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In order to deal with the problem of environmental pollution and energy consumption,
developing clean and renewable energy to maintain the sustainable development
of society has become an urgent matter for human beings. Therefore, distributed
generation (DG) is widely concerned by engineers. However, the output of DG is
generally random and intermittent. When it is connected to different locations, different
capacities and different types of power grids, the safe and stable operation of the
power system will be affected to different degrees. When selecting the optimal DG
access scheme, power grid planners must consider the influence of capacity, type and
location to ensure a safer, more stable, more reliable and more efficient power grid
operation. Therefore, this paper proposes an objective function considering integrated
power losses, voltage profile and pollution emission, and swarm moth flame optimization
algorithm (SMFO) is used to solve. Finally, based on IEEE-33 bus, the effectiveness of
the proposed algorithm is verified.

Keywords: DG, optimal placement and sizing, renewable energy, IEEE 33 bus, SMFO

INTRODUCTION

Unreasonable distributed generation (DG) installation will increase the power loss of the
distribution network and even lead to system instability (Gandomkar et al., 2005; Lund, 2006;
Wang et al., 2014), on the other hand, increase the economic cost of grid-connection (Moradi and
Abedini, 2016; Ogunjuyigbe et al., 2016; Meena et al., 2017). According to statistics, more than 80%
of power failure accidents are closely related to the distribution network, so it is extremely urgent to
choose an appropriate DG access way to the distribution network (Devi and Subramanyam, 2007;
Mehleri et al., 2012; Paterakis et al., 2015). Therefore, it is necessary to study the optimal location
and sizing of DG.

Nowadays, DG connected to the distribution network is mainly the intermittent power source
whose output is related to the natural environment, such as wind power (Kansal et al., 2013; Murty
and Kumar, 2015; Liu et al., 2020). The randomness of its output adds greater uncertainty to
the load prediction, planning and operation of the power network, and increases the difficulty
of the planning and design of the distribution network with DG (El-Zonkoly, 2011; Ameli et al.,
2014; Poornazaryan et al., 2016). The problem of location and capacity of distributed power
supply access to distribution network is an optimization problem that needs to consider the
cooperation of multiple factors (Afzalan et al., 2012; Song et al., 2018, 2020). Thus, it is necessary to
comprehensively consider various technical indicators to obtain a practical and feasible solution in
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line with the planning area (Mitra et al., 2013; Naik et al., 2013;
Iqbal et al., 2017). Literature (Lin and Bie, 2018) constructed
a distribution network expansion planning model aiming at
economic and environmental benefits. Literature (Kaur et al.,
2014) proposes a method considering the load characteristics
and regenerated DG probability to improve the voltage stability
margin. Literature (Hung et al., 2010) proposes a location
selection method based on node pricing that takes profit,
network losses reduction and voltage improvement of DG as
optimization objectives.

In the research of DG planning, the solution of a large
number of planning models is relatively complex, so the study
and selection of solving algorithms directly affect the choice
of planning schemes (Gayme and Topcu, 2013; Calderaro
et al., 2014; El-Fergany, 2015). At present, there are mainly
mathematical optimization and meta-heuristic algorithm to solve
the objective function (Zhu et al., 2006; Hedayati et al., 2008;
Acharya et al., 2016). However, the mathematical optimization
has been abandoned by the majority of scholars due to its
low computational efficiency and only applicable to small-
scale distribution networks, and meta-heuristic algorithm has
been developed rapidly (Das et al., 2016; Hamida et al.,
2018; He et al., 2020). Literature (Abri et al., 2013) applied
genetic algorithm (GA) to optimize this problem for newly
added load nodes in the expansion planning of distribution
network, and then simulated annealing algorithm was used
to optimize individual schemes generated in the process of
genetic algorithm, thus reducing the load sizing of DG access
to distribution lines and the influence of power flow of
distribution network. Literature (Varesi, 2011) proposed an
improved particle swarm optimization algorithm based on
hybrid simulated annealing method to optimize the location and
volume of distributed power supply. However, the convergence
speed of the above algorithm is relatively slow, the efficiency
is low, and the result is easy to appear in the local
optimal situation.

Therefore, an objective function considering power losses,
voltage profile and pollution emission is proposed in this paper,
and which is solved by swarm moth flame optimization (SMFO).
Finally, the method is verified based on IEEE-33 bus, and the
results verify the effectiveness of the method.

The remaining of this paper is organized as follows: section
“Problem Formulation” develops the objective function.
In section “Swarm Moth-Flame Optimizer Moth Flame
Optimization,” SMFO is described. Comprehensive case
studies are undertaken in section “Case Studies.” And section
“Conclusion” summarizes the main contributions of the paper.

PROBLEM FORMULATION

Objective Function
DG planning is an optimization problem with multiple
optimization objectives and multiple constraints. Through the
study on the influence of the distribution network connected with
DG, this paper takes the losses reduction index, environmental
emission reduction index and voltage profile index as the

optimization objectives, so as to minimize the power loss of the
distribution network.

Power Losses
When DG planning is carried out in the distribution network,
the corresponding network losses calculation formula should be
selected according to the characteristics of load in the distribution
network to be planned to calculate the active power losses of
the distribution network. The connection of DG will change the
power losses of the distribution network, and the change effect
on the power losses is related to the grid-connected location and
sizing, so the losses reduction index is established to measure the
influence of DG grid-connected on the active power losses. The
losses reduction index is expressed as (Home-Ortiz et al., 2019):

EP =
PDGloss

PPloss
(1)

Pploss =
∑L

l = 1
RlI2

l (2)

where EP represents the power losses reduction index, PPlossand
PDGlossrepresent the active power losses of the distribution
network before installing DG and after installing DG,
respectively. The larger the losses reduction index EP is,
the greater the role of DG in reducing the line losses of the
distribution network after DG planning. Rl is the resistance on
the lth line; Il is the current on the lth line.

Environmental Emission Reduction Index
Since the vast majority of electric energy in the power grid is
generated by thermal generators, power generation releases a
variety of polluting gases into the atmosphere at the same time.
The three gases that are more destructive to the environment
are CO2, NOx, and SO2. Because the three gases have great
differences in their destructiveness to the environment, NOx
and SO2 will cause acid rain and do more serious harm to the
environment, so they cannot be treated equally. Therefore, the
corresponding weight coefficient is introduced into the formula
to distinguish their destructiveness. Thus, the environmental
protection emission reduction index can be expressed as (Varesi,
2011):

EE =
wCMDGC + wNMDGN + wSMDGS

wCMPC + wNMPN + wSMPS
(3)

where EE is the environmental emission reduction index.wC,
wN, and wS represent the weight coefficients of environmental
pollution of CO2, NOx, and SO2, which are set as 0.5, 0.25, and
0.25, respectively.MDGC, MDGN, and MDGS represent the quality
of reducing CO2, NOx, and SO2 emissions after DG planning,
respectively. MPC, MPN, and MPS, respectively, represent the
quality of CO2, NOx, and SO2 emitted by the distribution
network before installation of DG. The higher the EE is, the
greater the role of DG in reducing the emission of polluting gases.
In addition, Table 1 lists the emissions of three types of DG and
thermal power generation (Home-Ortiz et al., 2019).
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TABLE 1 | Four types of power generation emissions.

Generator Pollution emissions (lb/MWh)

CO2 SO2 NOx

Wind turbine 0 0 0

PV station 0 0 0

Micro turbine 1,596 0.008 0.44

Conventional generator 621 6.465 2.875

Voltage Profile Index
The voltage profile index of each node in the distribution network
is an important symbol to measure the power quality of the
distribution network. The addition of DG will support the node
voltage. The voltage profile index is established to measure the
improvement effect of DG on the node voltage profile, and its
expression is as follows (Home-Ortiz et al., 2019):

EV =
1

N − 1

∑N−1

i = 1

|VN − VPi| − |VN − VDGi|

VN
(4)

where, EV is the node voltage profile index. N represents the
total number of nodes in the planned distribution; VPi represents
the voltage of the ith node in the distribution network before
installing DG; VN denotes the rated voltage of distribution
network; VDGi represents the voltage at the ith node after DG
is incorporated into the distribution network. The greater the
voltage profile index EV is, the greater the effect of DG grid-
connection on reducing the voltage offset of each node of the
distribution network.

Objective Function
minEsum = ωPEP + ωEEE + ωVEV (5)

where ωP = 0.5 represents the weight coefficient of the losses
reduction index, ωE = 0.25 represents the weight coefficient of the
environmental emission reduction index, ωV = 0.25 represents
the weight coefficient of the voltage profile index. Besides, the
weight coefficient can be reselected by engineers based on the
actual application.

Constraint
Power Balance{

PGi + PDGi = PLi + Ui
∑N

j = 1 Uj
(
Gijcosθij + Bijsinθij

)
QGi + QDGi = QLi + Ui

∑N
j = 1 Uj

(
Gijsinθij − Bijcosθij

)
(6)

where PGi and QGi respectively represent the active power output
and reactive power output of the power supply at ith node in
the distribution network. PDGi and QDGi are, respectively, the
active power and reactive power of DG output at ith node. Ui
is the voltage of the ith node; Gij and Bij represent the admittance
and susceptance between the ith node and the jth node; θij is
the power angle between ith node and the jth node; PLi and
QLi, respectively, represent the active power and reactive power
required by the load on ith node in the distribution network
(Home-Ortiz et al., 2019).

DG Sizing
Due to the limitation of the working principle, structure and
production model of the production DG, and the influence of
environmental factors on the operation of the production DG, the
power dispatching cannot be completely controlled, which will
have a great impact on the power flow, relay protection, voltage
and waveform of the original power grid. Therefore, the power
allowed to access the power grid DG is limited (Home-Ortiz et al.,
2019). {

PiDGmin ≤ PiDG ≤ PiDGmax(i = 1, 2, . . . ,N)

0.7 ∗ Piload = PiDGmax
(7)

where PiDGmin represents the minimum sizing of the DG
connected by the ith node; PiDG represents the active power sent
to the power grid by DG connected to the ith node; PiDGmax
represents the maximum sizing of the DG connected by the ith
node. Piload is the total load on the ith node.

SWARM MOTH-FLAME OPTIMIZER
MOTH FLAME OPTIMIZATION

Inspiration
Moths, a close relative of butterflies, belong to the order
Lepidoptera of the class Insects. There are many kinds of moths,
but most of them are nocturnal and phototropic (Mirjalili, 2015).
Therefore, there is a folk saying that "moths burn themselves in
the fire," and the inspiration of the optimization algorithm of
moths in the fire is also derived from the biological behavior of
"moths in the fire."

However, according to biologists, "moth to the fire" is not a
suicide behavior, but the moth itself has a navigation mechanism.
While moths have compound eyes, they have poor vision. At
night, when they cannot see the road clearly, they can only
determine their current position and the next direction of flight
by evaluating the relative position of themselves and the light
source (usually moonlight). This Orientation method is called
Transverse Orientation (Yıldız and Yıldız, 2017). However, if
artificial light, such as streetlights, is considered, moths are always
observed approaching light in a spiral shape due to such a short
distance. As shown in Figure 1, SMFO has two main features:

A. Each flame is surrounded by multiple moths at the same
time for greater utilization, and the flame with higher
brightness (i.e., smaller fitness function) will attract more
moths;

B. A ring network is constructed between the flames so that
moths can be guided to look for brighter flames more
effectively, which may lead to broader exploration, that is,
there is a higher possibility to avoid local optima.

Mathematical Model
There are two important components in SMFO, namely moth
and flame. Both essentially are the solution, the difference is
that the moths in the main body of the actual search algorithms
of spiral flight and the flame are moths to search the optimal
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FIGURE 1 | Conceptual model figure of transverse orientation.

position so far, so better to search in moths to a flame position,
will mark the fire, and of the surrounding spiral movement.
When a moth spirals around a flame, it needs to meet three
conditions: the initial position of the flight is the current position
of the moth, the terminal position of the flight is the position of
the flame, and the spiral flight follows a logarithmic spiral curve.

The SMFO can be regarded as a triplet approximate to
the global optimal in the optimization problem, which can be
represented by the following formula (Abd El Aziz et al., 2017):

MFO = (I, P,T) (8)

where I represent a function that randomly generates the
position of the moth and its corresponding fitness value, and
its description is shown in Equation (9). M represents the set of
moth positions and OM represents the set of moth fitness values.

I : ∅ → {M,OM} (9)

P represents the main function that the moth follows when flying
in the search space. When the moth flies to a new position, it
updates its own position and returns to M, which is described
in Equation (10). In Equation (10), the updated position set of
moths is represented by ∗M to distinguish them (Yıldız and
Yıldız, 2017).

P : M→ M∗ (10)

T is an end judge function that returns a Boolean value. When
the return value is true, the algorithm stops running and prints
the current global optimal value. When the return value is false,
the function continues. Its description is shown in Equation (11):

T : M→ {true, false} (11)

Meta-heuristic algorithm is usually initialized by random
generation of population, and SMFO is no exception. Suppose

M is an M by n matrix, as shown in Equation (12). Where M
represents the number of individual moths and N represents the
number of variables (dimensions) in the optimization problem
(Abd El Aziz et al., 2017).

M =


M11 M12 · · · M1n
M21 M22 · · · M2n

...
...

. . .
...

Mm1 Mm2 · · · Mmn

 (12)

Meanwhile, the array OM stores fitness values corresponding to
individual moths, as shown in Equation (13). M is the number of
moths.

OM =


OM1
OM2

...

OMm

 (13)

The SMFO has another important component, the flame. It is also
assumed that F is an m∗n matrix for storing the flame, as shown
in Equation (14). Where M represents the number of individual
moths and N represents the number of variables (dimensions) in
the optimization problem.

F =


F11 F12 · · · F1n
F21 F22 · · · F2n
...

...
. . .

...

Fm1 Fm2 · · · Fmn

 (14)

Similarly, an array OF stores the fitness value corresponding
to flame F, as shown in Equation (15).

OF =


OF1
OF2

...

OFm

 (15)

Flame
Moth

Fi
Di

Mpi

FIGURE 2 | Individual optimization track.

Frontiers in Energy Research | www.frontiersin.org 4 April 2021 | Volume 9 | Article 676305

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/
https://www.frontiersin.org/journals/energy-research#articles


fenrg-09-676305 April 15, 2021 Time: 13:12 # 5

Tan et al. DG Planning Based on SMFO

Hence, the brightness of each flame may be calculated based on
the normalization of their fitness functions, as follows:

BFi =

{
max(OF)−OFi

max(OF)−min(OF) , if max(OF) 6= min(OF)

1 otherwise
(16)

where BFi denotes the brightness of the ith flame, OFi represents
the fitness function of the ith flame.

In SMFO, a brighter flame (which has a smaller fitness
function) will attract more moths than those of its adjacent flames
via the ring network. The comparison of each flame’s brightness
and movement of moths to a brighter flame usually leads to
a continuous variation of population size of each moth swarm
to achieve a wider exploration. However, the participation of
too many flames for moth swarm attraction may result in a
local optimum. Based on the above, the brightness of a flame
is compared with that of only two adjacent flames in SMFO,
and thus a proper trade-off between a wider exploration and
deeper exploitation may be obtained through construction of a

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19 20 21 22

23 24 25

26 27 28 29 30 31 32 33

FIGURE 3 | IEEE 33 bus test system.

ring network among all flames. For the pth individual of the ith
moth swarm, it will immigrate to its adjacent moth swarm, i.e.,
the (i−1) moth swarm or the (i+1) moth swarm, according to
their brightness.

A moth will gradually approach to the corresponding flame
with a logarithmic spiral, which may be calculated as (Abd El Aziz
et al., 2017):

In the process of SMFO search, moths individual Mi is a
phototropism, will lock the flame Fj the flight movement of
conforms to logarithmic spiral function, began to the location
of the screw flight behavior is moths the current position, end
position is the position of the fire, at the same time in the process
of flight moths can’t fly out of the specified area (the search space),

10 20 30 40 50 60 70 80
Iteration number

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

GA

SMFOnoitcnuf
ssentiF

PSO
MFO

FIGURE 4 | Convergence curves.

TABLE 2 | Optimization results of two algorithms.

Approach Generator Bus location DG sizing
(kVA)

Losses
function

Voltage
function

Emission
function

Fitness
function

GA The first PV 2 100 0.5037 0.3414 0.6424 0.4978

The second PV 21 100

The first wind turbine 3 21.9006

The second wind turbine 23 58.5805

Micro turbine 11 18

PSO The first PV 3 99.3621 0.4864 0.3468 0.6123 0.4829

The second PV 19 32.1545

The first wind turbine 21 49.5123

The second wind turbine 9 17.5684

Moth flame
optimization
(MFO)

The first PV 18 99.6485 0.4759 0.3153 0.6425 0.4774

The second PV 14 29.5142

The first wind turbine 23 69.3621

The second wind turbine 13 16.3254

SMFO Micro turbine 19 97.3607 0.4537 0.2931 ‘0.6322 0.4581

The second PV station 16 31.1952

The first wind turbine 12 37.6497

The second wind turbine 20 23.3027

Micro turbine 11 18.3328
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FIGURE 5 | Voltage profile improvement of the IEEE 33-bus.

description of the process is using a mathematical formula (Yıldız
and Yıldız, 2017):

Mnew
pi = Dpi · ebr · cos(2πr)+ Fi, p = 1, 2, . . . , ni (17)

Dpi =
∣∣Fi −Mpi

∣∣ (18)

where Mi is the ith a moth individual, Fj is the jth flame. Dpi is
the distance between the pth moth and the ith flame in the ith
moth swarm. b is the spiral shape constant determining the shape
of the logarithmic spiral, and distance coefficient r is a random
number uniformly distributed in [−1, 1]. In addition, individual
optimization track is shown in Figure 2.

CASE STUDIES

In this paper, IEEE-33 bus is selected to verify the effectiveness
of the algorithm, and the topology structure of the system is
shown in Figure 3. The system consists of 32 branches. In
addition, the system voltage UN = 12.66 kV, the base capacity
Sb = 10 MW, the active load P6 = 715 kW, the reactive
load Q6 = 450 kVar. Proposed project: three types of DG are
connected in IEEE-33 bus, that is photovoltaic (PV) station,
wind turbine and micro turbine. In addition, GA is used in
this paper for comparison. In order to make a fair comparison,
the population size of the two algorithms is set as 50 and the
maximum number of iterations is 80. And the proposed method
was coded in MATLAB 2017b.

Figure 4 shows the convergence curves of the four algorithms.
It can be seen that SMFO has an excellent search mechanism
and can converge to the minimum value with fewer iterations
to avoid falling into the local optimum. Table 2 for both
algorithms after 100 iterations run results, as you can see,
after installing DG, can reduce the power losses of system
to some extent, the obtained high economic benefits, among

them, SMFO to obtain the total power consumption of the
prior to the introduction of DG decreased by 58.63%, and
obtain the total power consumption of the GA was down
36.63% from before the installation of DG, thus, SMFO has
strong search result, better quality can be acquired in less
number of iterations of the solution. In addition, Figure 5
shows the voltage profile curves of the two algorithms with
and without DG installation, which effectively proves that DG
has a significant optimization effect on improving the voltage
profile of the distribution network, because DG is always
installed near the load.

CONCLUSION

In this paper, SMFO is used to optimize the location and sizing of
DG, and its contributions are as follows:

1. The objective function with three indexes of distribution
network losses reduction index, voltage profile index and
environmental emission reduction index is established to
optimize the distribution network comprehensively;

2. Through IEEE-33 bus test, it is effectively verified that
SMFO has a strong global search effect and convergence
ability, and can avoid falling into local optimum under
complex objective function;

3. After installing three types of DG, PV station, wind
turbine and micro turbine, the connection of micro
turbine can stabilize the instability of PV station and wind
turbine. The results show that the power losses of the
distribution network optimized by SMFO decreases by
50.37% and GA decreases by 45.37%, which effectively
verifies the effectiveness of the algorithm. Besides, voltage
profile is significantly improved.

In the future, a more advanced multi-objective decision
making method will be used to solve this problem.
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NOMENCLATURE

EP power losses reduction index

PPloss active power losses before installing DG

PDGloss active power losses after installing DG

Rl resistance on the lth line

Il current on the lth line

EE environmental emission reduction index

EV voltage profile index

VPi voltage of the ith node before installing DG

VN rated voltage

PGi active power output at ith bus

QGi reactive power output at ith bus

PiDGmin minimum sizing of DG

PiDG active power sent to the power grid by DG connected to the ith bus

BFi brightness of the ith flame

PiDGmax maximum sizing of DG

OFi fitness function of the ith flame

Mi the ith a moth individual

Fj the jth flame.
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