertain break size, flowrate drop, pressure drop,
etc. The expected classifier has to be capable of locating
the key features of these parameters and extracting them
for prediction. This can be satisfied by the convolutional
structure of the ConvLSTM.

2. The diagnosis triggered by LOCA deals with time-series
data, which is an essential function of the LOCA classifier.
ConvLSTM can apply its LSTM structure for this objective.

3. The LOCA diagnosis deals with multiple features and time-
series data. Both have to be taken care of simultaneously.
The ConvLSTM, with the assistance of certain additional
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FIGURE 1 | Structure of the improved ConvLSTM.

structures, is capable of identifying and extracting key
features from time-series data.

This work studies five Steam Generator Tube Rupture (SGTR)
LOCA cases, i.e., break size of 0.2, 0.4, 0.6, 0.8, and 1.0 cm?,
Simulations are conducted using the mentioned platform (Sun
et al., 2017) to obtain the dataset for model training and
test. Each break case is simulated with different reactor power
levels of 60, 70, 80, 90, and 100% to cover various operation
statuses when the LOCA takes place. The traditional ConvLSTM
layer is utilized in this work to extract key features from the
normalized LOCA process dataset. Following it, there are two
dense layers and a softmax function (Krizhevsky et al., 2012)
to strengthen the classification performance. Using dense layers
for classification has been verified by previous works (e.g., Kim
and Medioni, 2010; Bi et al., 2019; Zhang et al., 2019). Dense
layers used in these previous works have demonstrated qualified
classification performance, which encourages its application to
the classification of time-series data in this work. One of the
two dense layers integrates the extracted features using 500
neural cells. The other one analyzes the results from the first
one using five neural cells. Each cell in the second dense layer
represents the probability of a break size. The softmax function
is used after the dense layers, providing a probability list to
indicate the classification result, i.e., the one with the largest
probability. Critical system parameters, such as the pressurizer
pressure and the coolant flowrate, are comprehensively examined
by the model for a precise classification result. A brief illustration
of the improved ConvLSTM is shown in Figure 1; while Table 1
shows its parameter configuration.

TABLE 1 | Parameters of the Improved ConvLSTM.

Model parameters Value
Filters 30
Kernel size 4
Dense_1 cells 500
Dense_2 cells 5
Activation function Softmax

CNN4+LSTM for Post-LOCA Prediction

The greatest challenge for post-LOCA prediction is the
uncertainty of the process to be predicted. Although five typical
break sizes are chosen to represent the LOCA scenarios, it is not a
full coverage yet. Even for a chosen case, different NPP operation
status at the LOCA moment could lead to various post-LOCA
situations. Therefore, the prediction model needs to be aware of
such uncertainty and be able to predict cases that are similar to
the training ones.

In order to handle the uncertainty challenge, the prediction
model is constructed with a combinational structure of CNN
and LSTM. The convolutional computation from CNN, with the
assistance of weight sharing and pooling operation, can effectively
extract the major features at the early stage of the development.
The LSTM model, as a variety of Recurrent Neural Network
(RNN), is proficient at dealing with long-time series datasets such
as LOCA data (She et al., 2019). Since the LOCA process is hard to
predict due to complicated variations, two LSTM layers are used
to increase the depth of the neural network. Two dense layers are
also applied to the prediction results processing, ensuring a result
with all necessary features.

The prediction model is trained using datasets of the five
chosen LOCA cases. Total five sets of model weights are saved
in a so-called “fault dictionary.” Once the classification results,
e.g., 0.2 cm? break, reaches the prediction model, it looks up
the fault dictionary and loads the model with the corresponding
“weight set-0.2” trained by such case. Figure 2 below describes
the model structure and Figure 3 shows the process of using a
fault dictionary. The parameter configuration is listed in Table 2.

EXPERIMENTS AND RESULTS

Experiments of this work are divided into two major stages. The
proposed models are verified using industry simulation datasets
first. A LOCA case is then picked up for the system integration
test.

As mentioned, each LOCA case (0.2, 0.4, 0.6, 0.8, or 1.0 cm?)
is simulated under five kinds of operation status (60, 70, 80, 90,
and 100% reactor power levels). Noise signals are introduced
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FIGURE 3 | Using fault dictionary for Post-LOCA prediction.
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during the simulation such that the dataset is expanded and has
a wider coverage of possible situations. Seventy-five percentage
of the dataset is used for training purposes with the Rolling
Update method applied; the rest of the dataset is used for the
test experiments of both the classifier and the prediction model.
The test dataset is also plotted as the "original value" in the
result figures such that the comparison between the prediction
results and the actual LOCA trend can be illustrated. All the data
is denoised, smoothed, and then normalized to the maximum
and minimum values.

Model Verification

Classifier Model Verification

The classifier verification uses test vectors composed of 10
system parameters, including core inlet temperature, core

TABLE 2 | Parameters of the Post-LOCA prediction model.

Model parameters Value
Filters 8
Kernel size 2
Pooling size 4
LSTM_1 units 128
Dropout_1 odds 0.2
LSTM_2 units 64
Dropout_2 odds 0.2
Dense_1 16
Dense_2 1

exit temperature, core outlet supercooling degree, pressurizer
pressure, pressurizer water level, and five types of coolant
flowrates. All the parameter values in one test vector belong to
a chosen LOCA case. Adequate parameters in the test vector
lead to a narrow classification scope, which guarantees accurate
classification results.

During the classifier verification, there are totally 25 test
vectors, 5 for each break size. And all contain the 10 crucial
system parameters. They are fed into the model via a 50-
timestep process that imitates the industry sampling process. The
verification results are listed in Table 3 below.

Results in Table 3 demonstrate the classification performance
of the proposed model. All the correct classifications are obtained
at the first timestep and kept for the entire classification process.
The sole misclassification case is the 0.4 cm? break size at 60%

TABLE 3 | Classifier verification resullts.

Break size Test vectors Correct Accuracy per Total accuracy
(cm?3) results size (%) (%)

0.2 5 5 100 -

0.4 5 4 80 -

0.6 5 5 100 -

0.8 5 5 100 -

1.0 5 5 100 -

Total 25 24 - 96

The bold values represent data statistics, intermediate diagnosis results, and final
diagnosis results.

Frontiers in Energy Research | www.frontiersin.org

May 2021 | Volume 9 | Article 665262


https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/
https://www.frontiersin.org/journals/energy-research#articles

She et al.

Diagnosis and Prediction for LOCAs

e S L Prediction
1.0 - LOCA REEED SIIR. oty —— Original Val
e Power: 100% e
0.8 -
2 Loss: 0.001241
z 3
o= 0.6
k:
[}
<}
Q
o shAdAssss
8 04
f
4
0.2 1
0.0 T T T
0 100 150 200 250
Time (s)
FIGURE 4 | Functionality verification of the prediction model.

reactor power level and it is misclassified as an adjacent case (0.6
cm? break at 60% power level).

Prediction Model Verification
The prediction model verification, however, consists of three sub-
experiments:

(1) regular test of the “0.2 cm? break” model using a “0.2 cm?
break” test vector;

(2) comparison experiments between a “pure LSTM” model
and the “CNN+LSTM” model;

(3) adaptivity test of the “0.2 cm? break” model using a “1.0
cm? break” test vector.

(1) Functionality Verification

A regular test is performed to simply verify the model
functionality. A 0.2 cm? break test vector, which is randomly
picked from the dataset, is fed into the “CNN+LSTM” model
trained by the 0.2 cm? break dataset. The coolant flowrate
prediction result is shown in Figure 4.

The prediction given by the “CNN+LSTM” model matches
the original value closely with a loss value of 1.241 x107>. The
prediction capability of the proposed model is verified.

(2) Comparison Experiments

The comparison experiments are carried out for the coolant
flowrate using all break sizes at 100% reactor power level, showing
the performance comparison between the two models. The loss
values via Mean Square Error (MSE) function are listed in Table 4
to describe the difference.

With lower loss values derived by the “CNN+LSTM”
model, the comparison of the results in Table 4 clearly shows
the advantage of using the “CNN+LSTM” structure. It is
demonstrated that the CNN layer covers the shortage of the
LSTM model when facing a multi-feature process.

(3) Adaptivity Verification

The third verification experiment is to prove that the
prediction model in this work can adapt to an untrained but
similar case. This is quite meaningful to accident scenarios with
much uncertainty, such as the LOCA. For this experiment, the
coolant flowrate dataset generated from the simulation of a 1.0
cm? break is applied to a prediction model trained by a 0.2 cm?
break dataset, both at 100% power level. The prediction generated
is illustrated in Figure 5.

The “1.0 cm? break” prediction curve generated by a “0.2
cm? break” model still follows the main trend of the test case.
The loss value of 3.968 x 1073 is larger than experiment (1) but

TABLE 4 | Comparison of prediction performance.

break size 02cm? 04cm? 06cm? 0.8cm?  1.0cm?

Loss value 0.003815 0.003746  0.003615 0.004126  0.003937
(LSTM)

Loss value 0.001241 0.002767 0.002864 0.002099 0.003121
(CNN+LSTM)

The bold values represent the loss value of the experimental model, and is better
than the LSTM model.
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still within the same order of magnitude. It has to be pointed
out that 0.2 cm? break and 1.0 cm? break are two cases with
the biggest difference in the given dataset group. Such a result
signifies that any two of other case models can adapt to each other
even closer. That is to say, when an uncertain scenario appears,
the “CNN+LSTM” model has the potential to adapt to it and
generate a meaningful prediction.

Based on the high-accuracy classification, the prediction
showing functionality and adaptivity, and the better performance
demonstrated in the comparison experiments, the hybrid LOCA
diagnosis and prediction model has been proved to be accurate,
functional, and adaptive.

Diagnosis and Prediction Experiment

This subsection presents one of the system integration
experiments conducted from diagnosis to prediction for a
given LOCA case, 0.8 cm? break at 100% power level. The
purpose is to demonstrate the functionality and performance of
the proposed hybrid model from a systematic view.

Predictions for two crucial system parameters, coolant
flowrate, and pressurizer pressure, are selected to be shown in
Figures 6, 7, respectively.

It is noticed that, at the beginning of both Figures 6, 7,
the prediction appears underfitting. This is often observed in
prediction using neural networks. In this work, the prediction
model is trained for each break size separately and the trained
weights are then stored in the fault dictionary. However, during
the training process, all the data belong to the chosen break

size are used, including data under different reactor power
levels. Thus, it is hard to avoid the underfitting problem when
the prediction test for 0.8 cm? break is performed against a
certain reactor power.

The prediction curves also show underfitting at where
dramatic changes are. This is exactly what has been mentioned
as one of the great challenges to predict nonlinear processes. As
can be seen from the following figures, the prediction is trying
to catch with the sudden rises or drops. But when the quick
nonlinear changes happen consecutively, the prediction can only
develop in a lagging manner, leading to underfitting phenomena
at those sharp turning points.

CONCLUSION

A hybrid model for LOCA diagnosis and prediction is proposed
in this work. The ConvLSTM is used for fault type diagnosis,
and the LOCA prediction is produced using CNN-LSTM. The
datasets of different break sizes of LOCA are obtained from
the experimental platform. The dataset is preprocessed and
normalized for proper training and test dataset. The proposed
diagnosis and prediction model is then tested and verified
through rigorous experiments. With an improved structure, the
fault diagnosis model based on ConvLSTM successfully reaches
classification accuracy as high as 96%. The post-LOCA prediction
model established by combining CNN and LSTM has also shown
effective functionality and adaptability through three different
sub-experiments. Its loss values (MSE) for all the test cases
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are kept as low as 1073, satisfying the accuracy expectation.
Comparing to the LSTM model, the CNN-LSTM demonstrated
its advantage of multi-feature processing, which provides a better
prediction performance.

However, the model research proposed in this article has
certain limitations. First of all, the sample datasets used in
this experiment need to be further expanded to ensure the
validity of the experiment. In addition, the model needs to be
further verified using real LOCA data from the NPPs. Moreover,
underfitting does appear in prediction results due to training
strategy and consecutive inflection points, which implies the
potential improvement of the prediction model in future work.
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