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In this paper, we explore the optimization of virtual power plants (VPP), consisting of a
portfolio of biogas power plants and a battery whose goal is to balance a wind park while
maximizing their revenues. We operate under price and wind production uncertainty and in
order to handle it, methods of machine learning are employed. For price modeling, we take
into account the latest trends in the field and the most up-to-date events affecting the day-
ahead and intra-day prices. The performance of our price models is demonstrated by both
statistical methods and improvements in the profits of the virtual power plant. Optimization
methods will take price and imbalance forecasts as input and conduct parallelization,
decomposition, and splitting methods in order to handle sufficiently large numbers of
assets in a VPP. The main focus is on the speed of computing optimal solutions of large-
scale mixed-integer linear programming problems, and the best speed-up is in two orders
of magnitude enabled by our method which we called Gradual Increase.

Keywords: virtual power plants, gradual increase, machine learning, energy forecasting, probabilistic prediction,
proximal jacobian ADMM, mixed integer linear programming (MILP)

1 INTRODUCTION

The optimization of virtual power plants (VPP) is of crucial importance as it enables the more
efficient incorporation of distributed energy resources (DER) into the grid and thereby contributes to
the achievement of goals associated with ecology. Solar and wind energy sources have a degree of
uncertainty and require constant balancing. Therefore, from an ecological point of view, it is
desirable that the balancing is carried out by flexible energy sources operating on a renewable fuel. In
our case studies, we consider the balancing of wind parks by means of pools of biogas (renewable
fuel) power plants and pools of batteries and propose ways to accelerate calculations by means of
mathematical methods of decomposition and splitting, leveraging the special structure of problems,
parallelization, and the brute force power of optimization solvers. In our VPP, state-of-the-art
commercial wind forecasts are used in order to nominate the amounts of energy that our wind
turbines are able to produce, and the goal of the flexible assets is to handle the aggregate imbalances
in both directions: biogas power plants can balance only deficiencies while batteries can also balance
surpluses.

The goal of the biogas power plants and batteries is to maximize their revenues from selling
electricity on the day-ahead and intra-day markets while providing balancing to the pool of
intermittent assets. One important research component within the optimization of VPPs is the
method known as Alternating DirectionMethod ofMultipliers (ADMM), which is a technique based
on replacing the solution of a large-scale optimization problem with an iterative procedure involving
solutions of a large number of small subproblems. (Chen and Li, 2018; Munsing et al., 2017). A
special facet of this method known as Proximal Jacobian ADMM is proven to o(1k)-converge for
linear programming problems and to be amenable to parallelization (Deng et al., 2017). This

Edited by:
Alfredo Vaccaro,

University of Sannio, Italy

Reviewed by:
Nallapaneni Manoj Kumar,

City University of Hong Kong, Hong
Kong, SAR China
Antonio Pepiciello,

University of Sannio, Italy

*Correspondence:
Vadim Omelčenko

Vadim.Omelcenko@alpiq.com
Valery Manokhin

Valery.Manokhin.2015@
live.rhul.ac.uk

Specialty section:
This article was submitted to

Smart Grids,
a section of the journal

Frontiers in Energy Research

Received: 07 February 2021
Accepted: 04 October 2021

Published: 03 November 2021

Citation:
Omelčenko V and Manokhin V (2021)
Optimal Balancing of Wind Parks with

Virtual Power Plants.
Front. Energy Res. 9:665295.

doi: 10.3389/fenrg.2021.665295

Frontiers in Energy Research | www.frontiersin.org November 2021 | Volume 9 | Article 6652951

ORIGINAL RESEARCH
published: 03 November 2021

doi: 10.3389/fenrg.2021.665295

http://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2021.665295&domain=pdf&date_stamp=2021-11-03
https://www.frontiersin.org/articles/10.3389/fenrg.2021.665295/full
https://www.frontiersin.org/articles/10.3389/fenrg.2021.665295/full
http://creativecommons.org/licenses/by/4.0/
mailto:Vadim.Omelcenko@alpiq.com
mailto:Valery.Manokhin.2015@live.rhul.ac.uk
mailto:Valery.Manokhin.2015@live.rhul.ac.uk
https://doi.org/10.3389/fenrg.2021.665295
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2021.665295


algorithm will also be used in our research. In this study, this
method for optimizing large pools of power plants where we deal
with integer variables is applied.

Before taking up the main topic of this paper, we mention
relevant research in the field of optimizing Virtual Power Plants.
The scope of optimization methods for managing virtual power
plants is relatively broad and incorporates approaches such as
linear programming, mixed-integer linear programming,
methods based on dynamic programming, multistage bilevel
algorithms, evolutionary algorithms, etc. (Podder et al., 2020).
InMüller et al. (2015), a virtual power plant is optimized by linear
programming methods and the polytope of the constraints is
approximated with a zonotope—a structure closed under
Minkowski addition. This provides an inner approximation of
the constraints and this structure requires less memory than the
original problem hence helping with the curse of dimensionality
and providing a feasible (although suboptimal) solution. A
zonotopic approximation is bottom-up: constraints associated
with each asset in a VPP are approximated with a zonotope and
then summed up with the Minkowski addition yielding the
zonotope of the entire VPP. This enables us to efficiently add
new assets into the pool (polynomial complexity) provided that
the constraints associated with each asset are linear. In Tan et al.
(2018), the authors explore the management of virtual power
plants and their alliances involving wind and solar parks. They
propose a model involving the separate operation of assets but
joint scheduling of them. Their model is based on Shapley value
theory for profit distribution, and it is applied to case studies in
China. In Chen and Li (2018), the authors provide ADMM-based
dispatch techniques for virtual power plants where they propose
their own algorithm in which each DER communicates
information only with its neighbors in order to collectively
find the global optimal solution. The algorithm is fully
distributed, it does not require a central controller, and the
proof of its convergence is presented. In Munsing et al.
(2017), the authors propose the algorithm of the
implementation of ADMM within the blockchain while
conducting the aggregation by means of a smart contract
which can be used for any ADMM-based algorithm. The main
point is that the aggregation relates to elementary operations with
matrices and vectors, i.e. the operations that can be implemented
within ADMM in a matter of milliseconds. In Wytock (2016),
Moehle et al. (2019), the authors provide the management of
virtual power plants where gas-fired power plants balance a wind
park and in the wind forecast methods, they use spatial
correlations. In Moehle et al. (2019), the authors propose a
technique called Robust Model Predictive Control which is
also employed in the management of the VPP in this paper.
In Nguyen et al. (2020), Duong et al. (2020), the authors utilize
metaheuristic algorithms such as Stochastic Fractal Search for the
optimal reactive power flow of 118-bus systems. In Filippo et al.
(2017), Pandžić et al. (2013a), Pandžić et al. (2013b), Mashhour
and Moghaddas-Tafreshi (2011), the authors propose the
management of virtual power plants by mixed-integer
optimization algorithms (Elkamel et al., 2021). explores price-
based unit commitment. Enumeration of all optimization
methods would exceed the scope of this publication, but we

can refer the reader to (Podder et al., 2020), which provides a
thorough categorization of these methods in the field and to
(Ackooij et al., 2018), which provides a literature survey of unit
commitment methods. According to (DCbrain, 2020), it is crucial
to incorporate biogas power plants into the grid.

There are studies where virtual power plants include biogas
power plants, e.g. in Candra et al. (2018), Vicentin et al. (2019),
Wegener et al. (2021). In Ziegler et al. (2018) and Egieya et al.
(2020), the virtual power plant includes biogas power plants and
the operation of this entity involves solving a large-scale mixed-
integer linear programming problem (MILP). We also solve
large-scale MILP problems and the focus is on balancing of
wind parks, but it can easily be shown that the logic of the
presented algorithms can be translated to broader classes of
intermittent sources (Graabak and Korpås, 2016).

The main contribution of this research is the method called
Gradual Increase which is a heuristic that was applied in the
optimization of pools of assets. This is a decomposition technique
based on the operations with sub-pools of assets and with warm
starts. The utilization of this method enabled us to significantly
accelerate the calculations and in the best case, it was up to two
orders of magnitude. In general, this method demonstrates
significant improvements in revenues compared to the brute
force approach when limited by times typical for real-time
applications, which is shown in Section 7. The Gradual
Increase method is compared with other methods such as
Proximal Jacobian ADMM in terms of average calculation
time. We also demonstrate further improvements in average
calculation times when a hybrid of Gradual Increase and
Partial Integrality is employed.

The method of Gradual Increase is tested within real-time
optimization settings: an MILP problem is solved every 24 h
taking into account the state of the system (storage levels and
states of the units) and the forecasts of prices and imbalances.
The forecasts and the system’s states are updated every 24 h and
apart from the optimization, we implement financial
settlements associated with optimization decisions. These
settings are formulated by means of MPC and RMPC where
the latter enables us to incorporate randomness into the model
(Moehle et al., 2019). Large-scale MILP problems with four up
to hundreds of assets are solved in the deterministic
environment (MPC) using only commercial price forecasts;
problems with the three assets are solved in two
environments: MPC and RMPC, and three more forecasting
methods are employed there.

This paper has the following structure: the optimization
problem is described in Section 2. Our method called
Gradual Increase is described in Section 3. Section 4
describes our implementation of Model Predictive Control
and Robust Model Predictive Control. Besides, this section
provides additional methods for accelerating the solution of
our optimization problems. The methods of machine learning
applied for modeling and forecasting prices are mentioned in
Section 5. Section 6 provides the details of the optimization that
are worth mentioning according to the authors. Tables with
results are provided in Section 7, and then we move to the
conclusions.
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2 PROBLEM DESCRIPTION

In this section, we firstly describe the assets that we optimize and
then formulate the optimization problem.

2.1 Assets That we Optimize
We have a portfolio of two biogas power plants and a battery, and
their goal is to balance the production of wind parks located in 8
regions of Germany: the power plants and the battery are also
located in Germany. This functions as follows: the operators of
the wind assets forecast how much energy their assets will
produce. Wind production is uncertain because it is weather
dependent, therefore balancing such assets is of utmost
importance. And it is the goal of the pool of biogas power
plants and batteries to handle the aggregate imbalance. The
names of neither biogas power plants nor batteries nor wind

parks can be disclosed for confidentiality reasons. We have
detailed data for two biogas power plants and one battery. The
turbines within the biogas power plants have no classical timing
constraints except for the condition that themaximum number of
switches per year is limited to a predefined number. When
exploring the speed of our algorithms, timing constraints are
imposed because they are typical for the turbines, and the assets
within the pool are replicated in order to explore how the
increasing number of assets affects the speed of the
calculations: when replicating assets, we predefine the number
of assets in the pool and randomly assign the storage capacities,
gas inflows, maximum and minimum productions of the turbines
and minimum on and off times for the turbines within biogas
power plants (timing constraints). In replicating, the wind park
increases proportionally to the increase in flexible assets. This
enables us to apply the proposed algorithms for a broader scope of

TABLE 1 | Nomenclature.

Constants and symbols

#A . . . the number of assets
2{1,. . .,#A} . . . the set of all subsets of {1, . . . , #A}
#U(k) . . . the number of units within asset k: in the case of biogas power plants

it equals the number of turbines; in the case of batteries, it equals 1
Emax
k . . . the maximum storage of asset k (MWh)

Fk . . . the flow of biogas to power plant k every 15 min

ηdk (ηdk ) . . . the efficiency of the discharge (or the charge) of battery k

Pmink,i . . . the minimum power of Unit i of Asset k (MW)
Pmaxk,i . . . the maximum power of Unit i of Asset k (MW)

Frc(DA)t
. . . the day-ahead price at time t

Frc(ID)t
. . . the intra-day price at time t

Cv
k,i (C

w
k,i ) . . . the cost of switching-on (switching-off) of Unit i of Asset k at time t

UT(k,i) (DT(k,i)) . . . the minimum on time (or off time) of Turbine i of Asset k at time t
Δt . . . the time difference which equal 15 min in our applications
∀t, k, i . . . is the shorthand for: for all t ∈ {1, . . . , T}

and all k ∈ {1, . . . , #A} and all i ∈ {1, . . . , #U(k)}
Variables

pt,k,i . . . the total power produced at time t by Unit i of Asset k

pDA
t,k,i . . . the day-ahead power produced at time t by Unit i of Asset k

pID
t,k,i . . . the intra-day power produced at time t by Unit i of Asset k

ut,k,i . . . the state of Unit i of Asset k at time t
vt,k,i . . . the switch-on decision of Unit i of Asset k at time t
wt,k,i . . . the switch-off decision of Unit i of Asset k at time t

socBgt,k . . . the storage level of Asset (Power Plant) k at time t (MWh)

socBtt,k . . . the storage level of Asset (Battery) k at time t (MWh)

pd
t,k,1 . . . the discharge of battery k at time t

pc
t,k,1 . . . the charge of battery k at time t

xk . . . the set of all variables p, u, v, w, soc reduced to asset k
yt . . . the set of all variables p, u, v, w, soc reduced to time t
z* . . . the optimal value of variables z. Any variable superscripted with a star

denotes the value optimal for the objective function
Notation for real-time optimization

H . . . the prediction horizon
h . . . the execution horizon (realized schedule)

∇prodW
t

. . . the realized imbalance

ΔprodW
t

. . . the forecasted imbalance for time t

ΔprodW
t

. . . the forecasted imbalance for times from t to t + H − 1

ΔprodW
t � [ΔprodW

t ,ΔprodW
t+1 , . . . ,ΔprodW

t+H−1]
Frct . . . the price forecast input into optimization at time t

Frct � [Frct, Frct+1, . . . , Frct+H−1]
Statet . . . the state of the system at time t: storage levels, and the states of units
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asset types. We operate on the German market EEX (day-ahead
and intra-day) and use the price forecasts as objective value
coefficients. The imbalance is modeled by means of
autoregressive models. In our biogas power plants, the
processes of fertilization and electricity production are
separated. We are guaranteed to obtain fixed amounts Fk (see
Table 1) of biogas (measured in MWh) every 15 min and we
concentrate only on electricity production. In this study, biogas
power plants with heating rods have not been considered, but this
is considered as a subject for further research. More details about
our biogas power plants can be found in Appendix.

2.2 The Objective
The objective is to maximize the revenues of pools of biogas
power plants and batteries while balancing the wind park and
taking technical constraints into account. The technical
constraints of the turbines are their maximum and minimum
production per period and the timing constraints. Following the
notation fromTable 1, the objective to be maximized is defined as
follows:

∑T
t�1

∑#A
k�1

∑#U(k)
i�1

Frc(DA)t pDA
t,k,i + Frc(ID)t pID

t,k,i − Cv
k,ivt,k,i − Cw

k,iwt,k,i( ), (1)

which implies that we optimize our revenue from the sale of
energy on the market penalizing every switch-on and -off with
costs Cv

k,i and Cw
k,i, where k denotes the index of an asset and i is

the index of a turbine. In the case of a battery, these costs are zero.
The constant T denotes the prediction horizon that we use for the
optimization and Frc(DA)t , Frc(ID)t are the forecasts of day-ahead
and intra-day prices, respectively.

2.3 Constraints for Turbines
In this subsection, all of the constraints associated with biogas
power plants are described. 3bin formulation is employed
(Morales-Espana et al., 2015), and all u, v, and w variables
(Table 1) are binary, i.e.

ut,k,i, vt,k,i, wt,k,i ∈ 0, 1{ } ∀i, k, t. (2)

2.3.1 Power Constraints
There are two basic values for every turbine: Pmink,i > 0 and
Pmaxk,i > Pmink,i ∀k, i which implies that it can either do nothing
or produce within the interval [Pmink,i, Pmaxk,i], i.e.

pt,k,i ∈ 0{ } ∪ Pmink,i, Pmaxk,i[ ] ∀t, k, i. (3)

These constraints can be written using the ut,k,i variables which
equal 1 if at time t the i-th turbine of Asset k is on and it is 0
otherwise:

pt,k,i − Pmink,iut,k,i ≥ 0, Pmaxk,iut,k,i − pt,k,i ≥ 0 ∀i, k, t. (4)

The power produced can be decomposed to two components:
the power used for the Day-Ahead market and the power used for
the Intra-Day market, i.e.

pt,k,i � pID
t,k,i + pDA

t,k,i ∀i, k, t. (5)

2.3.2 The Storage Constraints
Every biogas power plant k has its own storage and a constant
flow of gas Fk (expressed in MWh) into it. The new storage level
is equal to the old level added by Fk and subtracted by the
aggregate energy produced by all turbines within Asset k during
one period:

socBgt,k � socBgt−1,k + Fk − ∑#U(k)
i�1

pt,k,iΔt ∀t, k, (6)

and the box constraints:

socBgt,k ∈ 0,Emax
k[ ] ∀t, k. (7)

2.4 The Timing Constraints
The on and off decisions for the turbines are conducted via binary
switch-on (v) and binary switch-off (w) variables as follows
(Morales-Espana et al., 2015):

ut,k,i − ut−1,k,i � vt,k,i − wt,k,i ∀t, k, i. (8)

If at time t a turbine i of asset k is on or off, it has to be on or off
for at least UT(k,i) and DT(k,i) periods, respectively, which is
expressed as follows:

∑t
j�t−UT(k,i)+1

vj,k,i ≤ ut,k,i and ∑t
j�t−DT(k,i)+1

wj,k,i ≤ 1 − ut,k,i ∀t, k, i.

(9)

2.5 Timing Constraints Tuning
We have light requirements on our turbines from the biogas
power plants that we explore: maximum number of switch-
ons per year. These conditions can be handled by imposing
penalties for switch-ons and switch-offs. On the other, hand
there are, generally, turbines with strict timing constraints
therefore in our exploration of the speed of the
decomposition algorithms, timing constraints are
intentionally imposed in order to broaden the scope of
applications of our algorithms.

2.6 The Constraints for Batteries
This subsection shows all the constraints associated with
batteries:

2.6.1 Power Constraints
Every battery in our pool has the following power constraints:

Pmaxk,1ut,k,1 − pd
t,k,1 ≥ 0 ∀t, k, (10)

Pmaxk,1 1 − ut,k,1( ) − pc
t,k,1 ≥ 0 ∀t, k, (11)

pc
t,k,1 − Pmink,1wt,k,1 ≥ 0 ∀t, k, (12)

pd
t,k,1 − Pmink,1vt,k,1 ≥ 0 ∀t, k. (13)

These constraints ensure that we cannot charge and discharge
at the same time (Alqunun et al., 2020).
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2.6.2 Storage Constraints
The update of the storage level and the state of charge is
conducted as follows:

socBtt+Δt,k � socBtt,k + Δt · ηck · pc
t,k,1 −

Δt · pd
t,k,1

ηdk
∀t, k, (14)

and the power is constant in the interval [t, t + Δt].

2.6.3 Tightening Constraints

vt,k,1 ≤ ut,k,1 andwt,k,1 ≤ 1 − ut,k,1 ∀t, k, (15)

and for all t we have box constraints:

socBtt,k ∈ 0,Emax
k[ ] ∀t, k. (16)

2.6.4 Switches of the Batteries
The on and off decisions for the batteries are conducted via
binary switch-on (v) and binary switch-off (w) variables as
follows:

ut,k,i − ut−1,k,i � vt,k,i − wt,k,i ∀t, k. (17)

2.6.5 Components in the Objective Value
We define the variables pt,k,1 as follows:

pt,k,1 � pd
t,k,1 − pc

t,k,1 ∀t, k, (18)

which is included in the objective (1).

2.7 The Coupling Constraints
The coupling constraint is a task that all flexible assets have to
fulfill. This is given by the imbalance Bt ∀t between the
realized and forecasted production of the intermittent
sources.

∑#A
k�1

∑#U(k)
i�1

pID
t,k,i � Bt, ∀t. (19)

Note that the right-hand side of Eq. 19 is the input we have to
estimate. This boils down to estimating the imbalance which is a
challenging task. In this study we approach the imbalance by
means of two methods:

1. Taking the historical imbalance: perfect foresight. We will use
it as a benchmark. This will be the upper bound to the
problem.

2. Fitting the imbalance with ARMA processes and using
simulations.

2.8 The Optimization Problem Formulation
Summarizing the aforementioned constraints and objectives, we
can formulate the optimization problem with the forecast
parameters: Frc(DA), Frc(ID) and B as follows:

maximize ∑T
t�1

∑#A
k�1

∑#U(k)
i�1

Frc(DA)t pDA
t,k,i + Frc(ID)t pID

t,k,i − Cv
k,ivt,k,i − Cw

k,iwt,k,i( )
s.t. (2) − (19)

which we denote as follows: VPP(Frc(DA), Frc(ID),B).
For the problem VPP(Frc(DA), Frc(ID),B), we define the

additional notation:

1. VPPx(Frc(DA), Frc(ID),B) is the optimal solutions of the
problem, i.e.:

VPPx Frc(DA), Frc(ID),B( ) � pDAp, pIDp, pp, pcp, pdp, up, vp, wp, socp( )

2. VPPr(Spt(DA), Spt(ID),B) is the realized value of the
problem, i.e.

VPPr Spt(DA) , Spt(ID) ,B( ) � ∑T
t�1

∑#A
k�1

× ∑#U(k)
i�1

Spt(DA)t pDAp
t,k,i + Spt(ID)t pID*

t,k,i − Cv
k,iv

p
t,k,i − Cw

k,iw
p
t,k,i( )

3. VPPrv(Frc(DA), Frc(ID),B) is the revenue yielded
from VPPx(Frc(DA), Frc(ID),B), i.e.

VPPrv Frc(DA), Frc(ID),B( ) � ∑T
t�1

∑#A
k�1

× ∑#U(k)
i�1

Frc(DA)t pDAp
t,k,i + Frc(ID)t pIDp

t,k,i( )

4. VPPrv(Spt(DA), Spt(ID),BR) is the realized revenue when the
prices and the imbalance become known. When the forecast
of the imbalance B is replaced with its realization BR, we
check if the feasibility is preserved. If so the sum
VPPrv(Frc(DA), Frc(ID),B) is directly applied as the
realized value. Otherwise, we buy the missing energy on
the market.

5. VPP(h)rv (Spt(DA), Spt(ID),BR) is the realized revenue when the
prices and the imbalance become known within the execution
horizon h, i.e.

VPP(h)
rv Spt(DA), Spt(ID),BR( ) � ∑h

t�1
∑#A
k�1

× ∑#U(k)
i�1

Spt(DA)t pDA*
t,k,i + Spt(ID)t pID*

t,k,i( )
This value will be used in Model Predictive Control.

6. VPP*rv(Spt(DA), Spt(ID),BR) is the realized revenue from the
solution of the perfect foresight problem
VPP(Spt(DA), Spt(ID),BR), where BR is the realized
imbalance.

Our goal is to elaborate such a strategy that the ratio
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σ � VPPrv Spt(DA), Spt(ID),BR( )
VPP*

rv Spt(DA), Spt(ID),BR( ) (20)

is as close to 1 as possible which can be increased by better
optimizations and better forecasts and this is explored in
Subsection 7.3.

We also introduce the optimization problem
VPP(Frc(DA), Frc(ID),B, State) which differs from
VPP(Frc(DA), Frc(ID),B) by specifying starting conditions of
turbines and storage levels constrained in the variable State.

2.9 A Structural Asset-Based Problem
Formulation
The problem VPP(Frc(DA), Frc(ID),B) has a linear objective and
all linear constraints, therefore it can easily be shown that it can be
rewritten in the following form:

maximize∑#A
k�1

pu
k · xk (21)

s.t.∑#A
k�1

Ak · xk � a, (22)

Bk · xk ≤ bk ∀k ∈ 1, 2, . . . , #A{ }, (23)

xk(I) ∈ 0, 1{ } ∀k ∈ 1, 2, . . . , #A{ }. (24)

where xk represents all variables associated with Asset k, in other
words xk constrains all variables from Table 2, whose Asset index
is k. The vector pk consists of all objective value coefficients from
Eq. 1 associated with Asset k and Eq. 21 is equivalent to Eq. 1. In
an analogous manner Eq. 22 is equivalent to Eq. 19 and Eq. 23 is
equivalent to Eqs 3–18. And the Eq. 24 is equivalent to Eq. 2.

3 DESCRIPTION OF GRADUAL INCREASE

The main idea behind the method of Gradual Increase lies in the
proper use of the warm start. When we have to handle a task a from
Eq. 22, we can check whether it is possible to implement it with a
smaller number of assets (or turbines within the assets). If it is possible,
then the resulting solution can be used as a start in either a larger or the
entire pool. We try to start with a minimum sub-pool capable of
implementing the task and add assets to the pool with its consequent
optimization, until the entire pool is achieved. When implementing
this algorithm, it is important to ensure that the branch and bound
trees will not be destroyed which is achieved by the parallel run of the

problem containing all assets which is interrupted whenever a new
feasible solution is found: the problem is fed with that new feasible
solution and then, the optimization is resumed. This can be achieved
by the usage of built-in callback functions within Gurobi. Some
problems are so complex that even the best solver will not be able
to find a feasible solution to it. However, Gradual Increase enables us
to find a feasible solution for the entire pool from the solution of a
subproblem. Formally, the method is as follows: let us assume that
SubSet(0) ∈ 2{1,. . .,#A}, where SubSet(0) is a first sub-pool of the whole
pool. Then the first problem can be formulated as follows:

maximize ∑
k∈SubSet(0)

pu
k · xk (25)

s.t. ∑
k∈SubSet(0)

Ak · xk � a, (26)

Bk · xk ≤ bk ∀k ∈ SubSet(0), (27)

xk(I) ∈ 0, 1{ } ∀k ∈ SubSet(0). (28)

As a warm start, for the first problem, the states of turbines (u)
from the solution of the problems in the previous period can be
chosen. Since #SubSet(0) < #A, the Problem Eqs 25–28 contains
fewer variables and constraints than the initial problem and
should be solved faster except for specific cases, e.g. when the
pool is so small that it is overloaded. Having solved this problem
we get a sequence of vectors x̂(0)

k , k ∈ SubSet(0). Then, when we
get a larger sub-pool SubSet(1) such that:

SubSet(0) ⊂ SubSet(1) and SubSet(0)≠ SubSet(1).
Hence, the following problem for j � 0 can be formulated:

maximize ∑
k∈SubSet(j+1)

pu
k · xk (29)

s.t. ∑
k∈SubSet(j+1)

Ak · xk � a, (30)

Bk · xk ≤ bk ∀k ∈ SubSet(j + 1), (31)

xk(I) ∈ 0, 1{ } ∀k ∈ SubSet(j + 1), (32)

xm.start � x̂(j)
m ∀m ∈ SubSet(j). (33)

Note that Eq. 33 is the warm start, i.e. we start with the feasible
solution and if the pool SubSet(0) is not capable of performing the
task a, then we start from scratch. Let us denote the optimal
solution of Problem Eqs 29–33 as follows: x̂(j+1)

k , k ∈ SubSet(j +
1). However, what about assets with k∉SubSet(j + 1)? For these
cases, the following problems for k∉SubSet(j + 1) are solved:

maximize pu
k · xk (34)

s.t. Ak · xk � 0, (35)

Bk · xk ≤ bk, (36)

xk(I) ∈ 0, 1{ }, (37)

and their solution is denoted as follows: �xk, k∉SubSet(j + 1). Note
that all Problems (34)–(37) can be solved in parallel and∑#Ak�1pu

k ·
�xk is an upper bound of Problem Eqs 21–24. And the solution:

ẑ(j+1)k � x̂(j+1)
k , k ∈ SubSet(j + 1),
�xk, k ∉ SubSet(j + 1){

TABLE 2 | Mean squared error.

Forecast Jan-20 Feb-20 Mar-20

Naïve 493.62 553.76 372.92
mSSA 372.92 402.01 1016.17
DeepAR 272.93 220.53 254.01
N-Beats 275.22 201.1 106.24
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is a feasible solution of Problem Eqs 21–24. So when we have sub-
pools:

SubSet(0) ⊂ SubSet(1) ⊂ SubSet(2) ⊂ . . . ⊂ SubSet(N)
� 1, 2, . . . , #A{ },

then for j � 0, Problem Eqs 25–28 is solved and for j > 0,
Problem Eqs 29–33 is solved. When a problem for some j has
been solved and we find out that it is infeasible, then for j + 1 we

will start from scratch; otherwise, we take the solution for j as a
starting point for the problem for j + 1. These warm starts have
enabled us to solve a large number of problems much faster than
when we would just rely on the power of an open-source or
commercial solver.

3.1 An Example
Figure 1 demonstrates the methodology of Gradual Increase with
an example of a pool with seven assets. It is optimized in the

FIGURE 1 | The visualization of the Gradual Increase methodology.
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following way: assuming that a sub-pool of the first three power
plants is capable of performing the task, the optimization is
started with solving Problem Eqs 25–28 for SubSet(0) � {1, 2,
3}, and Problems Eqs 34–37 are solved for k � 4, 5, 6, and 7,
yielding �x4, �x5, �x6, and �x7. For SubSet(0), there is no warm start
and Problem Eqs 25–28 is solved yielding x̂(0)1 , x̂(0)

2 , and x̂(0)3 (the
blue color in the diagram). The vector
[x̂(0)1 , x̂(0)

2 , x̂(0)
3 , �x4, �x5, �x6, �x7] is a feasible solution of the

system of the seven assets, and [x̂(0)
1 , x̂(0)2 , x̂(0)

3 , �x4, �x5] is a
warm start for the sub-pool with the five assets.

Then Problem Eqs 29–33 is solved for SubSet(1) � {1, 2, 3, 4,
5} yielding x̂(1)

1 , x̂(1)
2 , x̂(1)

3 , x̂(1)
4 , and x̂(1)

5 (the red color in the
diagram). The vector [x̂(1)

1 , x̂(1)
2 , x̂(1)

3 , x̂(1)
4 , x̂(1)

5 , �x6, �x7] is both a
feasible solution to the system with the seven assets, and a warm
start for the sub-pool with the seven assets.

Then Problem Eqs 29–33 is solved for SubSet(2) � {1, 2, 3, 4,
5, 6, 7} yielding x̂(2)

1 , x̂(2)
2 , x̂(2)

3 , x̂(2)
4 , x̂(2)

5 , x̂(2)6 , and x̂(2)
7 (the green

color in the diagram). The solution
[x̂(2)1 , x̂(2)

2 , x̂(2)
3 , x̂(2)

4 , x̂(2)
5 , x̂(2)6 , x̂(2)

7 ] is the final output of
Gradual Increase. Note that the task (Eq. 30) is the same for
all sub-pools. In the first layer of the Gradual Increase
methodology, there is no warm start. In the middle layer
there is a warm start for the optimization and the output of
this optimization is used as a warm start for a larger sub-pool.
The last layer produces the final output. In the case of a time
limit, it is possible to use one of the sub-optimal, but feasible
solutions:

• [x̂(0)
1 , x̂(0)

2 , x̂(0)
3 , �x4, �x5, �x6, �x7],

• [x̂(1)
1 , x̂(1)

2 , x̂(1)
3 , x̂(1)

4 , x̂(1)
5 , �x6, �x7].

FIGURE 2 | The visualization of the Gradual Increase methodology with a callback.
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Figure 2 demonstrates an upgrade in the Gradual Increase
methodology when there is a parallel run of the entire pool. This
parallel run starts simultaneously with Gradual Increase and is
interrupted when the latter finds a feasible solution. This feasible
solution is fed to the parallel run without destroying branch and
bound trees using callback functions, and after that, the
optimization is resumed. This procedure repeats whenever
Gradual Increase finds a new feasible solution as is shown in
Figure 2. The number of such feasible solutions is equal to the
number of the sub-pools.

3.2 Further Improvements in Gradual
Increase
When the same pool is optimized, then we can take the
experience from previously solved problems in order to
accelerate the solution of new problems as follows:

1. Exploration of which sub-pools would lead to a faster solution
on previously solved problems and applying these sub-pools
for new problems.

2. Exploration of the warm start: we can check if the binary
variables from the previous problem can be used in the warm
start: if it is possible then the first feasible solution will be
obtained by means of LP otherwise the solver will start from
scratch.

3. Exploration of what solver parameters from previously solved
problems would lead to faster solutions of these problems and
application of these parameters on the new problems. Results
obtained by the Proximal Jacobian ADMM and Gradual
Increase will be compared. We will also implement a
hybrid of both methods.

4 OPERATION OF THE VPP CONDUCTED
ON HISTORICAL DATA

We consider systems with predefined assets as being part of the
VPP, and historical prices and production together with their
corresponding historical forecasts are applied. The wind
production forecast is the task of the wind park: based on
the prognosis the operators of the park inform the market
operator that they are able to produce a specific schedule. The
imbalance between the produced and predicted wind energy is
the task of the flexible assets: the surplus of the wind
production will be consumed by the batteries while the
deficiency will be covered either by the biogas power plants
or by discharging the batteries. This implementation will be
conducted in the Model Predictive Control fashion where the
problem is solved every 24 h when new information about
prices and the weather arrives.

4.1 Model Predictive Control
Model Predictive Control (MPC) is a feedback control
technique that naturally incorporates optimization (Moehle
et al., 2019; Bemporad, 2006; Mattingley et al., 2011). In this

study we consider certainty equivalent MPC and robust MPC
proposed in Moehle et al. (2019). In certainty equivalent MPC,
random quantities are replaced with predictions, and the
associated optimization problem is solved to produce the
schedule over the selected planning horizon. After
optimization, the first power schedule is executed, i.e. the
one associated with the time of optimization. For the next
step, this process is repeated incorporating the updated
information about price and imbalance forecasts. Following
the notation from Table 1, our MPC algorithm is defined as
follows:

Take the initial state State0 of the system (storage levels and
states of the turbines) as the first input.

for t � 1 to N do:
1. Forecast. Make price and imbalance forecasts that will be

used as inputs in the optimization:

Frct � Frct, Frct+1, . . . , Frct+H−1[ ],
ΔprodW

t � ΔprodW
t , ΔprodW

t+1, . . . ,ΔprodW
t+H−1[ ].

2. Optimize. Solve the dynamic optimization problem:

VPP Frc(DA)t , Frc(ID)t ,ΔprodW
t, Statet−1( ), (38)

where pricet determines the objective value and prodWt
determines the right-hand side of the power production
constraints. Solving this optimization problem yields the
decision vector.

yt � [yt, yt+1, . . . , yt+H−1].
3. Execute only yt from the whole vector yt because this

decision relates to the most up-to-date time step. The rest of
the ys in the y is discarded.

4. Determine the value Revenuet which is the revenue
associated with the execution of yt which equals

Revenuet � VPP(h)
rv Spt(DA)t , Spt(ID)t ,∇prodW

t( ) (39)

and the next state is:

Statet � f Statet−1, yt,∇prodW
t( ), (40)

where f is a linear function which determines the updates of the
storage levels and states of the turbines according to Eqs, 6,
14, 8, 9.

end for.
Thus, our ultimate goal is the maximization of the sum:

TotRev � ∑N
t�1

Revenuet → max , (41)

i.e. the solution of the problems VPP(·, ·, ·) is an intermediate
goal aimed at maximizing the value TotRev. And in this study the
model is assessed in terms of the value of TotRev and the total
speed-up. All the methods only differ by the approach to
problems VPP(·, ·, ·) and the following will be applied:

1. Generic Approach: we rely on the power of the solver without
any decomposition or splitting.
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2. Gradual Increase: asset-wise decomposition is performed as it
is shown in the description of the method and in a similar way
this approach is applied on the turbines within each biogas
power plant.

3. Proximal Jacobian ADMM: we start with LP relaxation in
order to ensure that the coupling constraint is satisfied and
then apply MILP methods to sub-pools (most on single power
plants) in order to extract an integral solution.

4. Partial Integrality: at time t, we relax all integral constraints of
all variables yt+1, yt+2, . . . , yt+H−1. This leads to a significant
reduction of binary variables while providing a feasible action
yt. (Variable yt is defined in Table 1.).

5. Management of Timing Constraints by Penalization: in many
situations, timing constraints can be enforced by imposing
high penalties on switch-ons and switch-offs. This enables us
to get rid of most of our inequality constraints and thereby to
significantly accelerate the calculations.

6. Parameter tuning with MPC: within MPC, we can run
parameter tuning of the solver after we have solved a
problem. It can be conducted parallel to the solution of the
new problems. After solving 20 problems, the tuning
parameters of the solver are adjusted which provides further
speed-up. In Python’s Gurobi environment, this can be
conducted by means of the operation Model.tune().

7. Hybrid of GI and Proximal Jacobian ADMM: instead of
adding single power plants in the pool they are added by
blocks and in order to solve block subproblems faster, we
apply Gradual Increase.

4.2 Robust Model Predictive Control
The difference between MPC and RMPC lies in a different
approach to the second step of the algorithm (Optimize). In
Eq. 38, there is a single forecast of prices and imbalances. In
RMPC however (Moehle et al., 2019), we use a predefined
number of scenarios M, i.e.

Scenariom � Frc(DA,m)
t , Frc(ID,m)

t ,Δprod(W,m)
t( ) form

� 1, 2, . . . ,M,

and use each scenario m in order to solve the maximization
problem:

∑M
m�1

VPP Frc(DA,m)
t , Frc(ID,m)

t ,Δprod(W,m)
t , Statet−1( ) (42)

p(ID,m̂)
τ,k,i − p(ID, �m)

τ,k,i � 0 ∀k, i and∀m̂, �m≤M and∀τ ≤ h,
(43)

p(DA,m̂)
τ,k,i − p(DA, �m)

τ,k,i � 0 ∀k, i and∀m̂, �m≤M and∀τ ≤ h,

(44)

where the sum in Eq. 42 means that we add up all the objectives
from the problems VPP(Frc(DA,m)

t , Frc(ID,m)
t ,Δprod(W,m)

t ,
Statet−1) for each m and maximize their sum; as for the
constraints, they all are added into the set of the constraints of
the resulting problem. The constraints Eqs 43, 44 ensure that the
power produced within each scenario Scenariom will be the same
up to time h. This also ensures that the execution in Eq. 39 will be

the same for all the scenarios. The rest of the steps of the MPC
algorithm remain unchanged. It can easily be shown that the
same power values for all scenarios also imply the same states of
the turbines and the same storage levels for all the scenarios
when t < h.

5 DATA INPUTS INTO OPTIMIZATION

As the objective function Eq. 1 and coupling constraints Eq. 19
suggest, the optimization requires data inputs, i.e. forecasts, and is
conducted sequentially: at the start of the new period, Problem
Eq. 38 is solved taking into account the state of the system. Then
the real prices and imbalances become known and the solution of
Eq. 39 enables us to calculate the real revenue yielded by solving
Eq. 38. Then the state of the system is updated by (40), and the
process resumes. Hence, the following data inputs are required:

• Historical prices on the EEX market and associated
historical forecasts

• Historical wind production from the considered wind parks
and associated historical forecasts

As for price inputs, we apply commercial forecasts. Since these
forecasts are not available for a large audience, we propose three
forecasting methods based on Deep Learning whose
implementation is possible using open-source software. The
following subsection specifies what price forecasts are
employed apart from the commercial ones.

5.1 Price Inputs
Following developments inmachine learning research for time series
forecasting, we consider several state-of-the-art machine and Deep
Learning approaches for the modeling of electricity prices:

• Multivariate Singular Spectrum Analysis (mSSA)—a
popular and widely used time series forecasting method.
As demonstrated in Agarwal et al. (2020), mSSA was found
to outperform deep neural network architectures such as
LSTM and DeepAR in the presence of missing data and
noise level.

• DeepAR—a methodology (developed by Amazon Research)
for producing accurate probabilistic forecasts, based on
training an auto-regressive recurrent network model
(Salinas et al., 2019). We use GluonTS Alexandrov et al.
(2020) implementation of DeepAR for our experiments.

• N − BEATS—a deep neural architecture based on backward
and forward residual links and a very deep stack of fully-
connected layers (Oreshkin et al., 2020). The architecture
demonstrated good performance in M4 forecasting
competitions and more recently (Oreshkin et al., 2020)
has been used for electricity load forecasting.

5.2 Production Inputs
Historical imbalances are obtained as the difference between
the real aggregate production and the forecasted aggregate
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production. The aggregate production for both cases is
obtained by adding up the productions from each wind
turbine. For the aggregate production of wind, commercial
forecasts are used. The prediction of imbalances would exceed
the scope of this paper and in this study, the imbalances are
treated as follows:

• Usage of historical imbalances as inputs—an assumption of
a perfect foresight.

• Fitting imbalances with an ARMA process and the
simulation of them within an RMPC scheme.

In the exploration of the speed of the optimization
algorithms (Subsection 7.4), the commercial price forecasts
are employed and the imbalances are assumed to be known in
advance. In the exploration of the precision (Subsection 7.3),
all proposed price forecasts are employed and where
imbalances are assumed to be uncertain, the optimization is
conducted within RMPC.

6 NUANCES OF THE OPTIMIZATION

We optimize against prices which implies that turbines
should produce when the price is high, and be off when it
is low. As for the battery, it should discharge when the price
is high, and it should charge the battery when it is either low
or negative.

Note that at the moment of optimization, the spot prices are
not known and thus the decision-making relies on forecasts.

6.1 The Choice of Sub-Pools
At time t, the optimal solution from time t − 1 is taken and the
following arrays are calculated:

Pk � ∑#U(k)
i�1

∑T
τ�1

pID
τ,k,i, k ∈ 1, 2, . . . , #A{ }, (45)

Pk,i � ∑T
τ�1

pID
τ,k,i, k ∈ 1, 2, . . . , #A{ }, i ∈ 1, 2, . . . , #U(k){ }.

(46)

So when choosing which power plant to add to the sub-pool, we
prefer such power plants k for which Pk is larger. When choosing a
power plant k as part of the pool, we decide which turbines to add
first according to the values Pk,i, i.e. the higher values of Pk,i are
preferred. Since the optimization is run every 15 min, in many
cases there is not a very significant difference between the problems
at time t and t − 1 and this is one of the ways to exploit it.

6.2 Hardware and Solvers
We use m5d.4xlarge EC2 instance within Amazon Web Services
i.e. 16 vCPUs and 64 GiB RAM. In optimization, two solvers are
employed: CBC and Gurobi. In order to optimize our set of assets,
we can get by with CBC, but in order to deal with portfolios of
replicated biogas power plants, it is necessary to resort to the
commercial solver Gurobi.

6.3 Implementation of Proximal Jacobian
ADMM
The proximal Jacobian ADMM (Alternating Direction Method of
Multipliers) was developed in Deng et al. (2017) and Wei and
Ozdaglar (2013) and its convergence for linear programming
problems was proven in the same literature. In this study apart
from Gradual Increase, Proximal Jacobian ADMM is used, where
first all integrality constraints are relaxed, and the algorithm iterates
until the acceptable violation of coupling constraints is achieved: the
preservation of the rest of the constraints is provided by the
subproblems. After finishing the linear programming part we get
the action vectors x̂k, for each k ∈ {1, 2, . . . , #A}. Let âk denote
Ax · x̂k, i.e. âk � Ax · x̂k. Then for each asset k, the mixed-integer
action vector is recovered by solving the following subproblems.

maximize pu
k · xk (47)

s.t. Ak · xk � âk, (48)

Bk · xk ≤ bk, (49)

xk(I) ∈ 0, 1{ }. (50)

Sometimes these problems are infeasible, but this can be handled as
follows: ifK is a subset of {1, 2, . . . , #A} such that for each k ∈ K the
problem Eqs 47–50 is infeasible, then we can solve

maximize ∑
k∈K

pu
k · xk (51)

s.t. ∑
k∈K

Ak · xk � ∑
k∈K

âk, (52)

Bk · xk ≤ bk, xk(I) ∈ 0, 1{ } ∀k ∈ K. (53)

In all our problems #K≤ 4 and such pools are solved in amatter of
seconds. However this procedure provides sub-optimal solutions, but
this technique is amenable to parallelization (Wei andOzdaglar, 2013)
and can handle extra-large pools of assets. It can also be easily shown
that this algorithm can be combined with Gradual Increase.

6.4 Parallelization
Parallelization is crucial in optimizing these kinds of virtual power plants.
And when applying any aforementioned methods, we propose using
two independent machines where the first machine runs the problem
from scratch uninterrupted and the secondmachine starts from scratch
but gets interrupted when decomposition, splitting, or pruningmethods
find a new feasible solution and then, with a new start, they resume the
calculations, having preserved all the branch and bound trees.When any
method gets the confirmation that there is the optimal solution, then all
other cores terminate. The same happens when the time limit is expired.
In this case of all feasible solutions found by all methods, we choose the
one which yields the largest value of the objective function. The usage of
an independent and uninterrupted core is proposed in order to make
sure that decomposition methods will not lead to longer computation
times. This can happen in situations when a solver was capable of
finding the optimal solution almost immediately and most of the time
was spent on the confirmation that the solution is optimal. In such
special cases, GI would only decelerate the total computation time but it
will not happen if it is coupled with such a core. The utilization of an
interrupted machine is proposed in order to preserve branch & bound
trees: each feasible solution can enrich the search space.
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7 RESULTS

This section presents the results of the calculations related to the speed
(Subsection 7.4), forecast precision in terms ofMSE (Subsection 7.1),
and the optimality in a stochastic environment (Subsection 7.3). In
both cases, we consider the following period: 2020/1/1–2020/9/26. In
the case of the speed, the prediction horizon (H) is 2 days ahead. In the
case of optimality, our prediction horizon (H) is 3 days ahead. In both
cases, the execution horizon (h) is 24 h. Price forecasts are updated
once or two times per day, but production forecasts are updated every
15min. Therefore, it is crucial to be able to solve every optimization
problem in maximum 15min, otherwise it will not be possible to
deploy these algorithms for real-time applications.

In the case of the speed, only state-of-the-art commercial price
forecasts are used and perfect knowledge of the imbalance is
assumed. We emphasize that the size of imbalance increases
proportionally to the number of assets; otherwise, the
optimization problem would be trivial. In addition, in the case
of the speed, timing constraints are introduced and for each
turbine, UT and DT are generated by means of a uniformly
distributed random variable taking values: 0, 1, 2, 3, 4. In the case
of optimality, we consider different forecast methods described in
Section 5 affect the cumulative revenue over the aforementioned
period.

7.1 Analysis of Price Forecasts
Weapply the abovemodels to generate and benchmark forecasts 168-h
ahead at three time points: 1) 31-Dec-2020 2) 31-Jan-2021 3) 29-Feb-

2021.Our approach is to demonstrate benefits fromusingmachine and
Deep Learning forecasting technologies, rather than a comprehensive
evaluation of different classes ofmethods or to add to the debate on the
benefits of machine learning vs. statistical algorithms. We generate
forecasts for 168 h (7 days) ahead and benchmark forecasts against
168 h lagged naive forecasts that is able to capture daily and hourly
dynamics of electricity prices (thus is a competitive benchmark in the
short-term, especially as our forecasts are of parsimonious nature and
only use historic price information).

We have utilized mean squared error (MSE) to measure the
performance of considered forecasting frameworks to obtain the
following results in Table 2. Our results demonstrate significant
benefits (as measured by forecasting value added—FVA) from
applying powerful Deep Learning frameworks such as DeepAR and
N-Beats, as well as data-driven models such as mSSA that are able to
capture dynamic and feature-rich behavior of electricity prices. The
applied frameworks are able to demonstrate, even without any hyper-
parameter optimization, that powerful open-source frameworks such
as mSSA, DeepAR and N-Beats are able to generate (see Table 4) very
competitive forecasting inputs in comparison with expensive
commercial forecast feeds.

7.2 Analysis of Results in Terms of Decision
Variables
This subsection demonstrates results in terms of decision variables and
input parameters. In the optimization models presented in this paper,
there are the following variables: p, u, v,w, soc (SeeTable 1). Instead of

FIGURE 3 | The dependence of the total power output on forecasted prices and initial storage levels.
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visualizing all the variables, we concentrate on the most important
ones. Let us note first, that the variables p and u (i.e. pt,k,i and ut,k,i, ∀t, k,
i) are interrelated: for turbines, Eq. 4 implies that if pt,k,i > 0 then ut,k,i �
1, and if pt,k,i � 0, then ut,k,i � 0; for batteries, Eq. 10 implies that if
pd
t,k,1 > 0, then ut,k,1 � 1, and if pd

t,k,1 � 0, then ut,k,i � 0. Since u is
derived from p, it will not be visualized, because all the information
about it is contained in p. The variables pd

t,k,1 and p
c
t,k,1 are interrelated

because only one of them can be positive, i.e. if one of them is positive,
then the other is zero which is entailed by Eqs 10, 11. This is because
the considered batteries cannot charge and discharge at the same time
(Alqunun et al., 2020). Therefore in a battery according to Eq. 18, if
pt,k,1 � 0, then both pd

t,k,1 and p
c
t,k,1 are zero; if pt,k,1 > 0, then pd

t,k,1 > 0
and pt,k,1 � pd

t,k,1; if pt,k,1 < 0, then pc
t,k,1 > 0 and pt,k,1 � −pc

t,k,1. Thus,
all the information about ut,k,i,pd

t,k,1, andp
c
t,k,1 is contained in pt,k,i∀t, k,

i. According to Eq. 6 and Eq. 14, the storage levels are uniquely
determined by the power output and the initial storage level, however
they are visualized in Figure 3, in order to show how they can restrict

the power output. Based on the aforementioned considerations, the
following variables will be visualized:

• The aggregate power output: i.e the left-hand side the
coupling constraints, i.e. Eq. 19.

• The aggregate storage level in both biogas power plants and
batteries.

• The power output for a single power plant in order to
demonstrate the effect of timing constraints.

Due to confidentiality issues, the schedules and storage levels
are normalized. Figures 3, 4 are obtained from the optimization
of a system that consists of three real assets mentioned in
Subsection 2.1 and one asset with randomly generated
parameters. For the sake of clarity of the figures, only day-
ahead schedules and day-ahead prices are considered in
Subsection 7.2.1 and Subsection 7.2.2.

FIGURE 4 | The dependence of the revenue on the quality of the forecasts and timing constraints.
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7.2.1 The Dependence of the Total Power Output on
Forecasted Prices
Figure 3 visualizes the schedules for the maximum and minimum
initial storage levels and all of them are normalized. These are aggregate
power and storage level schedules. The former is visualized against spot
prices. In the corresponding optimization problem, the price input is
historical spot prices, i.e. the optimization is implemented under perfect
foresight. In this example for the price input, we apply 50 consecutive
day-ahead spot prices from the EEXmarket starting on 08. 04. 2020 at
9:00 PM, and the analogous inputs are used for the imbalances. In the
top part of Figure 3, there are two scales: the scale associated with the
aggregate schedule (red) and the scale associated with the spot prices
(blue). Note that in both top left and top right parts of Figure 3, when
the price is high, the aggregate power output tends to be high, which is
natural because the scalar product of the red (non-normalized) line and
the blue lines is part of the objective which is maximized. In other
words, the role of the optimization is to cherry-pick high prices, but it
can be disabled by the constraints and the state of the system. For
example, in the top left part of Figure 3, the first price is relatively high,
but no power is produced because there is not enough fuel for it
(minimum initial storage), while in the top right part of this figure there
is the maximum initial storage, therefore the power is produced. The
bottom-left and bottom-right parts of Figure 3 visualize schedules and
storage levels for the maximum and minimum initial storage levels,
respectively. Let us note that at hour 10, there is a localmaximum in the
spot price. In the case of the maximum initial storage, there is more
power generated at hours 10 and 11, than in the case of the minimum
initial storage because the fuel was stored in order to be used later when
the prices are higher. In the bottom right part of Figure 3, the storage
starts at a non-zero level. This is because there is a minimum initial
storage level for which it is possible to satisfy the coupling constraint.

7.2.2 The Dependence of the Revenue on the Quality
of the Forecasts
The top left part of Figure 4 visualizes a power schedule against
corresponding spot prices under perfect foresight. The top right part of
Figure 4 visualizes a schedule against corresponding spot prices under
the usage of commercial price forecasts. The forecasts of the spot prices
were generated on 05. 30. 2020 at 12:00 AM and the price vector is 50
consecutive hourly price forecasts starting at 9:00 PM on 05. 30. 2020.
Let us note that between hours 30 and 40 where there is a local
maximum spot price, the schedule was adjusted to this maximum, i.e.
there is a spike in the aggregate power production. However the
commercial price forecasts have not predicted the localmaximumprice
at that point, therefore there is no spike in the power production in the
left part of the picture. Let us also note that the spot price is negative in
the following chunks:

• During hours 17–21,
• During hours 41–43.

In the top left and middle parts of Figure 4, the aggregate
power output is negative at the chunks where the price is negative.
This is enabled by Eq. 18, and when the price is negative then
the battery is charged. The commercial forecasts have not
predicted these negative prices. Instead, these forecasts values
are close to zero which results in “doing nothing” at these

chunks. This emphasizes the importance of the quality of the
forecasts.

The middle part of Figure 4 visualizes the normalized
aggregate schedules for the system where all the turbines have
the following parameters of the timing constraints: UT �DT � 12.

The bottom part of Figure 4 visualizes the normalized
schedule of the first turbine of the fourth asset in the pool for
perfect foresight. In the bottom-left part of Figure 4, there are no
timing constraints. In the bottom right part of Figure 4, there is
UT � DT � 12.

Let us note that any switch-on of a turbine is associated with a
guaranteed loss of fuel. For example, let I denote a subset of all
turbines of Asset k. Then the switch-on of all the turbines within I ,
yields the following guaranteed minimum usage of the fuel within
the storage of Asset k:

∑
i∈I

Pmink,ipUT
(k,i),

which implies that the loss of fuel is proportional to UT. This is the
reason why in the bottom right part of Figure 3, it was impossible to
cherry-pick the local maximum spot price at time 36: the turbine was
switched on at hour 21 and was on until hour 32. At hour 32, the
storagewas almost empty, therefore the turbine had to be switched off.
In 3 hours there was that local maximum price, but there was not
enough fuel in the storage. In addition to this, DT� 12 whichmakes it
impossible to switch on that turbine. We have also calculated the
schedule for UT � 12 and DT � 0. In this case, it is possible to switch
on the turbine after hour 32, but it was not implemented, because this
switch-on would enable us to cherry-pick the local maximum at time
36, which is 10.96 euros, but at hour 42, the price is −48.17 euros, and
this “bonus” is inevitable, if the turbine is switched on after hour 32.

In the top left part of Figure 4, there are no timing constraints and
there is perfect foresight, therefore there is the largest revenue. In the
top right part of this figure, there are no timing constraints, but the
prices are not known. Hence the revenue there is 91.73% of the
maximum. In the middle left part of this picture, there is perfect
foresight, but there are timing constraints, i.e. UT � DT � 12. And the
revenue for this case is 91.19% of the maximum. In the middle right
part of Figure 4, there are timing constraints and the prices are
forecasted. The revenue for this case is 85.22% of the maximum.

Hence, in order to increase the revenues, apart from
optimization methods, it is important to:

TABLE 3 | Average speed of calculations (in seconds) for methods: BF, Brute
Force; GI, Gradual Increase ; PI, Partial Integrality; GI-PI, Combination of
Gradual Increase and Partial Integrality; PJ, Proximal Jacobian ADMM; GI-PJ,
Combination of Gradual Increase and Proximal Jacobiand ADMM.

#Assets BF GI PI GI-PI PJ GI-PJ

4 6 8 - - - -
8 45 50 - - - -
10 52 49 6 5 - -
25 140 119 9 8 - -
32 166 129 55 44 - -
52 278 184 105 79 390 368
102 407 257 113 93 450 411
150 480 358 231 143 497 479
200 643 601 280 154 532 495
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1. Improve price forecasts.
2. Perform technological advances on turbines in order to reduce

UT and DT, if it is possible.

7.3 Optimality
When we explore the optimality, we attempt to get as close as possible
to the total revenue that we would achieve in the case of perfect
foresight, when both prices and imbalances are known in advance. So,
the cumulative revenues under perfect foresight is our benchmark and
we explore the percentage of it provided by different methods. We
explore this bymeans of variable σ fromEq. 20, which is apparently the
unit in the case of perfect foresight. Table 4 summarizes the σ-values.
We can observe that whenwe use commercial state-of-the-art forecasts
and assume perfect foresight of productions, then RMPC yields slightly
higher revenues. In the case of uncertain productions, we utilize only
RMPCbecause we prefer simulations of the realizations of productions
rather than trying to find a point forecast: the forecast of the imbalance
is a challenging task and the exploration of it exceeds the scope of this
paper. But mimicking this imbalance by ARMA processes yields σ
equal to 84.19% ifwe use commercial forecasts and σ equal to 81.29% if
we usemSSA,which can be achieved by utilizing open-source software.

7.4 Speed
Whenwe explore the speed, our benchmark is the time needed to solve
the MILP problem by the Gurobi solver. We call this approach the
Brute Force and the proposed decomposition and splitting algorithms
must enable us to find the solution faster. In real-time applications, an
optimization problem is solved every 15min. Some of these problems
require somuch time to be solved that we either do not get any feasible
solution or get a solution that is highly sub-optimal. In Subsection
7.4.1 only such cases are explored. We are interested in maximum
improvement provided byGradual Increase compared to the situation
when we rely only on the speed of the solver. Subsection 7.4.2,
considers all problems and judges the improvements in terms of
average calculation time. Apart from Gradual Increase,
Subsection 7.4.2 considers other methods and their hybrids
with Gradual Increase.

7.4.1 Maximum Improvements in Calculation Times
The period 2020/1/1–2020/9/26 contains 269 days. Thus, for each
considered pool, 269 problems are solved. Table 3 summarizes
average calculation times and Column #Assets indicates how many
assets were involved in optimization. For the pool with 200 assets, out
of 269 problems, 7 were not solved in 15min, i.e. no feasible solution
was found within this period, howeverGradual Increase enabled us to
get a feasible solution with the relative error (MIPgap) bounded by 1%
and in one case optimality message was obtained (MIPgap ≤0.01%).
In that case, the time limit is removed and the problemswere solved by
Brute Force and Gradual Increase. The former required 24,789 s and
the latter took only 128.4 s, i.e. the Gradual Increase solved the
problem approximately 193 times faster. We also explored how the
objective is improved by the utilization of Gradual Increase in these
cases for 15 and 5min: it is desirable to run optimization faster than in
15min in order to enable traders to make judgments. The best
improvement in the objective value under the time limit of 15min
provided by Gradual Increase is 36 times, i.e. the objective value by

Gradual Increase is 36 times larger than that of Brute Force. Under the
time limit of 5min, this improvement is 78 times.

7.4.2 Improvements in Average Time
Table 3 summarizes the average calculation times provided by
different methods. The headers of each column refer to the method
applied and the caption of the table explains the abbreviations in the
headers. The methods in the headers with italic font are the
techniques which yield sub-optimal solutions but the resulting
value of TotRev yielded around 99.96% of the maximum. Such
methods are: partial integrality, partial integrality coupled with
Gradual increase, proximal Jacobian ADMM, and proximal
Jacobian ADMM coupled with Gradual increase. The methods
such as Brute Force and Gradual increase lead to the optimal
solution provided the solver has enough time. In Table 3, it can
be observed howGradual increase (GI) outperforms Brute Force (BF)
in terms of time. When we solve problems by Brute Force, we only
have the time limit of 15min, i.e. the computations finish if either the
optimal solution is found (the relative difference between the upper
and the lower bound is below 0.01%) or the time limit has expired. In
columns BF, GI, PI, and GI-PI we try to get the optimality message
within 15min. As for methods based on ADMM, this approach is
irrelevant and the stopping criteria for these algorithms are described
in Subsection 6.3. So in Table 3, it can be observed that GI improves
over BF when the number of assets is increased, but when it gets
closer to 200 then the difference is smaller. This is because the process
finishes either when the optimal solution is found or when the time
limit is exceeded. Thus the more assets we have in the portfolio, the
more cases we face when the computation time expires. As stated
above, GI helps us find the optimal solution, but it has nothing to do
with the confirmation of the optimal solution (calculation of upper
bounds). In order to accelerate this confirmation, we can resort to
Partial Integrality. In this case, we do not get to the expiration of the
time limit and the fastest method turned out to be the combination of
Gradual Increase and Partial Integrality which yields average
calculation time 4.17 times smaller than that of Brute Force. The
method Proximal Jacobian ADMM is relevant only for large pools of
assets, therefore we started calculations from 52 assets in the pool.
And we can see that Brute Force outperforms this method in terms of
speed for 52, 102, and 150. But when we have 200 assets, then
Proximal Jacobian ADMM outperforms Brute Force. When Proximal
Jacobian ADMM and Gradual Increase are combined, then we get
further acceleration (column GI-PJ) for 200 assets—approximately
1.3 times faster than Brute Force. Another positive side of Proximal

TABLE 4 | The σ-value for MPC/RMPC and different forecast methods.

Price forecast Imbalance forecast Method σ in %

Perfect Foresight Perfect Foresight MPC 100.00
Commercial Perfect Foresight RMPC 94.40
Commercial Perfect Foresight MPC 93.98
mSSA Perfect Foresight MPC 88.75
Commercial ARMA simulations RMPC 84.19
mSSA ARMA simulations RMPC 81.29
DeepAR ARMA simulations RMPC 77.34
N-BEATS ARMA simulations RMPC 72.53
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Jacobian ADMM is that it imposes lighter memory requirements on
the machine than other proposed methods (Boyd et al., 2011).

CONCLUSION

In this paper we have presented optimization and forecast
algorithms with the goal of more efficient management of the
virtual power plants and the by-product of such algorithms is the
facilitation of the integration of Distributed Energy Resources
into the grid. In other words, one of the ways to profit from
owning a DER resource is connecting it to an efficiently
optimized virtual power plant. The analysis in terms of
decision variables revealed how timing constraints and the
precision of price forecasts affect the revenue. We have
explored the computation times of GI and Proximal Jacobian
ADMM dependent on the number of biogas power plants. The
main point of these calculations is that the presented algorithms
are able to handle up to hundreds of power plants within a pool if
we properly use decomposition and splitting methods (or their
combination). We also learned that the combination of Gradual
Increase with Partial Integrality yields further improvements in
computation time. Similar results are achieved when we combine
Gradual Increase with Proximal Jacobian ADMM. We have also
conducted experiments with a pool of two biogas power plants
and a single battery in order to compare different forecasts
(Commercial state-of-the-art, mSSA, DeepAR, N-BEATS) and
optimization methods (MPC and Robust MPC). The usage of
Robust MPC yielded the revenue 0.447% higher than that of
MPC, therefore in our future research, we will consider
combining Robust MPC with decomposition methods in
order to achieve analogous results for larger pools. When the
VPP is optimized by means of RMPC under price and imbalance
uncertainty, then the utilization of commercial price forecasts
yields 84.19% of the maximum possible revenue whilst the usage
of our mSSA forecasts yields 81.29% of it. However, this forecast
can be achieved by using of open-source software. All the
optimization calculations related to Table 4 were conducted
with CBC solver. The ability to run virtual power plants by means
of open-source software also facilitates balancing and the

incorporation of newly distributed energy resources into the
grid. However, there is still the need for commercial solvers when
we deal with large systems consisting of hundreds of assets.
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APPENDIX

Biogas plants are running on gas made from natural waste.
Traditionally, they were built to run baseload, but the German

government has now introduced some incentives so that they can
run during peak hours. For that, they increase the installed capacity of
the turbines and build a gas storage on-site. With the same biogas
production, they can run during timeswhen the grid needs it themost.
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