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Materials for solid-state batteries often exhibit complex chemical compositions, defects,
and disorder, making both experimental characterization and direct modeling with first
principlesmethods challenging. Machine learning (ML) has proven versatile for accelerating
or circumventing first-principles calculations, thereby facilitating the modeling of materials
properties that are otherwise hard to access. ML potentials trained on accurate first
principles data enable computationally efficient linear-scaling atomistic simulations with an
accuracy close to the reference method. ML-based property-prediction and inverse
design techniques are powerful for the computational search for new materials. Here,
we give an overview of recent methodological advancements of ML techniques for atomic-
scale modeling and materials design. We review applications to materials for solid-state
batteries, including electrodes, solid electrolytes, coatings, and the complex interfaces
involved.
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INTRODUCTION

Li-ion batteries (LIBs) (Whittingham, 1976; Mizushima et al., 1980; Li et al., 2017b, Li et al., 2018a)
have enabled a revolution in portable electronics, but the global transition to a clean energy economy
based on renewable sources will require the development of a new generation of batteries that
addresses the needs of grid-level storage and transportation. To this end, computational materials
discovery has become an important companion to conventional experimentation. Especially first-
principles atomistic simulations have contributed significantly to our understanding of fundamental
properties and phenomena in LIBs, such as Li migration mechanisms and crystal structure
preferences (Saiful Islam and Fisher, 2014; Urban et al., 2016). First-principles predictions have
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already led to the discovery of novel battery materials (Kirklin
et al., 2013; Er et al., 2015; Jain et al., 2016). However, first-
principles methods, such as electronic density-functional theory
(DFT) (Hohenberg and Kohn, 1964; Kohn and Sham, 1965;
Burke, 2012), are computationally demanding, and simulations
are currently limited to small, typically crystalline structure
models with less than 1,000 atoms and less than nanosecond
time scales. It is therefore challenging to investigate non-ideal
atomic structures with first-principles, such as the defected or
amorphous phases and interphases that are formed at the
electrode|electrolyte interfaces in LIBs (Yu and Manthiram,
2018).

Solid-state batteries (SSBs), in which the conventional liquid
electrolyte is replaced by a solid ion conductor, are strong
contenders for the next generation of more energy dense and
safer LIBs (Gao et al., 2018; Banerjee et al., 2020). The
development and commercialization of SSBs is currently
hindered by a lack of understanding of stability issues at the
solid-solid interfaces that can lead to mechanical failure, chemical
or electrochemical decomposition, or the growth of Li dendrites
(Riphaus et al., 2019; Xiao et al., 2019). As schematically shown in
Figure 1, macroscopic (electrode- order interface-scale)
properties are often governed by phenomena on the atomic
scale. First-principles atomistic simulations would therefore, in
principle, be an ideal characterization tool, but the complex
structure and composition of the involved materials and
interfaces makes the direct first-principles modeling extremely
challenging.

During the last decades, machine learning (ML) and artificial
intelligence (AI) methods have been developed that can
substantially accelerate first-principles modeling. Here, we

review common ML/AI strategies for atomic-scale materials
simulations and their applications to the discovery and
understanding of materials for SSBs. In the following Machine
Learning for Materials Modeling, we briefly introduce the most
common ML/AI techniques and methods that have previously
been applied to research questions related to LIBs. InApplications
of ML/AI for the Atomistic Modeling of Solid-State Batteries we
review concrete applications of these strategies to materials and
interfaces of relevance to SSBs. We also cover select applications
to conventional LIBs that are related either by materials or
demonstrate techniques that, we believe, could also be applied
to research questions related to SSBs. Discussion and Perspective
provides a discussion of the current limitations of ML for SSB
modeling and potential future directions.

MACHINE LEARNING FOR MATERIALS
MODELING

ML is the field of research that deals with algorithms that can
improve themselves by extracting knowledge, i.e., learning, from
data (Jordan and Mitchell, 2015). ML is an area of AI, which in
most textbook definitions includes all artificial implementations
of intelligent problem solving and does not necessarily involve
learning. In recent years, ML has seen a renaissance because of
increasing tool and data availability and owing to the success of
deep learning (Goodfellow et al., 2016). Nowadays, standard
Python libraries such as scikit-learn (Pedregosa et al., 2011),
PyTorch (Paszke et al., 2017), and TensorFlow (Abadi et al., 2015)
facilitate the efficient implementation of ML techniques. In
materials science, automation has made it feasible to generate

FIGURE 1 | The properties of solid-state batteries, such as stability and rate capability, are often dependent on atomic-scale phenomena, such as phase changes
or structural motifs at interfaces and grain boundaries. Machine learning techniques can increase the length and time scale that atomistic simulations can access.
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large first-principles data sets in a high-throughput fashion
(Morgan et al., 2004; Jain et al., 2011; Curtarolo et al., 2013),
and there is an increasing number of publicly accessible databases
with data from automated first-principles calculations (Curtarolo
et al., 2012; Jain et al., 2013; Saal et al., 2013; Talirz et al., 2020).
The field of ML for materials modeling is rapidly evolving, and a
compilation of tools and data sources that is regularly updated
can be found online at https://github.com/atomisticnet/tools-
and-data.

As described in the introduction section, quantum-mechanics
based electronic structure methods, such as DFT, can provide
quantitative predictions of materials properties but at high
computational cost. Some properties of batteries are determined
by complex structures and compositions (such as interfaces in
batteries) and phenomena that occur on long time scales (e.g., Li
diffusion at room temperature) that are not directly accessible with
DFT calculations. In the last 2 decades, ML and AI techniques have
been developed that address these limitations to some extent. Most
ML/AI approaches for atomic-scale materials modeling belong to
one of the following three categories (Figure 2):

(1) ML potentials for accelerated sampling with first principles
accuracy,

(2) Property MLmodels that are trained to predict the outcome of
first-principles calculations for a given atomic structure, and

(3) Inverse design ML/AI approaches that predict an atomic
structure for a given set of materials properties.

We distinguish between these three classes of models because
of differences in their implementation. ML potentials and

property ML models are both built on conventional ML
techniques that learn from data. ML potentials belong to the
general class of regression models, whereas property models can
be implemented as either regression or classificationmodels. Each
ML model takes as input a set of features that describe, e.g., the
atomic structure and composition, and the choice of features
for ML potentials differs from those used for property models
as is discussed below in greater detail. Inverse design problems
are traditionally solved with global optimization algorithms
belonging to the more general class of AI methods. In recent
years, generative ML models have been developed that can, in
some cases, solve inverse design problems more directly than
conventional AI algorithms, and we review here applications of
both types.

In the following, we briefly discuss the three classes of ML/AI
methods on a level of detail that should equip the reader to
navigate the Applications of ML/AI for the Atomistic Modeling of
Solid-State Batteries of the present review.

ML Potentials
ML regression models trained on the potential energy from DFT
or other first-principles methods (Figure 2B) can be used as
computationally efficient drop-in replacements for DFT with an
accuracy close to that of the reference method. This general
approach has a long history, and already in 1995, Blank et al. used
artificial neural networks (ANNs) for the representation of
potential energy surfaces (PES) for CO adsorption on Ni(111)
surfaces (Blank et al., 1995).

ML models trained to directly predict the potential energy of
an atomic structure for given Cartesian atomic coordinates 1) do

FIGURE 2 | Schematic of the three most common applications of machine learning (ML) for materials modeling (A)Reference data from quantum-mechanical (QM)
calculations; (B)ML potentials for the regression of potential energy surfaces; (C)MLmodels for the prediction of materials properties as predicted by the QM reference
method; and (D) Inverse design approaches for predicting structure models for a given set of materials properties.
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not automatically exhibit the symmetries of the potential energy
with respect to rotation and translation of the entire structure and
the exchange of equivalent atoms. Additionally, the models 2) are
limited to one specific number of atoms and a specific
composition. In 2006, Lorentz et al. proposed a transformation
of the Cartesian coordinates to symmetry-adapted coordinates to
address limitation 1) (Lorenz et al., 2006), an approach that was
further generalized by Behler et al. (2007). To overcome
limitation 2), Behler and Parrinello (BP) expressed the total
potential energy E of a structure with N atoms as the sum of
atomic energies Ei (Behler and Parrinello, 2007).

E � ∑
N

i

Ei withEi ≈ ANN(~σRc
i )

In the BP approach, ANNs are trained to predict the atomic
energies for a given local atomic environment, and ~σRc

i in the
above equation is a symmetry-adapted descriptor (fingerprint) of
the positions of all atoms within a radial cutoff range Rc from
atom i. This approach was later generalized to multiple chemical
species (Artrith et al., 2011).

Building on the idea of the BP ANN potential method, various
other MLP methods have since been proposed that differ in the
representation of the local atomic environment and the choice of
model. Currently most widely adopted are the Gaussian
Approximation Potential (GAP) by Bartók et al. (2010),
Bartók et al. (2013), the spectral neighbor analysis potential
(SNAP) by Thompson et al. (2014), and the moment-tensor
potential (MTP) by Shapeev, (2016). Zuo et al. recently compared
different MLP methods for an example application, concluding
that the computational cost of the GAP model is dependent on
the size of the data set and was two orders of magnitude more
expensive for the benchmark case than the ANN, MTP, and
SNAP models (Zuo et al., 2020). On the other hand, in terms of
the accuracy, the GAP andMTPmodels exhibited the lowest root
mean square error (RMSE) compared to the reference method.

Several approaches for the representation (or featurization) of
local atomic environments have been proposed in the literature
and are used in MLP implementations, and recent reviews can be
found in references (Himanen et al., 2020; Parsaeifard et al.,
2021). Here, we limit the discussion to the presently most popular
choices. Behler and Parrinello introduced so called symmetry
functions (SFs) that sample the bond lengths and bond angles in
the local atomic environment (Behler, 2011). Different chemical
species can be distinguished by using individual sets of SFs for
each chemical bond and bond angle (Artrith et al., 2011). Artrith,
Urban, and Ceder (AUC) showed that, more generally, the radial
and angular distribution functions of the local atomic
environment can be expanded in orthogonal basis sets (such
as Chebyshev polynomials) to obtain a systematically refinable
descriptor (Artrith et al., 2017). The AUC descriptor also
introduced an alternative way to distinguish between chemical
species by introducing species-dependent weights. Reducing the
local atomic environment to bonds and angles (2- and 3-body
interactions) is an approximation, and descriptors can also be
obtained from the direct expansion of the local atomic structure.
However, depending on the choice of basis set, the expansion

coefficients are not necessarily invariant with respect to
translation and rotation. Popular representations based on
direct expansion in tailored basis functions or with an
additional postprocessing step are bispectrum based
descriptors (Bartók et al., 2010; Thompson et al., 2014), the
smooth overlap of atomic positions (SOAP) (Bartók et al.,
2013), and the invariant polynomial representation of the
MTP (Shapeev, 2016).

Owing to improving software availability, the adoption of
ANN potentials and other MLPs for materials simulations has
been gaining momentum in the past few years, as is also
evidenced by the rapidly increasing number of publications
that mention ANN potentials (Figure 3). Further details of the
different MLP methods can be found in perspectives and reviews
(Behler, 2016; Mueller et al., 2020; Noé et al., 2020; Behler, 2021;
Shao et al., 2021; Unke et al., 2021).

A number of publicly available frameworks for the
construction and application of MLPs have been released over
the last years, including GAP (Bartók et al., 2010), SNAP
(Thompson et al., 2015), ænet (Artrith and Urban, 2016),
AMP (Khorshidi and Peterson, 2016), ANI-1 (Smith et al.,
2017), N2P2 (Singraber et al., 2019), and MLIP (Novikov
et al., 2021).

Property Predictions
Instead of training ML models on the potential energy (and its
gradients) only, other results from first-principles calculations
can be chosen as targets. Property prediction ML models
(Figure 2C) are trained to predict directly one or more
outcomes of first-principles calculations from existing
databases, without involving a physics-based model altogether.
First-principles methods are thus replaced by machine learning
models that are orders of magnitude faster. This approach has
shown the potential to be useful for extending essentially any
property databases to new systems, facilitating prediction of new
data, rapid exploration of large chemical spaces and the discovery,
design and development of new materials.

FIGURE 3 | Number of publications per year on Google Scholar that
include the phrase “neural network potential,” starting from 2011 toMay 2021.
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The underlying ML models for property prediction are often
either based on ANNs with different architectures (Eslamloueyan
et al., 2011; Jalem et al., 2015; Wu et al., 2017; Allam et al., 2018;
Ye et al., 2018; Joshi et al., 2019), Gaussian process regression
(GPR) (Jalem et al., 2018), kernel ridge regression (KRR) (Wu
et al., 2017; Joshi et al., 2019), support vector machines (SVM)
(Gharagheizi et al., 2013; Hosseinzadeh et al., 2016; Joshi et al.,
2019), partial least squares (PLS) (Jalem et al., 2014; Wang et al.,
2017; Nakayama et al., 2019), decision-tree based models such as
random forests (Attarian Shandiz and Gauvin, 2016; Wu et al.,
2017; Li et al., 2018b) or gradient-boosted trees (Nakayama et al.,
2019) or a linear combination of these.

The features that enter the ML models are typically tabulated
elemental properties (e.g., atomic number, mass, radius, number
of valence electrons, electronegativity) and/or compound
quantities that can be obtained from straightforward DFT
calculations (e.g., cohesive energies, lattice parameters). In
addition, some models also featurize the atomic structure, and
various approaches have been proposed in the literature
(Weininger, 1988; Rupp et al., 2012; Hansen et al., 2015;
Huang and von Lilienfeld, 2016; Collins et al., 2018; Huo and
Rupp, 2018; Ziletti et al., 2018). Popular choices are the Coulomb
matrix descriptor (Brown and Martin, 1996; Brown and Martin,
1997; Pilania et al., 2013; Faber et al., 2015; Huan et al., 2015;
Isayev et al., 2017; Seko et al., 2017) for molecules and descriptors
based on Fourier transforms (Leicester et al., 1988; von Lilienfeld
et al., 2015), radial distribution functions (Schütt et al., 2014) or
structural fragments/motifs (Brown and Martin, 1996; Pilania
et al., 2013; Faber et al., 2015; Huan et al., 2015; Isayev et al., 2017;
Seko et al., 2017) for periodic structures. Graph-based
representations are also commonly used for molecules (Mahé
et al., 2005; Rogers and Hahn, 2010; Faber et al., 2017; Collins
et al., 2018) and periodic structures (Xie and Grossman, 2018;
Chen et al., 2019).

A number of frameworks specifically designed for the
construction of ML models for materials properties have been
released over the last years, including magpie (Ward et al., 2016),
matminer (Ward et al., 2018), MegNet (Chen et al., 2019),
AFLOW ML (Gossett et al., 2018), catlearn (Hansen et al.,
2019), and SISSO (Ouyang et al., 2020). An updated list can
be found at https://github.com/atomisticnet/tools-and-data.

Inverse Design
The ML models of the previous two sections replicate the
conventional direction of atomistic modeling: properties are
predicted for a given atomic structure. For the design of new
functional materials, the ability to predict an atomic structure for
a given set of desired molecular or materials properties would be
useful. This is often referred to as inverse design, as the process
starts from the functionality and ends in the structures, aiming to
find the target material with the desired properties.

Inverse design has been a prototypical application of AI
techniques for the last 3 decades (Venkatasubramanian, 2019).
For example, evolutionary (or genetic) algorithms are a type of
global optimization algorithms that can be used for the search of
an atomic structure with specific properties by defining a suitable
fitness function and evolution operations, e.g., crossover and

mutation (Goldberg, 1989). By using ab initio (free) energies
as the fitness function, first-principles structure prediction can be
performed (Glass et al., 2006; Sun and Zhao, 2017). Particle
swarm optimization (PSO) is another global optimization
method that is often used for inverse design (Kennedy et al.,
2001). Here, an ensemble (swarm) of trial structures (particles) is
optimized by guiding the variation of each particle by their own
best-known state in the search space and by the best-known state
among the entire swarm (Wang et al., 2010). PSO is commonly
used for first-principles structure search (Gao et al., 2019; Tian
et al., 2020). Another class of methods that is commonly applied
to inverse design tasks is Bayesian Optimization (Mockus, 1989),
for which applications to materials discovery have been
demonstrated (Zuo et al., 2021).

More recently, generative ML methods have been developed
that can address the inverse design problem without explicit
sampling. Generative models can explore the chemical
configuration space by learning the underlying rules of the
data distribution (Sanchez-Lengeling and Aspuru-Guzik, 2018;
Schwalbe-Koda and Gómez-Bombarelli, 2020). One class of
generative ML methods that begin to be used more frequently
are variational autoencoders (VAEs), a type of ANN (Kingma and
Welling, 2014). VAEs can encode atomic structures in a latent
(reduced dimensional) representation, and the decoding network
can be exploited for generating structures. Applications for
atomic-scale simulations are still scarce (Court et al., 2020) but
can be expected to increase over the next years. Another
commonly used generative ML approach are generative
adversarial networks (Goodfellow et al., 2014) which can
generate structures with intended chemical and physical
characteristics by using two competing ANNs. This method
has been applied, for example, to generate periodic
microstructures of a Li-ion battery cathode and a solid oxide
fuel cell anode (Gayon-Lombardo et al., 2020).

Overview of Relevant ML Techniques
Some ML techniques, such as ANNs, have already been
introduced in the previous sections. Here we summarize
briefly the underlying concepts of other ML techniques that
have been applied to research questions related to batteries
and are mentioned in Applications of ML/AI for the Atomistic
Modeling of Solid-State Batteries.

Linear regression (LR) is one of the simplest regression
methods. LR algorithms compute the model output as a linear
combination of the input features. During training, the squared
distances between the predicted and the true target values are
minimized (method of least squares). Ridge regression (RR)
extends the objective function of the least-squares linear
regression model by a regularization term to prevent
overfitting during training (Hoerl and Kennard, 1970). This
results in simpler and less complex LR models that typically
generalize better to unseen data. The strength of the
regularization is determined by a hyperparameter.

LR and RR are limited to model problems with linear
correlations, i.e., only linear dependencies between input and
output can be captured. Kernel ridge regression (KRR)
generalizes linear RR towards nonlinear relationships between
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data (Hastie et al., 2009; Vovk, 2013). Input data are mapped into
a higher-dimensional feature space, transforming the original,
nonlinear regression task into a linear task in feature space. Since
the choice of an appropriate mapping function can be
challenging, so-called kernels are applied instead. A kernel
function can be interpreted as a similarity measure between
inputs. Instead of mapping the data and solving a nonlinear
regression task in high dimensional feature space, a non-linear
kernel function can be applied to the data in input space before
performing linear regression (kernel trick). Some commonly used
kernels are the polynomial kernel, the Gaussian kernel, and the
Laplacian kernel. The type and the parameters of the chosen
kernel are hyperparameter that need to be optimized separately
within a model selection procedure. The fitting of a KRR model
becomes computationally more demanding with the size of the
dataset, which limits applications to intermediately sized data sets
(thousands of data points).

The support vector machine (SVM) is also a kernel-based
classification method that, like KRR, solves a linear classification
problem in a higher-dimensional feature space (Cortes and
Vapnik, 1995; Suykens and Vandewalle, 1999). The objective
is to find a hyperplane in feature space that distinctly classifies the
data points. Among all possible hyperplanes, the plane that has
maximum distance between data points of both classes is chosen.
Support vectors are the data points that define the hyperplane by
maximizing the margin of the classifier.

k-Nearest Neighbor (kNN) is another well-known and simple
nonlinear ML algorithm that can be used to solve both
classification and regression problems (Dudani, 1976). The
kNN method assumes that similar data points are in close
proximity in feature space. For classification tasks, new data
points are classified into the category that is most
predominant among its k nearest neighbors. For regression
tasks, the weighted mean label value among the k nearest
neighbors is computed. The number of the nearest neighbors
k and the measurement of distances are hyperparameters that
have to be chosen beforehand. A limitation of the method is the
requirement for a reasonable distance metric.

Bayesian Optimization (BO) is an optimization method used
to construct a probabilistic model for a target property or a target
function (Mockus, 1989; Snoek et al., 2012), typically employing
Gaussian Processes (GPs) (Rasmussen, 2004). GPs are stochastic
processes that describe probability distributions over functions,
and assign a probability to each of these functions. The mean of
this probability distribution represents the most probable
characterization of the data. A key benefit of GP regression
(GPR) models is that in addition to the prediction, they also
describe the uncertainty of each prediction. A drawback is that
GPs need to take into account the whole training data each time a
prediction is made, so that the computational cost of predictions
scales cubically with the number of training samples.

Random forest (RF) is a flexible and simple ML algorithm that
can be used for both classification and regression tasks (Tin Kam
Ho, 1998; Svetnik et al., 2003). The RF builds an ensemble of
decision trees on various subsets of the given dataset. It takes the
prediction from each decision tree and computes their average to
predict the final output. Choosing a great number of decision

trees leads to higher accuracy and prevents overfitting. The
ensemble-based architecture allows RFs to handle large
datasets efficiently and to deliver predictions with high accuracy.

Gradient boost regression (GBR) is another ensemble ML
method for regression and classification problems (Friedman,
2001; Nakayama et al., 2019). The GBR algorithm starts by fitting
an initial model (e.g., decision tree or linear regression model) to
the data. Then a second model is built that focuses on accurately
predicting the cases where the first model performs poorly. The
combination of these two models is expected to be better than
either model alone. This process of boosting can be repeated
many times. Each successive model attempts to correct for the
shortcomings of the combined boosted ensemble of all previous
models.

APPLICATIONS OF ML/AI FOR THE
ATOMISTIC MODELING OF SOLID-STATE
BATTERIES
In the following, we review applications of ML and AI techniques
to materials with relevance for SSBs. The section is organized by
the battery components, i.e., Electrodes (Cathode/Anode) reviews
applications to electrode materials, applications to solid
electrolyte materials are reviewed in Electrolyte, and Interfaces
and Coatings contains applications to coatings and interfaces.

Electrodes (Cathode/Anode)
Cathodes
The candidate cathode materials for SSBs should possess the
following properties: 1) high energy density enabled by high
voltage and capacity 2) mechanical stability that is resistant to
volume shrinkage. Several ML models have been trained for the
modeling of materials that match these requirements to search for
novel cathode materials, and the examples are summarized in
Table 1.

To map the structure-property relationship, Eremin et al.
combined topological analysis, DFT modeling, operando
neutron diffraction, and ridge regression in the configurational
space of LiNiO2 (LNO) and LiNi0.8Co0.15Al0.05O2 (NCA) cathode
materials (Eremin et al., 2017). They demonstrated that the
topology of Li layers and relative disposition of Li ions and
dopants have the most significant effect on the energy balance.
Similarly, Natarajan et al. integrated ANNs with symmetry-
adapted cluster functions to predict the formation energies of
Li-vacancy orderings on the different sites of spinel LiTiS2
(Natarajan and Van der Ven, 2018). The results show that the
ANN can reproduce the DFT-calculated convex hull (Figure 4B)
with only the information about pair cluster correlations as the
input feature. Furthermore, Houchins and Viswanathan developed
an accurate ANN potential for the LiNixMnyCo(1−x−y)O2 (NMC)
cathode materials using a training set based on DFT calculations
(Houchins and Viswanathan, 2020). The generated ML potential
exhibits a good approximation for most thermodynamic
properties, including the Gibbs free energy and entropy, and
predicts voltage profiles that are in good agreement with the
experimental curves.
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Properly trained ML potentials can predict more than the
thermodynamic properties. Eckhoff et al. constructed an ANN
potential for LixMn2O4 with Jahn-Teller distortions that can
predict a series of properties, including volume change, Li
diffusion barrier, phonon frequencies (Figure 4A) (Eckhoff
et al., 2020b), oxidation, and spin states (Eckhoff et al., 2020a).
Similarly, Vegge and coworkers utilized simple local structural
descriptors with LASSO and learning on-the-fly (LOFT) to
estimate Li diffusion kinetic barriers efficiently (Bölle et al.,
2021; Chang et al., 2021).

Instead of training ML potentials to approximate the PES, ML
prediction models can be trained to target specific properties
(Property Predictions). Sarkar et al. firstly trained an ANN using
electronegativity as the descriptor to predict the voltages of
several cathode materials (Sarkar et al., 2014). Although the
ANN model did not reach first-principles accuracy due to the
limited size of the dataset, it still paved the way to screen Li-
containing compounds for cathode materials. Lately, based on
data from the Materials Project (MP) database (Jain et al., 2013),
Joshi et al. used DNN, SVM, and KRR to train ML models to
predict the voltage of electrode materials based on metal-ions
(Figure 4C). By using these ML models, the prediction for the
voltage of any cathode material can be performed within a
minute, and new cathode materials were also screened for Na-
ion and K-ion batteries. Similarly, Bartel et al. tested seven ML
models for the formation energy prediction of Li transition metal
oxides, using the chemical formula as the model input (Bartel
et al., 2020). The results show that these ML models can predict

formation energies with high accuracy. However, the models fail
to predict the stability correctly, i.e., the decomposition enthalpy,
and the authors conclude that structural information is
indispensable to distinguish stable from unstable compounds
within an arbitrary chemical space.

To classify Li-containing crystal structures and predict
candidate materials, Attarian Shandiz et al. compared eight
ML models, i.e., linear, quadratic and shrinkage discriminant
analysis, ANN, SVM, kNN, RF and extremely randomized trees,
trained on 339 cathode materials with Li–Si–(Mn, Fe, Co)–O
compositions from MP (Attarian Shandiz and Gauvin, 2016).
They found that the unit cell volume was the most important
feature. The random forests and extremely randomized trees
exhibited the best performance for the classification of three
major crystal systems (monoclinic, orthorhombic, and triclinic)
for Li–Si–(Mn, Fe, Co)–O cathode materials. Related to this,
Wang et al. used partial least square (PLS) analysis for predicting
volume changes in 28 oxide cathodes with spinel structure
LiX2O4 and layered-structure LiXO2. 34 descriptors relevant to
the basic physical and chemical properties for element X are
adopted to develop the quantitative structure-property
relationship. The variable importance in projection shows that
the four important factors of volume change are the effective ionic
radius of X4+, the bond valence parameter, the average bond
length of the X-O polyhedron and the volume of the X-O
polyhedron (Wang et al., 2017).

In order to design organic molecular electrodes, Allam et al.
trained an ANN based on 108 data points with the quasi-Newton

TABLE 1 | Summary of ML applications in cathode materials.

Target System Descriptor Method Data set Accuracy Ref.

PES Layered
LNO, NCA

Structural descriptors Ridge
regression

87 configurations for LNO and 20,760
configurations for NCA from DFT and
topological approach

E: 2 meV/atom Eremin et al. (2017)

PES Spinel LixTiS2 SFs LS, ANN DFT formation energies of 66
configurations (train) and the energies of
the remaining 63 ordering (test)

ANN: 36 meV/f.u.
LS: 89 meV/f.u.

Natarajan and Van
der Ven (2018)

PES Layered NMC SFs BO, ANN 12,962 structures and properties from DFT E: 3.69 meV/
atom

Houchins and
Viswanathan (2020)

F: 129 meV/Å
PES Spinel LMO SFs ANN Structures and electronic properties of

spinel LixMn2O4 from DFT
E: 2.2 meV/atom Eckhoff et al. (2020a);

Eckhoff et al. (2020b)
Voltage Li-containing

oxides
Electronegativity ANN Electronegativity and voltages of several Li-

containing oxides from DFT
Min cross-
validation
error: 0.65

Sarkar et al. (2014)

Voltage Electrode
materials

Elemental and
structural descriptors

ANN,
SVM, KRR

A total of 4,4250 data instances for
3,3580 intercalation-based electrode
materials from MP

Dependent on
method

Joshi et al. (2019)

Thermodynamics Cathode Chemical formulas 7 models:
GNN, etc

85,014 structures and formation energies
from MP

Enthalpy:
≤140 meV/atom

Bartel et al. (2020)

Structures Li–Si–(Mn,
Fe, Co)–O

5 structural and
chemical features

8 models: ANN,
SVM, RF, etc

339 cathode materials with Li–Si–(Mn, Fe,
Co)–O compositions from MP

Dependent on
method

Attarian Shandiz and
Gauvin (2016)

Mechanical Spinel LiX2O4,
layered LiXO2

Electronic and
structural descriptors

Partial LS 28 spinel LiX2O4 and layered LiXO2

structures and properties from DFT
Q2: 0.569 Wang et al. (2017)

Voltage Organic
molecules

Electronic and
chemical descriptors

LR, ANN 108 data points including properties, such
as electron affinity, HOMO, LUMO from
literatures

Voltage: 3.54% Allam et al. (2018)

Voltage Organic
molecules

Electronic and
chemical descriptors

ANN,
KRR, GBR

108 data points with 10 primary features MSE of KRR:
0.025

Allam et al. (2020)
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method to predict redox potentials of target molecules (Allam
et al., 2018). In contrast to the voltage models for inorganic
cathodes, the molecular model by Allam et al. used as features the
electron affinity, the energies of the highest occupied molecular
orbital (HOMO) and the lowest unoccupied molecular orbital
(LUMO), the HOMO–LUMO gap, the number of aromatic rings,
and the number of oxygen, carbon, boron, hydrogen, and lithium
atoms. From the individual contribution analysis of the input
variables, the electron affinity was shown to have the highest
contribution to the redox potential. The ANN demonstrated a
capability for accurately estimating the redox potentials with a
residual error of R2 � 0.9618. Recently, the same data set with the
10 primary features were further trained by using three different
MLmodels based on ANN, KRR, and GBR (Allam et al., 2020). A
series of feature optimization strategies were employed to analyze
the role of the various molecular descriptors and accurately
predict the redox potential for the organic materials, including

composite feature generation, LASSO feature selection, relative
contribution analysis, and recursive feature elimination.

Anodes
Solid state electrolytes (SSEs) have the potential to stabilize Li
metal anodes by preventing dendrite growth, which would result
in significantly increased capacities compared to Li-ion batteries.
Nevertheless, the formation of dendrites across the interfaces
between SSEs and the Li anode during cycling remains a challenge
for present SSB systems. Literature involving interfaces is mainly
summarized in Interfaces and Coatings. Here, we review
publications of anode material simulations only, which are
summarized in Table 2.

Lithium titanium oxide spinels are used as anode material in
conventional and solid-state LIBs and are also a common
electrode coating material in SSBs. Artrith et al. implemented
atomistic ANN potentials to study the crystal structures of TiO2

FIGURE 4 | (A-I) LixMn2O4 spinel structure with different x (x � 0, 1, 2). The green, red, and purple balls represent Li, O and Mn atoms, respectively. (A-II) Cubic
lattice parameter acub as a function of Li content determined by DFT on the PBE0r-D3 level of theory (0 K), high-dimensional neural network potentials (HDNNP) (0 and
300 K) and XRDmeasurements. Reproduced with permission from (Eckhoff et al., 2020b). Copyright 2020 American Physical Society. (B) Formation energies predicted
by an ANN potential for lithium-vacancy orderings on the tetrahedral and octahedral sites of spinel TiS2, with the local features around each site generated from only
pair correlations. Reproduced with permission from (Natarajan and Van der Ven, 2018). Copyright 2018 Nature. (C) Voltage profile diagram obtained from different ML
models and DFT for NaxCo2SbO6. Reproduced with permission from (Joshi et al., 2019). Copyright 2019 American Chemical Society.
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(Artrith and Urban, 2016). This approach was further developed
to investigate properties of amorphous Si anodes. Combining
ANN potentials and a genetic algorithm (GA), the authors were
able to sample the low-energy atomic configurations in the entire
amorphous LixSi phase space (Figure 5A,B) (Artrith et al., 2018).
Based on the determined stable configurations, the average
voltages were computed, which are in agreement with
experimental measurements. The same authors used ANN
potentials further to simulate the delithiation of entire LiSi
nanoparticles containing ∼12,000 atoms, as well as to
investigate the associated Li diffusion and Si segregation
properties (Figure 5C) (Artrith et al., 2019). These simulations
clarify the diffusion mechanism of Li in nanostructured
amorphous Li-Si alloys, providing a guideline for the design of
Si-based anodes with improved rate capability. In related work,
Onat et al. developed a methodology based on a collection of
ANNs that represents the atomic interactions in complex
environments of amorphous Li-Si alloys, calculated the Li
diffusivity and compared with experimental references (Onat
et al., 2018).

ML potentials have been constructed to predict the PES of
various elemental crystals with potential relevance as conversion
anodes. Takahashi et al. constructed accurate ML interatomic
potentials with ridge regression for 31 elemental metals, including
Li metal (Takahashi et al., 2018), which was further developed to
predict grain boundary properties (Nishiyama et al., 2020). Yoo
et al. investigated Si crystals, slab models, and nanoclusters with
atomic energy mapping inferred by ANN potentials (Yoo et al.,
2019). Zuo et al. compared the performance and cost of four
different ML interatomic potentials, including an ANN potential
with SF descriptor, a GPR potential with SOAP descriptor, SNAP

andMTP. The models were trained on a dataset including bcc (Li,
Mo) and fcc (Cu, Ni) metals and diamond group IV
semiconductors (Si, Ge). All the ML potentials demonstrated
reasonable accuracy in predicting energies, forces, as well as
elastic and thermal properties (Zuo et al., 2020). Minamitani
et al. investigated the thermal conductivity of crystalline Si with
ANN potentials, which significantly reduced the expensive DFT
calculations for phonon calculations (Minamitani et al., 2019).

At present, the anode material in most commercial LIBs is
carbon/graphite, which is also a candidate for SSBs with the
advantage of enhanced safety and long-term cycle life. Deringer
et al. developed a GPRmodel for liquid and amorphous elemental
carbon, which can accurately describe the PES and therefore
thermodynamic properties, e.g., the amorphization behavior
(Deringer and Csányi, 2017). With the inclusion of alkali
metal (Li, Na, K) into the training set over a range of densities
and degrees of disorder, this model was further developed to
study battery performance (Deringer et al., 2018; Huang et al.,
2019). Hanakata et al. employed a feedforward ANN and
convolutional ANN to predict the mechanic properties of
graphene kirigami, such as stress and strain as a function of
cutting patterns. The results demonstrate that ML could not only
be used to effectively search for optimal designs but can also yield
a better understanding of how kirigami cuts change the
mechanical properties of graphene sheets (Hanakata et al., 2018).

Electrolyte
An ideal SSE should satisfy the following requirements: 1) fast
ionic conductivity 2) compatibility with high energy density
electrodes, such as NMC, NCA cathodes, and Li anode 3) high
mechanical robustness. Among these criteria, the Li conductivity

TABLE 2 | Summary of ML applications in anode materials.

Target System Descriptor Method Data set Accuracy Ref.

PES TiO2 SFs ANN 7,7694 structures from DFT E: 2.0 meV/
atom

Artrith and Urban
(2016)

PES, sampling Li-Si AUC ANN ∼45,000 bulk, cluster and slabs from DFT E: 7.7 meV/
atom

Artrith et al. (2018)

PES Li-Si AUC ANN ∼45,000 bulk, cluster and slabs from DFT E: 7.7 meV/
atom

Artrith et al. (2019)

PES Li-Si SFs ANN 9,9000 structures from DFT with the cross correlation
analysis

E: 5 meV/atom Onat et al. (2018)

PES Li Pairwise + angular-
dependent

Ridge
regression

2,2700 configurations for each element and 93,000 in
total from DFT

E: 0.3 meV/
atom

Takahashi et al. (2018)

F: 2 meV/Å
PES Si SFs ANN 350–∼832 structures and 22,400–∼198,848 forces

from DFT
E: 1 meV/atom Yoo et al. (2019)
F: 110 meV/Å

PES, thermal,
elastic

Li, Si SFs, SOAP,
SNAP, MTP

ANN, GPR,
SNAP, LR

bcc (Li, Mo), fcc (Cu, Ni) metals and diamond group IV
semiconductors (Si, Ge) with diverse coverage of
atomic local environment from DFT

Dependent on
method

Zuo et al. (2020)

Thermal Si SFs ANN 400 structures sampled from LAMMPS MD and
recomputed with DFT

F: 40 meV/Å Minamitani et al.
(2019)

PES C SOAP GPR LOTF with initial dataset from AIMD E: 2 meV/atom Deringer and Csányi
(2017)F: 200 meV/Å

PES Li-C SOAP GPR LOTF with initial dataset from DFT Not reported Deringer et al. (2018);
Huang et al. (2019)

PES,
mMechanical

C Electronic and
structural
descriptors

ANN 1,1000 training data points from MD RMSE: 0.084 Hanakata et al. (2018)
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is the most fundamental requirement for SSEs. However, it is
extremely computationally expensive to simulate Li migration
using first-principles methods, such as ab-initio molecular
dynamics (AIMD) simulations.

To reduce the computing time for obtaining diffusion
properties and to accelerate the discovery of SSEs, ML
techniques have been implemented mainly in three categories:
1) using ML potentials to construct the PES for Li diffusion
calculations with molecular dynamics, 2) training ML models to
predict the conduction properties directly without simulation
based on structural features, and 3) trainingMLmodels to predict
the candidate materials based on the knowledge of existing
superionic conductors. The examples of each category are
summarized in Table 3.

Approximating the PES of Li migration with ML potentials is
very promising for the quantitative predictions of conductivity in
SSEs. Generally, ML potentials are trained for a certain type of

SSEs and require a high-quality dataset that includes all local
environments. The constructed ML potential can then accelerate
the sampling of structures with first-principles accuracy. Lacivita
et al. used a combination of aML potential and a GA to determine
the N defects in crystalline Li3PO4 (Lacivita et al., 2018). The
approach served as a computationally optimized method for PES
sampling and was based on a specially trained ANN for fast
screening.

One specific research question that ML potential simulations
can tackle is to investigate Li diffusion properties with long-time
MD simulations in complex SSE systems (Figure 6). Li et al.
employed ANN potentials to study the Li diffusion in amorphous
Li3PO4 (Figure 6A) (Li et al., 2017a). The authors demonstrated
that including Li diffusion transient structures sampled by
nudged elastic band (NEB) calculations in the training dataset
is necessary to reduce the error of predicted barrier energies from
73 to 48 meV. With the aid of ANN potentials, the authors were

FIGURE 5 | (A) Schematic of genetic algorithm (GA) sampling using a specialized ANN potential. Reproduced with permission from (Artrith et al., 2018). Copyright
2018 American Institute of Physics (B-I) Phase diagram based on the formation energies of ∼45,000 LixSi structures including bulk, surface slab, and cluster structures.
The energies predicted by the general ANN potential are shown as green stars and the DFT reference energies are black circles. (B-II) DFT formation energies of those
structures sampled by the GA with the specialized ANN potential (green circles) and those generated during MD melt-quench simulations with the general ANN
potential (black crosses). Reproduced with permission from (Artrith et al., 2018). Copyright 2018 American Institute of Physics (C) Si atoms segregate into clusters and
chains during the delithiation of LiSi nanoparticles with 12,000 atoms. Reproduced with permission from (Artrith et al., 2019). Copyright 2019 arXiv.
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FIGURE 6 | (A-I) All diffusion paths of Li atoms in the amorphous Li12P4O16 model, predicted by DFT and ANN potential calculations with the nudged elastic band
(NEB) method (A-II) Arrhenius plot of the Li diffusivity in amorphous Li3PO4. The simulation results were obtained from large-scale MD simulations of 1,006 atoms using
ANN potentials. The experimental results were measured with different methods. Reproduced with permission from (Li et al., 2017a). Copyright 2017 American Institute
of Physics (B-I) Constructed simulation box of α-Li3N with twist Σ7 [0001] grain boundaries (GBs) (B-II) Trajectories for selected Li ions in the box with twist GBs in
0.5 ns. Li ions on the left lie in the bulk region, and the ones on the right are close to one of the GBs (B-III)Mean squared displacement (MSD) by component vs. time for
Li ions located at the twist GBs only (bulk Li ions are excluded). The z direction is perpendicular to the GBs. Diffusivity is computed within the 2D GB plane (B-IV) Haven
ratio and (B-V) Arrhenius plot for Li charge diffusivity in bulk α-Li3N obtained from eSNAP MD simulations. Reproduced with permission from (Deng et al., 2019).
Copyright 2019 Nature (C-I) Arrhenius plot of diffusivities of possible interphase components obtained from LOFT-MD (C-II) Schematic diagram of phase equilibria at
the interface between the Li anode and solid electrolyte Li6PS5Br. Reproduced with permission from (Wang et al., 2020a). Copyright 2020 American Institute of Physics.
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able to run MD simulations in an amorphous supercell
containing more than 1,000 atoms.

To construct an accurate ML potential, a high-quality dataset
is a prerequisite. To facilitate the sampling of the training
structures, Miwa et al. developed an automatic ML potential
construction scheme, SLAD, which is similar to Bayesian
optimization (BO) with the variance as an acquisition function
without the assumption of any stochastic processes (Miwa and
Ohno, 2017). This approach was successfully applied to several
SSEs, including Li2B12H12 (Miwa and Ohno, 2017), Li7La3Zr2O12

(LLZO) (Miwa and Asahi, 2018), and Li10GeP2S12 (LGPS) (Miwa
and Asahi, 2021). The MLP was trained on a small dataset from
low-temperature phases, yet exhibits an impressive ability to
predict the structures and properties at higher temperatures.
With this approach, the authors demonstrated that the
promotion of Li diffusion in β-Li2B12H12 is achieved by lattice
expansion and orientational disordering of B12H12 complexes,
and predicted Li conductivities and activation barriers in Nb-
doped LLZO (Miwa and Asahi, 2018) and LGPS that are in
reasonable agreement with experimental measurements (Miwa
and Asahi, 2021).

Another technique to facilitate the construction of reference
datasets is on the fly training, also referred to as learning on the fly
(LOTF) (Wang et al., 2020b). Marcolongo et al. constructed ANN
potential combining DeePMD and a LOTF approach to
investigate the ionic conductivities of LGPS, LLZO, and
NASICON (Marcolongo et al., 2020). The authors established
an iterative procedure consisting of three steps: exploration,
labeling, and training, and they evaluated the diffusion
coefficient with MD simulations in the microcanonical (NVE)
statistical ensemble. Similarly, Huang et al. applied a deep ANN
potential dubbed DeePMD to study three LGPS-type superionic
conductors, LGPS, LSiPS, LSnPS (Huang et al., 2021). The same
protocol was conducted and the convergence was set to a
predetermined number of loops or only a small percentage of
candidates are found in the last exploration iteration. With the
constructedML potential, the authors were able to extend theMD
simulation to a wide temperature range (300–1000 K) and to
systems with large size (∼1,000 atoms), which provides insights
into the impact of doping on diffusion properties in LGPS-type
materials. Hajibabaei et al. combined LOFT and a sparse
Gaussian Process (SGPR) model to construct a universal
potential for Li7P3S11, which reproduced the experimental
melting and glass-crystallization temperatures and predicted
an unchartered phase with much lower ionic conductivity
(Hajibabaei et al., 2020).

Various MLmodels have been trained to determine the PES in
SSEs to estimate the ionic conductivities. Deng et al. developed an
electrostatic Spectral Neighbor Analysis Potential (eSNAP) and
performed a long-time (1 ns) large-scale (5,040 atoms) simulation
of Li diffusion in the superionic conductor α-Li3N (Figure 6B),
providing insights into the concerted ionic motion and grain
boundary diffusion (Deng et al., 2019). Rao et al. trained an ANN
potential for four and five element systems, which predicted
nearly identical Li diffusivities in LGPS with ANN-MD
compared to DFT-MD reference values (Rao et al., 2020).
With ANN-MD, the authors investigated the effect of Cl

dopants and provided a design strategy for LPGS-type
electrolytes. Park et al. developed a GNNFF, to predict atomic
forces from automatically extracted features of the local atomic
environment that are rotationally-covariant to the coordinate
space (Park et al., 2020). The PES of Li7P3S11 was evaluated, yet
overall the GNNFF slightly underestimate the force magnitudes
compared to DFT. To identify the most rapid Li diffusion
pathways through the interphase, Wang et al. examined the Li
ionic conductivities for possible Li-containing products at the
interfaces of electrolyte/electrode by using LOTF-MD based on
MTPs (Figure 6C) (Wang et al., 2020a).

The importance of an accurate dataset was emphasized by Qi
et al., who trained MTPs based on energies and forces computed
with van der Waals optB88 functional for three types of SSEs,
Li0.33La0.56TiO3 (LLTO), Li3YCl6 and Li7P3S11 (Qi et al., 2021). A
comparison between MTPs trained on reference data from two
different DFT functionals revealed the significance of accurate
reference calculations. The choice of DFT functional can lead to
substantial errors in lattice parameters, therefore raising the bias
in predicted ionic conductivities. In addition, most AIMD
simulations in the literatures were performed at high
temperatures in the NVT ensemble, and the authors argue
that this would not only lead to further errors in the lattice
parameters, but may also not capture transitions in quasi-linear
Arrhenius regimes at lower temperatures. A carefully trained ML
interatomic potential can help to address the statistical errors and
size effects.

The second category includes property-prediction ML models
(Property Predictions) that are trained to directly predict the
diffusion properties and are used for screening of a large
number of databases. To predict activation energies and
accelerate the search for potential SSEs, Jalem et al. compared
two ML methods to augment DFT calculations, the PLS
regression (Jalem et al., 2012) and an ANN model (Jalem
et al., 2014). The dataset to train the ML models was
composed of structure parameters and activation energies of
66 olivine-type LiMXO4 (M: main group elements, X: group
XIV, and group XV) from DFT NEB calculations. The PLS
method yielded an RMSE of around 316 meV, and it failed
near the extreme ends of the attribute dataset. In comparison,
the more flexible ANN framework with multi-output node
architecture (activation energy and cohesive energy), improves
the accuracy significantly and reduces the RMSE to 61.9 meV for
the predicted activation energy values. To expand the application
of the ML model, the authors included a dataset of tavorite
LiMXO4F structures, and used a different graph-based ANN
model (Jalem et al., 2015). The important features were
identified using principal component analysis (PCA).

Based on the above series of studies, Jalem et al. determined
the competing effects among Li pathway bottleneck size,
polyanion covalency, and local lattice distortion that control
the migration barriers. The tavorite-type compound space, (Li/
Na)MXO4(F/Cl/Br/I), including 318 compounds, was further
screened with BO, which was twice more efficient than
random search (i.e., for EA < 0.3 eV) (Jalem et al., 2018). The
scheme requires ∼30% of the total DFT-based evaluations to
recover the optimal compound ∼90% of the time. Another
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advantage of additive BO is that the contribution from each group
of descriptors can be interpreted. The results illustrated that the
radial distribution functions (RDFs) as structure-derived
descriptors and electronegativity as the composition-derived
descriptor are the key descriptors to control the Li migration
barrier in tavorite-type ionic conductors. The selected features
and the BO accelerated approach based on GBR were further
extended by Nakayama et al. to screen ∼400 Li- and Zn-
containing oxide (Li−Zn−X−O) compounds (Nakayama et al.,
2019).

Using SVM regression, Fujimura et al. trained an ML model
with diffusion related properties, such as transition temperatures,
formation energies and diffusion coefficients. The authors
predicted the ionic conductivities at 373 K for 72 compositions
with general formula Li8−cAaBbO4, where A

m+ � Zn,Mg, Al, Ga, P
or As, and Bn+ �Ge or Si, and c �ma + nb (Fujimura et al., 2013).

By iteratively performing systematic sets of first-principles
calculations and focused experiments, it was shown how the
materials design process can be greatly accelerated, suggesting
potentially superior candidate lithium superionic conductors.

The connection between structural framework and ionic
conductivities is also a clue for the inverse design of SSEs.
Based on the understanding of the relationship between anion
framework and ionic conductivities in existing superionic
conductors (Figure 7A) (Wang et al., 2015; He et al., 2017;
He et al., 2019), Zhang et al. selected the modified X-ray
diffraction (mXRD) pattern (Figure 7B) as the descriptor to
perform unsupervized learning to screen all known Li-containing
compounds from the inorganic crystal structure database (ICSD)
(Hellenbrandt, 2004) (Figure 7C) (Zhang et al., 2019). The
trained unsupervized learning models successfully cluster Li-
containing compounds into groups of Li conductors with high

FIGURE 7 | (A) Crystal structures of known Li superionic conductors (B) mXRD patterns of selected materials in comparison to those of ideal fcc (face centered
cubic), hcp (hexagonal close packed), bcc (body centered cubic) lattices (C) Mapping the bottom-up tree diagram (dendrogram) generated using the agglomerative
hierarchical clustering method to the conductivity reveals the grouping of known solid-state Li-ion conductors. The color bar shows the scale of the room temperature
conductivity σRT. The gray color indicates that the conductivity has not beenmeasured for the corresponding compound. Reproduced with permission from (Zhang
et al., 2019). Copyright 2019 Nature.
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conductivity and other groups of materials with poor ionic
conduction. The learning model not only clustered the current
superionic conductors, such as LLZO and LGPS, but also
proposed 16 potential candidates for SSEs with room-
temperature conductivities higher than 10–4 S cm−1, which
were further validated with AIMD simulations.

With a subset of 20 physics-based atomistic features as
descriptors, Sendek et al. developed a data-driven ionic
conductivity classification model using logistic regression for
identifying the candidate ionic conductors (Sendek et al.,
2017). The regression model was trained on 40 crystal
structures from the ICSD and on experimentally measured
ionic conductivity from literature, which also included poor
conductors as negative examples. The ML-based model
exhibits an F1 score of 0.50, which is 3.5 times better than
random search, allowing for a screening on 12,831 Li-
containing crystalline solids from the MP database. Following
the recommendations of the ML model, the authors investigated
21 candidate SSEs with AIMD simulations (Figure 8B) (Sendek
et al., 2019) and experiments (Figure 8C) (Sendek et al., 2020a).
The crystalline lithium−boron−sulfur (Li−B−S) system appears
to be more conductive and twice as stable as LGPS, and is at the

same time less expensive. Another advantage of the Li-B-S
materials is that typically when electrolyte materials degrade
over time, they transform into poorly conductive materials.
However, degradation of Li-B-S yields another good ionic
conductor, which could potentially extend battery lifetime.

In addition to fast ionic conductivity, electrochemical stability
is also crucial for SSEs. Based on these two requirements, the
inclusion of Cl-, Br-, and I-based solid ion conductors and doped
sulfides were shown to be more promising due to their better
electrochemical stability and enhanced ionic conductivity
(Figure 8A) (Sendek et al., 2020b).

While the screening of known materials for target
properties is certainly impressive, there is still a long way
from screening the entire chemical space, including those
materials that haven’t been synthesized and characterized.
The main bottleneck here is to acquire sufficient labeled
data. Cubuk et al. provide an alternative solution, that is to
use transfer learning with physics-guided generic descriptors,
which allowed for a screening of an impressive 20 billion
ternary and quaternary Li-containing compounds (Cubuk
et al., 2019). This is achieved by initially training a linear
support vector machine model on 40 data points with 30

FIGURE 8 | (A) Property spectrum of solid Li-ion conductor candidates by anion family. The predicted metrics of electrochemical stability against predicted
likelihood of superionic conduction for stable Li-containing crystalline solid materials from the Materials Project database were plotted. These materials have the general
composition Li–(X)–Y, where (X) is any combination of elements and Y is an anion from the following group: F, O, S, Cl, Br, I, N, P, F, Si, or Ge. Reproduced with
permission from (Sendek et al., 2019). Copyright 2019 American Chemical Society. Copyright 2020 American Chemical Society (B) Computationally observed
ionic conductivity in candidate materials and extrapolation to room temperature (RT). Reproduced with permission from (Sendek et al., 2019). Copyright 2019 American
Chemical Society (C) The thermodynamic electrochemical stability window widths computed with PBE DFT and the experimentally reported ionic conductivities (on a
log–log scale) of several known solid Li-ion conductors, including the predicted values for the best Li–B–S electrolyte compositions. Reproduced with permission from
(Sendek et al., 2020b). Copyright 2020 American Chemical Society.
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TABLE 3 | Summary of ML applications in solid-state electrolytes (SSEs).

Target System Descriptor Method Data set Accuracy Ref

PES,
sampling

Amorphous LiPON AUC ANN (ænet)
GA (ævo)

20,000 structures from DFT E: 7.15 meV/atom Lacivita et al. (2010)

PES Amorphous Li3PO4 SFs Behler ANN 38,592 structures from AIMD at
300–4000 K and NEB

E: 5.6 meV/atom Li et al. (2017a)

PES,
sampling

Li2B12H12 Power spectrum SLAD 84 structures from MD sampling and
recomputed with DFT, based on which
3,943 reference descriptors generated
by recursive bisection method

E: 2.6 meV/atom
F: 149.1 meV/Å

Miwa and Ohno (2017)

PES Nb-doped LLZO Power spectrum SLAD 105 structures from MD sampling and
recomputed with DFT, 9,002 reference
descriptors

E: 11.7 meV/atom
F: 262.3 meV/Å

Miwa and Asahi (2018)

PES LGPS Power spectrum SLAD 75 structures from MD sampling and
recomputed with DFT, 4,098 reference
descriptors

E: 1.9 meV/atom
F: 221.1 meV/Å

Miwa and Asahi (2021)

PES LGPS, LLZO,
NASICON

DeepMD ANN LOTF with initial structures between 60
and 240 from AIMD at 300K, 600 and
900K

Not reported Marcolongo et al.
(2020)

PES LGPS, LSiPS, LSnPS DeepMD ANN LOTF with 590 randomly perturbed
structures from DFT

E: 2 meV/atom
F: 80 meV/Å

Huang et al. (2021)

PES Li7P3S11 SOAP GPR LOTF with initial 111 structures in (β and
c-) Li3PS4 and Li7P3S11 crystals
from DFT

F: 140 meV/Å Hajibabaei et al. (2020)

PES α-Li3N Structural descriptors SNAP 109 distorted structures from DFT and
1,000 AIMD snapshots

E: 0.82 meV/atom
F: 37.6 meV/Å

Deng et al. (2019)

PES LGPS, LSiPSCl Zernike vs Gaussian ANN (AMP) 12,000 structures from AIMD at 1,000 K E: 1.8 meV/atom
F: 77 meV/Å

Rao et al. (2020)

PES Li4P2O7, Li7P3S11 SFs GNN “Small” and “Large” trajectories consist
of ∼25,000 and ∼7,500 snapshots from
AIMD

F: 88 meV/Å Park et al. (2020)

PES LLTO, Li3YCl6,
Li7P3S11

MTP LR 1,800 structures for each SSE from
AIMD snapshots

E:
0.96–2.07 meV/
atom
F: <150 meV/Å

Qi et al. (2021)

Conductivity Olivine LiMXO4 (M:
main group, X: group
XIV and XV)

Electronic and
structural descriptors

Partial LS 66 olivine-type LiMXO4 compounds with
EA from DFT and NEB

EA: 316 meV Jalem et al. (2012)

Conductivity Olivine LiMXO4 Electronic and
structural descriptors

ANN 72 olivine-type LiMXO4 compounds with
CE and EA from DFT, NEB and
literatures

EA: 61.9 meV Jalem et al. (2014)

Conductivity Tavorite LiMXO4F Electronic and
structural descriptors

PCA, GNN 63 tavorite-type LiMXO4F compounds
with EA from DFT and NEB

EA: 60 meV Jalem et al., (2015)

Conductivity Tavorite (Li/Na)
MXO4(F/Cl/Br/I)

Electronic and
structural descriptors

BO 318 tavorite-type Li- and Na-containing
compounds with EA from DFT and NEB

N/A Jalem et al. (2018)

Conductivity Li−Zn−X−O Electronegativity
and RDF

GBR,
BO (JMP)

∼400 Li- and Zn-containing oxide
(Li−Zn−X−O) compounds from MP

EA: 80 meV Nakayama et al. (2019)

Conductivity Li8−c (Zn, Mg/Al/Ga/P/
As) a(Ge/Si)bO4

Diffusion descriptors SVM Energies and diffusion properties for 72
compositions from 2684 DFT
calculations

Log(σ): 0.373 Fujimura et al. (2013)

Inverse
design

LISICON mXRD AHC 2986 ICSD entries → 528 unique
representative structures

N/A Zhang et al. (2019)

Inverse
design

LISICON A subset of 20
atomistic features

Logistic
regression

40 Li-containing crystals from ICSD and
measured Li conductivity from literature

F1 score � 0.5 Sendek et al. (2017),
(2019); (2020b)

Inverse
design

LISICON Generic descriptors Linear SVM 40 Li-containing crystals from ICSD and
measured Li conductivity from literature

F1 score � 0.5 Cubuk et al. (2019)

PES PEO and LiTFSI Koopman model GNN Five independent 80 ns trajectories
generated to model the Li-ion transport
at 363 K

Not reported Xie et al. (2019)

Inverse
design

Aromatic polymer 32-D feature vector GNN, GPR De novo generated polymer/monomer
structures and their 2000 molecular
properties

Log(σ): <1 Hatakeyama-Sato et al.
(2020)

Property Organic electrolyte Reaction indices LR 360 organic materials with properties
measured from experiments

RMSE: <1% Lee et al. (2020)

Guided
synthesis

Li6PS5Cl 8 experimental
variables

PCA,
K-Means,
SVM

110 slurry compositions with
manufacturing conditions and film
performance from experiments

Not reported Chen et al. (2021)
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elemental descriptors, on which a new ML model was trained
using the generic descriptors.

Apart from inorganic electrolytes, ML screening has also
been applied to polymer electrolytes. To this end, Xie et al.
developed graph dynamical networks for unsupervised
learning. A linear Koopman model from MD data was
constructed for amorphous poly (ethylene oxide) (PEO)/Li
bis-trifluoromethane sulfonimide (LiTFSI) polymer electrolyte
(Xie et al., 2019). In related work, Hatakeyama-Sato et al.
employed GNNs to create a 32-dimensional feature vector by
training on de novo polymer and monomeric compound
database with 2000 molecular descriptors (e.g., number of
nitrogen atoms and polarizability, etc.). The learned feature
vector together with other system information was then used
as the input for a GPR model for learning the relationship
between the composition and the experimentally measured
conductivity for 3,000 data points (Hatakeyama-Sato et al.,
2020). By screening chemical space, the authors were able to
identify highly conducting glass-type polymer complexes
(around 10−3 S/cm).

The stability and compatibility between chemical components
are crucial for a SSB system. Lee et al. proposed a LR model to
predict the general reactivity and chemical compatibility among
organic materials, which was used to map the chemical stability
among 90 electrolyte solvents and the representative redox

mediators, providing a guideline for the design of stable
interfaces in SSBs (Lee et al., 2020).

Interfaces and Coatings
The interfacial resistance between electrodes and electrolytes is
another crucial challenge for SSBs. Despite previous experimental
characterizations, the degradation mechanisms at the electrode|
electrolyte interfaces still remain unclear. Therefore, a direct
modeling of the solid-solid interface region is desirable.

Gao et al. constructed an AI scheme for the accelerated
sampling of the heterogeneous interface structures by applying
particle swarm optimization (seeMachine Learning for Materials
Modeling) (Gao et al., 2020). The energetically favorable
interfacial structures between the typical cathode LiCoO2

(LCO) and Li-P-S electrolytes (LPS) are investigated to explore
the Li-ion transport mechanism at the interface. The results show
that both cation (Co and P) mixing and anion (O and S) mixing
are likely to occur in the interfacial region, and the migration of Li
ions toward the anode results in the formation of a Li+-depleted
layer, which is considered as the origin of the high interfacial
resistance. The same methodology was also implemented to
explore the Li1.3Al0.3Ti1.7(PO4)3 (LATP)/LCO and LATP/Li
interfaces (Tian et al., 2020). The exchange of cation pairs, Li
and O vacancies at the interface are constructed to investigate the
ion and electron transfer in different conditions.

FIGURE 9 | (A) Arrhenius plot with diffusivities obtained from AIMD simulations at high temperatures and from learning on-the-fly (LOTF)-MD simulations at
intermediate temperatures (B) Snapshots from MD simulations that exemplify diffusion via collective motion of Li+ in Li3B7O12 identified by LOTF-MD at 700 K (C)
Calculated Arrhenius plot of Li3B7O12 from LOFT-MD diffusivities. Reproduced with permission from (Wang et al., 2020b). Copyright 2020 American Chemical Society.
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The thermodynamic stability is a descriptor to determine the
interfacial stability (Table 4). Liu et al. constructed a KRR model
with 100 data to map 15 structural descriptors (the M–O bond
strength governs the interface stability) to the formation energy
for Li|LLZOM (M � dopant) interfaces. TheMLmodel yielded an
RMSE of 0.04 eV for the formation energy and predicted 18
unexplored LLZOM systems, which were validated by DFT
calculations (Liu et al., 2019).

Alternatively, Wang et al. examine the possible Li-containing
product phases in local thermodynamic equilibrium at the
interfaces of 32 representative electrolyte/cathode pairs and 24
electrolyte/anode pairs by combining ab initio phase diagrams
with Monte Carlo sampling (Wang et al., 2020a). To predict the
possible coating materials with superionic conductivities, the
authors performed LOTF-MD based on MTPs. Compared to
conventional AIMD, they achieved an impressive computational
speedup of 107 with LOTF-MD (Figure 9). Based on the accurate

ML potentials and MD simulations, Li3Sc2(PO4)3 and Li3B7O12

were identified as promising cathode coating materials by
screening the Li-containing crystalline compositions for
thermodynamic stability, electrochemical stability, interface
stability and Li conductivity (Wang et al., 2020b).

In addition to the thermodynamic stability, the mechanical
properties are also an important factor for stabilizing interfaces
and suppressing dendrite growth in SSBs. Ahmad et al.
constructed a GNN model to predict the mechanical
properties of the interface of the Li anode and SSEs
(Figure 10) (Ahmad et al., 2018). Trained on a dataset of
2041 crystal structures from the MP database containing
elastic properties, the GNN model yielded an RMSE of 0.1268
and 0.1013 log (GPa) for the shear and bulk moduli, respectively.
Based on the mechanical properties predicted from the GNN
model as inputs and derived stability parameters, the authors
performed a computational screening of 12,950 Li-containing

FIGURE 10 | (A) Flowchart of a graph convolutional neural network (B) Contribution of hydrostatic stress, deviatoric stress, and surface tension to the stability
parameter as a function of surface roughness wavenumber. The red line shows the fraction of surface tension contribution to the stability parameter obtained by dividing
the absolute value of its contribution by the sum of absolute values of all components (C) Isotropic stability diagram showing the stability parameters of 2041 solid
electrolytes considered in the screening.GLi is the shear modulus of Li (�3.4 GPa). The criticalG/GLi line separating the stable and unstable regions depends weakly
on the Poisson’s ratio, so the lines corresponding to ]s � 0.33 and 0.5 are good indicators for assessment of stability. Reproduced with permission from (Ahmad et al.,
2018). Copyright 2018 American Chemical Society.
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solids and predicted twenty interfaces between Li metal and four
solid electrolytes to be resistant to dendrite growth.

The Li dendrite formation can be characterized from
experimental measurements. However, the interpretation of
experimental observations can be challenging due to the lack
of understanding. To assist the interpretation of in-situ Li metal
morphological transformations during galvanostatic cycling in
Li|LLZO|Li cells, Dixit et al. trained a convolution ANN and
observed non-uniform Li electrode kinetics at both electrodes
during cycling (Figure 11). The hot spots in Li metal are
correlated with microstructural anisotropy in LLZO (Dixit
et al., 2020). Advanced visualization combined with
electrochemistry represents an important strategy to resolve
non-equilibrium effects that limit rate capabilities of SSBs.

DISCUSSION AND PERSPECTIVE

ML-augmented first-principles atomistic modeling provides a
new characterization tool for investigating complex systems
such as SSBs. Although many of the reviewed ML techniques
have only emerged over the last decade, they have already led
to a multitude of promising applications to SSB research. As
reviewed in the previous section, to date, most applications of
ML to research questions related to SSBs have been based on
either ML potentials or property-prediction models, most
likely because mature software packages for these
applications are available (see Machine Learning for
Materials Modeling). We anticipate that applications for
inverse design of SSB materials will become more

FIGURE 11 | (A) Schematic diagram of the interfacial transport challenges in lithiummetal solid-state batteries. Lithiummetal undergoes oxidation and migrates as
Li+ to the solid electrolyte leaving an electron and a vacancy in the lithium metal. During stripping at high current densities, the vacancies formed due to Li+ migration
accumulate faster than can be replenished by self-diffusion of Li metal. This results in formation of voids at the anode|SE interface. On subsequent cycling, the void acts
as focusing regions for nonplanar Li deposition (B-I) Sample reconstruction slices of the lithium metal electrode imaged for pristine, plating, and stripping steps.
Semicircular morphologies are observed in the plating as well as stripping electrode, and pore formation in the stripping electrode is observed (B-II) Segmentation from
the conventional binarization process overlaid with raw reconstruction images. Darker regions in these images are identified pores/void phase while the lighter domains
are lithium metal (B-III) Segmentation results from convolutional neural networks overlaid with raw reconstruction images. The green phase is the identified lithiummetal
while the blue phase is the identified pore/void phases. Reproduced with permission from (Dixit et al., 2020). Copyright 2020 American Chemical Society.
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FIGURE 12 | (A) Schematic presenting the methodology developed in this work. First, ball-milling is used to reduce the particle size of the LPSCl electrolyte. Then,
110 slurries consisting of different polymer contents, liquid-to-solid ratios, and cosolvent ratios are fabricated to obtain the data set. This data set is fed into the machine
learning workflow to categorize samples with different properties, as shown in the fourth step (B) Data analysis results coming from the implementation of the PCA and
the K-means algorithm which show the linear dependence between initial variables and the grouping of the samples in terms of performance, respectively (B-I)
Projection of the initial variables (symbolized by black arrows) onto the 2D plan formed by the first two principal components resulting from the PCA implementation, with
the purpose to visualize and analyze the correlation between each pair of variables. For the PCA implementation, P% is not taken into account because of a low number
of different modalities. It is considered as a qualitative variable and did not appear in the initial PCA features for better results. However, P% is used for the rest of the
analysis (B-II) All samples are grouped into three clusters with the K-means algorithm, here represented within the two first principal components. Those clusters are
explicitly defined as classes in the rest of the study. Box charts for the comparison of distribution of (B-III) normalized conductivity and (B-IV) relative thickness deviation
for all three classes. Abbreviations: L:S, liquid-to-solid ratio; X:B, cosolvent ratio; ρ, density; Ω, ohmic resistance; σ i

N, normalized conductivity; DoT, deviation of
thickness; RD, relative thickness deviation (C) First cycle voltage profiles of NCM811 || LPSCl || LiIn cells prepared using SSE films from class 1 and class 2. Because of
lower uniformity, the cell using the class 2 film shorts during the first cycle. Reproduced with permission from (Chen et al., 2021). Copyright 2021 American Chemical
Society.
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commonplace as generative ML models become more robust
and more widespread used.

One limitation of current ML potential methods is their lack of
universality. So far, ML potentials need to be constructed for a
specific domain and cannot replace electronic structure
calculations for general applications, i.e., as universal force
fields, which makes the modeling of complex processes in
batteries (such as degradation) challenging. A promising
direction for overcoming this limitation is the incorporation of
a physical underpinning into the model, and important progress
has recently been made towards combining ML and quantum
theory (Schütt et al., 2019; Bogojeski et al., 2020).

Another obstacle that affects the entire field of ML for applied
research is reproducibility. While ML techniques have been
gaining popularity, the materials science and chemistry
communities have not yet established rigorous quality
measures for the publication of ML-based research. We believe
that the key to robust and impactful ML work lies in the sharing
of models and data as well as in systematic and transparent model
validation (Artrith et al., 2021).

Finally, perhaps the most important limitation of ML models
is the availability of reliable data. The battery applications
reviewed in the present article mostly employed ML models
trained on data from simulations, but such computational data
is also subject to approximations andmight not always provide an
appropriate description. It is therefore important that 1) progress
in the development of more accurate first-principles methods
continues and 2) data from experimental measurements is also
used for ML model construction.

Although not within the scope of the present review, we note
that ML models trained on macroscopic experimental reference
data have already found application for ML-guided synthesis of
SSB components. Generating synthetic data from calculations is
often more straightforward than devising set-ups for automated
experimentation, but in some cases sufficient data from
experiments are available. For example, Chen et al.
implemented an ML workflow to guide the synthesis of SSEs
films (Figure 12) through anMLmodel trained on 110 slurry SSE
compositions with manufacturing conditions and film
performance from experiments (Chen et al., 2021). The
resulting cell featured high ionic conductivity, good uniformity
and long cyclability. And Cunha et al. used AI tools to capture the
impact of processing on the final electrode electrochemical
performance (Cunha et al., 2020).

With increasing availability of lab automation for high-
throughput or combinatorial synthesis and characterization,
we expect that such ML models trained on experimental data
or a combination of computed and measured data will become
more common in the future and will have the potential to
significantly accelerate the development of SSBs.

Another emerging application of ML that is tangentially
related to SSB research is the text-mining of scientific
publications (Kononova et al., 2021). Olivetti and coworkers
demonstrated that text-mining can be used for extracting
synthesis prescriptions from the literature and that this
approach can be applied to the prediction of synthesis
conditions for solid electrolytes (Mahbub et al., 2020; Olivetti
et al., 2020).

SUMMARY

In this review, we surveyed the current state of machine learning
accelerated atomistic modeling of solid-state battery materials with a
focus on applications of machine-learning potentials, property
prediction models, and inverse design. Despite the emergent nature
of this research area, many encouraging examples have already
appeared in the literature, demonstrating that machine learning
can facilitate the modeling of complex phases and interfaces that
are challenging for conventional first-principles methods. An
especially active field of research has been the machine learning
aided discovery of solid electrolytes, which has benefited from
long-time scale molecular dynamics simulations enabled by
machine-learning interatomic potentials. Additionally, remarkably
successful ML models for the prediction of lithium conductivities
without simulation have been proposed. The progress of machine-
learning methods for materials discovery in general has benefited
tremendously from improving data and software availability, and we
anticipate this trend to continue in the near future.
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TABLE 4 | Summary of ML applications in interfaces and coatings.

Target System Descriptor Method Data set Accuracy Ref.

Thermodynamic Li | LLZO 15 structural
features

SVM,
KRR

100 LLZOM (M � dopant) compounds
from DFT

RMSE for reaction
energy: 0.04 eV

Liu et al. (2019)

PES Cathode | 8 Li oxides
and sulfides SSE

MTP LR LOTF with 7,7500 structures from
15 ps AIMD at 1,1000 K

E: 5.70 meV/atom F:
84.25 meV/Å

Wang et al. (2020a);
Wang et al. (2020b)

Mechanical Li | SSE Structural
descriptors

GNN 2,041 crystal structures with shear and
bulk moduli from MP

RMSE for bulk moduli:
0.1013

Ahmad et al. (2018)

Mechanical Li | LLZO Pore features ANN 800 images from one electrode in a
single electrochemical cycle

80% confidence Dixit et al. (2020)
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