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A great amount of research is focused, nowadays, on experimental, theoretical,
and numerical analysis of transient pool boiling. Knowing the minimum film boiling
temperature (Tmin) for rods with different substrate materials that are quenched in
distilled water pools at various system pressures is known to be a complex and highly
non-linear process. This work aims to develop a new correlation to predict the Tmin in
the above process: Random forest machine learning technique is applied to predict the
Tmin. The approach trains a machine learning algorithm using a set of experimental data
collected from the literature. Several parameters such as liquid subcooling temperature
(Tsub), fluid to the substrate material thermophysical properties (βf /βw), and system
saturated pressure (Psat) are collected and used as inputs, whereas Tmin is measured
and used as the output. Computational results show that the algorithm achieves
superior results compared to other correlations reported in the literature.

Keywords: transient pool boiling, film boiling, minimum film boiling temperature, random forest algorithm,
machine learning

INTRODUCTION

Intensive efforts to understand phase-change processes have increased over the last decade in many
industrial sectors. Fusion, solidification, boiling, condensation, and sublimation are several forms
of phase-change processes. These processes are widely encountered in energy applications due to
their association with latent heat rather than sensible heat. Therefore, they are used in fields such as
desalination, metallurgy, electronics cooling, and during thermal generation of electricity and food
processing (Collier, 1972).

Recently, a great amount of research has been focused on experimental, theoretical, and
numerical analysis of transient pool boiling which is an example of phase-change processes. It
is highly favored in various traditional and modern technologies due to its relative simplicity,
high heat transfer rate, and low cost. Pool boiling heat transfer occurs when a sufficiently heated
surface is submerged in a stagnant pool of a liquid coolant. Initially, the heated surface experiences
a film boiling regime where a vapor layer is formed around the heated surface and prevents it
from being in direct contact with the liquid coolant (Bonsignore, 1981). Due to the low thermal
conductivity of the vapor compared to the liquid, the surface experiences a dramatic decrease in
the cooling performance (Hsu, 1972; Jiang and Luxat, 2008). As the temperature of the heated
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surface decreases, the thickness of the vapor blanket reduces until
it collapses at a temperature called Leidenfrost temperature or
minimum film boiling temperature (Tmin) (Leidenfrost, 1756).
At this point, the liquid is able to dramatically cool the
heated surface, and the boiling regime transfers from the film
to transition boiling. Following that nucleate boiling, natural
convection occurs. Since Tmin is the boundary between the
film and transition boiling, any improvement in its value
significantly enhances the heat transfer rate. Thus, investigating
the Tmin point is essential in areas such as metal heat treating,
nuclear engineering industry, in a hypothetical large break loss-
of-coolant accident (LOCA), evaporators and compressors in
the air conditioning systems, refrigeration systems, chemical
processes, and oil systems (Pettersson et al., 2009; Ramesh and
Prabhu, 2015). Tmin has been widely studied in terms of various
parameters such as substrate material (Peterson and Bajorek,
2002), surface conditions and oxidation (Sinha, 2003; Lee et al.,
2014), system pressure (Henry, 1974; Sakurai et al., 1984), flow
condition (Groeneveld and Stewart, 1982; Carbajo, 1985), initial
surface temperature (Kang et al., 2018), rod diameter (Sakurai
et al., 1987; Jun-young et al., 2018), liquid subcooling (Adler,
1979; Freud et al., 2009), vapor–liquid contact angle (Ebrahim
et al., 2018), surface roughness and microstructure (Peterson and
Bajorek, 2002; Carey, 2020), and alternative quenching fluids
(Shoji et al., 1990; Lee and Kim, 2017).

In the literature, it was recognized that the complexity
and high non-linearity of the film boiling cause difficulty in
recognizing the cause–effect relationship, and the prediction
of Tmin is carried out mostly using correlations developed
empirically with many experimental works for certain specific
conditions. Recently, Yagov et al. (2021) showed evidence of
the existence of the two distinct modes of film boiling during
quenching. Steady film boiling of a saturated liquid is one of
the most studied boiling regimes, due to the macroscopically
impermeable liquid–vapor interface (Aziz et al., 1986; Zvirin
et al., 1990). On the other hand, the unsteady film boiling,
quenching, of saturated/subcooled water is quantitatively and
qualitatively different from the steady one. This study focused
on the unsteady film boiling heat transfer for various degrees
of liquid subcooling pools, system pressures, and substrate
materials. Limited correlations are available in the literature
for the estimation of the Tmin. Zuber (1958, 1959) utilized
Taylor instability analysis to build up a theoretical model
to anticipate the minimum heat flux (qmin

′′). Based on the
differences of the gravity-driven density, the continuity of the
vapor–liquid interface was demonstrated. The absence of data
about the surface properties decreased the accuracy of this
correlation since various experimental works noticed that the
surface material and the surface roughness significantly affect
the Tmin (Baumeister et al., 1970; Reed et al., 2013). Berenson
(1961) developed a correlation to predict Tmin using the Taylor–
Helmholtz hydrodynamic instability. He used Zuber’s (1958)
correlation for predicting Tmin. Since Tmin is significantly affected
by the wall thermal properties, liquid subcooling, and surface
condition, Henry (1974) modified Berenson’s (1961) correlation
including different parameters. Baumeister and Simon (1973)
explored the impact of different parameters on Tmin, for

instance, surface conditions, thermal properties of the heated
surfaces, the liquid subcooling, and surface conditions. They
developed a model to estimate Tmin utilizing the combination
of an analytical conduction model for isothermal surfaces
and experimental data available in the literature for the non-
isothermal surfaces (Baumeister et al., 1970), Sakurai et al. (1987)
studied tentatively the film boiling heat transfer mechanism
on horizontal heated rods quenched in a pool of saturated or
subcooled water at different system pressures. The proposed
empirical equations were exclusively in terms of the system
pressure, which is considered a restriction since Tmin is a
function of different parameters. Later, Peterson and Bajorek
(2002) developed another correlation for Tmin which was an
extension of Berenson’s (1961) and Henry’s (1974) correlations,
taking into account the heat transfer surface properties, liquid
subcooling temperature (Tsub), and surface roughness. The
mean absolute error (MAE) and the root mean square error
(RMSE) were estimated to be 51.38 and 65.47%, respectively.
A recent model by Yagov et al. (2018) was developed for copper,
nickel, and stainless steel spheres quenched in water at various
degrees of liquid subcooling and under atmospheric pressure.
The model not only covered a wide range of materials but
also the effect of the coolant with an error of ±30%. Ebrahim
et al. (2018) developed an empirical correlation that involves
the effect of liquid subcooling, surface roughness, and surface
substrate material. The correlation was valid between 2 and
15 degrees of liquid subcooling, surface roughness between 0.3
and 0.9 µm, and wall thermal properties from 4.15 × 107 to
8.56 × 107 J-s/m2-K. When accounting for surface roughness,
the results showed that the empirical correlation had an MAE
of 1.5% and an RMSE of 9.3%. In the absence of the surface
roughness value, the correlation predicted Tmin with relatively
a higher MAE of 10.7% and RSME of 13.3%. Despite that
Ebrahim et al. (2018) showed a high dependency for surface
roughness on the Tmin predictions, surface roughness data are
scarce in the literature.

It is worth mentioning that most of the above studies
concerning the prediction of Tmin have focused on special
conditions, which limit their application. In this regard, a
more comprehensive forecasting model, with applicability to
a wide range of temperature, pressure, and material, needs
to be developed.

The present study is focused entirely on predicting the Tmin
corresponding to the transient film pool boiling. Therefore, the
goal of this study is to utilize a robust and reliable kind of machine
learning technique called random forest (RF) to predict Tmin for
various substrate rods quenched in either high- or low-pressure
distilled water pools. Utilizing the RF model to predict Tmin could
be effective in capturing the pattern of large sets of data collected
from different experimental investigations.

MODELING

Available Models
Berenson (1961) developed a correlation for the Tmin governed by
Tylor–Helmholtz hydrodynamic instability mode. The minimum
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film boiling temperature TB
min is calculated using the following

equation:

TB
min = Tsat + 0.127

ρghfg

kg

[
g(ρf − ρg)

ρf + ρg

] 2
3

[
σ

g(ρf − ρg)

] 1
2
[

µ

g(ρf − ρg)

] 1
3

where Tsat is the saturated temperature, the subscript g refers
to the gas/vapor, and f refers to liquid; ρ is a density; k is the
thermal conductivity; hfg is the latent heat of vaporization; µ is
the dynamic viscosity; and g is the gravitational acceleration. This
correlation agrees with the available experimental measurements
within ± 10 percent. Later, Henry (1974) developed a
minimum film boiling temperature TH

min based on the above
correlation to include the effects of the wall thermal properties,
degree of liquid subcooling, and the surface condition as
follow:

TH
min = TB

min + 0.42
(
TB

min − Tsub
)

[(
βf

βω

)0.5 hfg

cp,ω

(
TB

min − Tsat
)]0.6

where Tsub is the subcooled temperature; cp,ωis the specific heat
of the wall; and βf andβw are the thermophysical properties of
the fluid and wall, respectively. It is worth mentioning that for
both the equations, the vapor properties are evaluated at the film
temperature, the liquid properties are evaluated at the liquid bulk
temperature, and the wall properties are evaluated at the wall
surface temperature.

Data Collection
The model was developed using a total of 379 experimental data
points for Tmin that have been stated in the literature. All the
collected experimental data were collected from research papers
that have similar experimental setups as shown in Figure 1
with the exception of Sakurai et al. (1984) data points which
were taken from horizontal thin rods. The data were used in
a previous work to develop a correlation for Tmin using an
artificial neural network (Bahman and Ebrahim, 2020). The
quenching facility is mainly consisting of a furnace, test sample,
pool, and data acquisition (DAQ) system. The furnace is used
to heat the test sample to the desired initial temperature before
plunging it into the pool. All the test samples have a cylindrical
shape, but they vary in length and diameter. Thermocouples are
imbedded inside the test samples and are connected to the DAQ
system and computer to monitor and measure the test sample
temperature during the experiments. A pool with an immersion
heater is used to heat the coolant to the desired degrees of liquid
subcooling. An immersion thermocouple is placed in the bath to
monitor and measure its temperature before, during, and after
the quenching process.

FIGURE 1 | Schematic diagram of the quench facility.

Transient pool boiling heat transfer experiments for various
vertical quenched rods in stagnant water baths were conducted
to investigate the effect of various parameters on Tmin. The
quenching conditions vary in the degrees of liquid subcooling,
initial rod temperature, saturation pressure, and thermophysical
properties as listed in Table 1. The experiments followed similar
procedures. First, the rods were heated to a certain initial wall
temperature (Ti) in a furnace or a ceramic heater. Then, they
were plunged into various degrees of liquid subcooling pools.
The temperature of the water in the pool is controlled by an
immersion heater and measured by an immersion thermocouple.
The degrees of liquid subcooling of the pool represent the
difference between the saturation and water temperatures
(Tsub = Tsat – Tw). In each rod, thermocouples were embedded at
the center and were connected to a DAQ system to monitor and
record the temperature before and during the quenching process.

The input data of the model are taken from different
references as shown in the Supplementary Appendix. The
summary of datasets is presented in Table 1. The data consist
of degrees of subcooling temperature (Tsub), system pressure
(Psys), and substrate material thermophysical properties (βf /βw)
(thermophysical properties are the product of the density,
thermal conductivity, and specific heats β = ρkcp). The
Tmin is the output.
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TABLE 1 | Experimental quenching conditions for the collected Tmin data from literature.

References Tsub [◦C] Tmin [◦C] Psys (MPa) (βf /βw) Number of datasets Material

Li et al., 2018 0–40 280–700 0.1 0.0573 5 Stainless-steel (SS)

Lee and Kim, 2017 0 ∼550 0.1 0.0573
0.0019
0.1174

3 Stainless-steel (SS)
Copper (Cu)
Zirconium (Zr)

Yeom et al., 2018 0–15 ∼450 0.1–0.5 ∼0.1166 3 Zirconium (Zr)

Yeom et al., 2018 0–15 650 0.1–0.5 ∼0.1168
∼0.5284

4
4

Zirconium (Zr)
Zirconium-oxide
(Zr2O)

Yeom, 2017 0–30 650 0.1–0.623 0.1163 24 Zirconium (Zr)

Ho et al., 2015 0–30 600 0.1 0.1162 2 Brass (Br)

Sakurai et al., 1984 0 ∼526 ∼0.1-2 ∼0.0141 121 Platinum (Pt)

Peterson and Bajorek, 2002 0–30 ∼650–700 ∼0.1-2 ∼0.1187
∼0.0160
∼0.0521

86 Zirconium (Zr)
Carbon-steel (CS)
Stainless-steel (SS)

Ebrahim et al., 2018 0–15 550 0.1 ∼0.0537
∼0.1193
0.0320

127 Stainless-steel (SS)
Zirconium (Zr)
Inconel-600

Random Forest Algorithm
Machine learning is a group of computer programs aimed
toward learning complex problem behavior from data (Ho,
1995; Bishop, 2006). Learning from data has many applications
which are categorized as classification, clustering, prediction,
and association problems. Most of these algorithms work by
presenting a “sample” of problem’s behavioral data to the
algorithm in order to create a “human brain” alike computer
learning system that is able to understand such problem and
generalize, correctly, its response toward never-seen behavioral
data for the same problem later. From these algorithms, for
example, is the neural network technique, which is being
used extensively in thermal system application (Zabirov et al.,
2020). The most widely used category of such computer
programs is classification algorithm which concerns classifying
different data samples into different classes. For example, having
correct patient diagnosis data, a classification algorithm can
tell, after the learning process, if that patient needs to be
hospitalized (aka class 1) or not (aka class 2). Another example
from engineering: having preliminary assessments data of the
engineering project, one can tell, using a classification algorithm
that was trained using assessment data from many previously
conducted projects, if that project should be categorized as
high risk (aka class 1), risky (aka class 2), low risk (aka
class 3), or no risk at all (aka class 4). Many important
applications using the classification learning process help
different industries.

Decision trees (DTs) are one of the most famous and old
classification algorithms as shown in Figure 2. It generates
a computational tree that uses, at every branching level,
one of the data attributes that mostly minimize the entropy
(i.e., degree of randomness) between data classification
before branching and after branching. This branching
should also increase the information gain within the
resulting branches. Each branch has a group of data that
can be classified into a possible class or into one of the
several classes. A “leaf node” in a DT is that node which is

used to make a final discrimination between two different
classes of the problem.

Random forest is a “Hyper” classification algorithm that
combines the decision of an ensemble of DTs into a single
decision using some sort of voting model (Ho, 1995). The main
idea behind RF is that it samples the training set into N subsets,
each of size M, created randomly with replacement from the total
set (relative to the number of DTs created), then it uses these
subsets to train different DTs separately. This operation, which
is called bagging, leads to better model performance because it
decreases the variance of the model, without increasing the bias
(Breiman, 1994). Once trained, DTs will be used to obtain the
predicted class of the remaining data samples, and their different
results will be combined in a voting (or averaging) operation to
obtain the final classification.

Finally, for the assessment and performance of the model,
three criteria, namely, relative error (RE), R-square (R2), and
mean square error (MSE) are used. Values of R2 closer to 1 mean
a higher confidence level of the model, whereas lower values of
the RE and MSE are more favorable in terms of model accuracy.

COVID-19 pa�ent age  
(60-70)

No Underlying 
Comorbidity or Disease

Male

Death Risk 2.6%

Female 

Death Risk 1.2%

With Underlying 
Comorbidity or Disease

Male

20% Death risk

Female

11% Death risk

FIGURE 2 | Decision tree example for the classifications of patients with
COVID-19 into two classes (Gonçalves and Rouco, 2020).
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These statistical criteria are determined as follows:

REi =
xexperimental

i − xpredicted
i

xexperimental
i

× 100

R2
= 1−

∑i=n
i=1

(
xexperimental

i − xpredicted
i

)
∑i=n

i=1

(
xexperimental

i − xexperimental
)2

2

MSE =
1
n

i=n∑
i=1

(
xexperimental

i − xpredicted
i

)2

where xexperimental is equal to= 1
n
∑n

i−1 xi

METHODS AND RESULTS

Computation experiments were conducted using the RF machine
learning algorithm from WEKA Frank et al. (2016) machine

learning platform on Intel core i7 with 8GB PC. As mentioned
above, the data were collected from different sources used by
different researchers to measure Tmin. As a start, 379 data samples
were used. The data have four main parameters: Tsub, fluid to
the substrate material thermophysical properties (βf /βw), system
saturated pressure (Psys), material names, and Tmin. All were
used as inputs except Tmin, which was considered as the output.
The model was compared with two reported correlations in the
literature under specific experimental conditions. Computational
experimentations went through multiple phases before the final
results were obtained:

(1) Data cleansing phase: Data were analyzed for its suitability
for the machine learning process. Some classes (i.e.,
material types) were immediately removed from the
dataset due to the lack of enough samples. Two materials
types were found to have very few samples (one has one
sample and another has two samples only). Generally, in
a machine learning process, you need to have a class of a

FIGURE 3 | (A) Prediction vs. actual for the full data sample set with absolute error plotted at the bottom of the graph. (B) Prediction vs. actual for the data sample
set after removing outliers and applying data reshuffling. Absolute error is shown at the bottom of the graph.
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sample size proportionate to the complexity of the pattern
to be learned within the data. Furthermore, you need more
samples from each class in the data in order to have some
in the training set and some in the testing set as well. Thus,
two samples of any class in the problem are considered not
enough to learn anything useful. After cleansing those low-
represented classes, the total remaining datasets were 373.

(2) Initial analysis phase: The first set of experiments was
conducted to see how good the results will be in
general without tuning. The experiment used the full data
without dividing it into training and testing. As shown in
Figure 3A, the model performs well except in some areas
where the error margin was relatively high (e.g., samples
133–157). RMSE was 33.19, which is also considered
relatively high. This set of experiments revealed the need
for further investigation: Looking at the area of high-
absolute error and conducting some correlation studies
within data samples of the same material types, we found
that the data include some “outliers” (few data samples
clearly differ from the dominant pattern of the rest of
samples and was mostly probably generated via erroneous
measurements). Eliminating those data samples resulted in
a net total remaining number of 362 clean data.

(3) Result analysis phase: In this phase, we run several
experiments to analyze the effect of different parameters
on the model. In these experiments, the RF model was
optimized to give the best results on the training data
given. Figure 3B shows the enhancement upon the results
when the outliers were removed. RMSE was decreased
significantly to 11.3. Parameters and results obtained in
model optimizing are shown in Table 2.

(4) Final result phase: The total remaining samples were
divided into two parts—308 training sets and 54 testing
sets (85% split). We use the same setup of parameters
used in the previous phase as shown in Table 2. We ran
the algorithm 30 times, and the average number of trees
generated was around 200 trees.

In Figure 4, we present the model prediction with the actual 54
experimental datasets. We can see that the RF model performance
is excellent in predicting Tmin where the R2 is 0.9758, which

TABLE 2 | Parameters and results for Random Forest prediction
model on full data.

Parameter & explanation Value

Number of iterations the model could maximally run 1000

Size of bag in terms of training set size (%) 100%

Maximum depth the trees allowed to grow in the model Unlimited

Number of maximum features a node can discriminate 2

Random SEED to jump start the algorithm 7537

Time taken to train model 2 s

Correlation percentage R2 99.6%

RMSE 11.3%

MSE 7.3

Root relative squared error 6.6

means appropriate prediction of the actual experimental data as
shown in Figure 5. In addition to the values of R2, the RE of
the model for the data was determined. The RE of the model is
4.86%, while in the majority of cases, the RE values were ± 2%.
The rest of the results for the RF prediction model on testing the
data sample are presented in Table 3.

Comparing against existing models, the final results of
RF were compared with two well-known correlation models
obtained in the literature, Berenson (1961) and Henry (1974).
The results of the comparison are shown in Figure 6A, where
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FIGURE 4 | Prediction vs. actual for the testing data sample (54 samples) set
with absolute error plotted at the bottom of the graph.
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FIGURE 5 | Comparison of RF predicted and experimental minimum film
boiling temperature values with testing data.

TABLE 3 | Parameters and results for Random Forest prediction model on
testing data sample.

Parameter & explanation Value

Number of iterations the model could maximally run 1000

Size of bag in terms of training set size (%) 100%

Maximum depth the trees allowed to grow in the model Unlimited

Number of maximum features a node can discriminate 2

Random SEED to jump start the algorithm 7537

Time taken to train model 2 s

Time taken to test model 0.07 s

Correlation percentage R2 97.58%

Relative error 4.86%

MSE 18.3
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FIGURE 6 | (A) Comparing different models against actual data output. (B) Results obtained by different models compared to actual data output using box and
whisker approximation.

a very good behavior of the RF model in predicting the
actual temperature is clear compared to the other models. In
Figure 6B, the comparison between the models is presented
by a box and whisker model. The median values for the
RF model and the actual experimental data are 323 [◦C]
and 328 [◦C], respectively, which were considered very close,
whereas for Berenson’s and Henry et al. are 373 [◦C] and
402 [◦C], respectively, which are far from the actual data.
Furthermore, both models failed to capture the lower “whisker”

limit compared to RF, while the Henry model relatively
captured the upper “whisker” limit better than the RF and
Berenson models.

The lack of accuracy of Berenson’s (1961) and Henry’s (1974)
models compared to the RF in this study was attributed to
the developed correlations. Berenson’s correlation was developed
by modeling the bubble spacing and growth rate that were
determined by using the Taylor instability. The film boiling
heat transfer was analyzed by immersing a horizontal surface
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in n-pentane and carbon tetrachloride at atmospheric pressure.
The vapor properties were evaluated at the film temperature
and system pressure. Therefore, Berenson’s correlation accounts
for the system pressure by changing the vapor properties
at different pressures. This correlation does not account for
the surface thermophysical properties, surface roughness, and
surface wettability, which limit its applications. Henry modified
Berenson’s correlation in order to account for the effect of
thermophysical properties on Tmin, but it does not adequately
include the effect of system pressure.

A study by Kang et al. (2018) showed another limitation
for Henry’s correlation (1974). They performed experiments
on stainless steel (SS) and copper (Cu) rods. The experimental
results showed the same value for the Tmin, while Henry’s
correlation predicted different values due to the difference
in the substrate materials. The disagreement between
the experimental and predicted data could be due to
the other effects such as surface conditions and vapor
film collapse mode.

Peterson and Bajorek (2002) concluded that Tmin has a strong,
positive relationship with pressure at pressures below 1.0 MPa.
Therefore, Berenson’s correlation predicts Tmin accurately at
lower system pressures compared to Henry’s correlation which
does not adequately account for a pressure effect on Tmin.

CONCLUSION

A new RF machine learning algorithm was used to formulate
a correlation between the Tmin for rods with different substrate
materials that are quenched in distilled water pools at various
system pressures. The resulted model was compared to a well-
known correlation model in the literature. Experiments show
that the RF model was able by far to predict Tmin than the
compared ones. One of the drawbacks of the available models
is their limited applicability range of input parameters, while
the current model is tested in a wide range of all inputs.
The key results of the current models can be summarized as
follows:

• The RF models were able to confidently forecast the Tmin of
the quenching rods, with maximum deviations of 13.6%.
• The R2 values of the RF-based model were equal to 0.9752.
• The average absolute REs of the RF model are 4.86% and for

Berenson and Henry are 33.7% and 43.4%, respectively.
• Among the considered inputs, the Tsub had the greatest

impact on the Tmin value, followed by the substrate material
thermophysical properties (βf /βw) and, finally the system
pressure (Psys).

Future works can produce a more generalizable model by
utilizing available experimental data for horizontal and vertical
flat plates and spheres. In addition, the effect of surface tension
and viscosity of the coolant can be involved in the model.
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