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The performance of a power system can be measured and evaluated by its power flow
analysis. Along with the penetration of renewable energies such as wind and solar, the
power flow problem has become a complex optimization problem. In addition to this,
constraint handling is another challenging task of this problem. The main critical
problem of this dynamic power system having such variable energy sources is the
intermittency of these VESs and complexity of constraint handling for a real-time
optimal power flow (RT-OPF) problem. Therefore, optimal scheduling of generation
sources with constraint satisfaction is the main goal of this study. Hence, a renewable
energy forecasting–based, day-ahead dynamic optimal power flow (DA-DOPF) is
presented in this paper with the forecasting of solar and wind patterns by using
artificial neural networks. Moreover, contribution factors are calculated using triangular
fuzzy membership function (T-FMF) in the sub-interval time slots. Furthermore, the
superiority of feasible (SF) solution constraint handling approach is used to avoid the
constraint violation of inequality constraints of optimal power flow. The IEEE 30-bus
transmission network has been amended to integrate a solar photovoltaic and wind
farm in different buses. In this approach, the computing program is based on
MATPOWER which is a tool of MATLAB for load flow analysis which uses the
Newton–Raphson technique because of its rapid convergence. Meteorological
information has been gathered during the time frame January 1, 2015, to
December 31, 2017, from Danyore Weather Station (DWS) at Hunza, Pakistan. A
Levenberg–Marquardt calculation–based artificial neural network model is utilized to
foresee the breeze speed and sunlight-based irradiance in light of its versatile nature.
Finally, the results are discussed analytically to select the best generation schedule and
control variable values.
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1 INTRODUCTION

Optimal power flow (OPF) is an efficient and legitimately
organized tool to control the settings of decision variables of
the power system. The trade-off can be accomplished between the
economy and the security of the power system by getting an ideal
arrangement of these control factors. In this manner, OPF is a
critical tool to give an ideal arrangement of control boundaries
while fulfilling the imperatives (Surender Reddy et al., 2014;
Surender Reddy et al., 2017). Generally, the OPF problem is
formulated as a highly complex and non-linear optimization
problem due to finding the feasible values in a large number
of continuous and discrete control variables (Carpentier, 1962).
Moreover, equality and inequality constraints can further
enhance its computational complexity. OPF can also be
integrated with other energy management systems (EMSs), to
provide preventive and secure modes of operation. In the
preventive mode, they can prevent frequency-mode problems
which can be worse in terms of the blackout, while in the secure
mode, they made corrective changes in the power flow pattern to
provide feasible economic conditions. Researchers have been
involved in the development of OPF to make it more reliable
and to get optimal solutions with fast convergence (Momoh et al.,
1997).

Since the OPF study provides the knowledge of feasible control
variables under constraints on different variables, they are a
major tool for the reliable operation of the power system. The
significance of OPF issue is very much distinguished, and
different old-style strategies, for example, gradient method
(GM) (Dommel and Tinney, 1968a; Lee et al., 1985), Newton
algorithm (NA) (Talukdar et al., 1983; Sun et al., 1984), linear
programming (LP) (Fahd and Sheble, 1992), and quadratic
programming (QP) (Reid and Hasdorff, 1973) have been
applied to tackle the issues of being trapped in local minima,
step size, and slow convergence. Recently, hybrid energy systems
are getting more importance in which energy sources of two or
more forms are combined. This combination minimizes the
different attributes of the power system such as cost, loss, and
emission and also increases the reliability and the life span of the
power system (Chedid and Rahman, 1997; Chedid et al., 2000).
Hence, hybrid renewable energy systems (HRESs) are becoming
popular these days, even though the intermittency of VESs is a
problem to integrate these sources. However, the combination of
different renewable energy sources compensates each other to
improve the stochastic nature of these sources (Banos et al.,
2011; Ahn et al., 2012). There are two types of HRESs,
standalone and grid-connected. Standalone systems have
storage devices to fulfill load demands in a time of shortage
of solar or wind energy. Though on account of the framework-
associated system, storage devices can be taken out as the
power deficiency can be repaid from the network power. These
network-associated HRESs give power either to the heap or to
the matrix, where in grid-connected systems, the power
electronics converters are installed to address the issues of
frequency, voltage stability, reactive power compensation,
harmonics filtering, and load sharing. HRESs can be further
classified into two categories: island HRESs and grid-

connected HRESs. Island HRESs supply to the local loads,
while grid-connected HRESs are those in which RESs are at
distributed places.

The generation cost minimization is one of the common
objectives of OPF by finding the optimal combination of
generators, and this can be considered an economic dispatch
problem. Due to pollution issues, this economic dispatch (ED)
problem can be further solved as an economic environmental
dispatch (EED) problem. Furthermore, depleting reserves of
fossil fuel and global warming issues forced the energy-based
research toward the utilization of clean and green energy sources.
Nevertheless, uncertainties of these weather-driven renewable
energy sources make it difficult to schedule dispatchable
generation. With the increase in the penetration of clean and
green electricity generation sources like wind and solar (PV), it is
necessary to guide research toward the formulation of generation
scheduling problem by paying attention to the intermittent and
non-dispatchable characteristics of such sources. Since wind and
solar are free and abundant in nature, penetration of these VESs
minimizes the overall cost of electricity generation. Moreover, the
voltage stability of the power system is always at stake due to the
increasing electricity demand. Therefore, OPF algorithms are
quite capable of handling the voltage stability issue by
managing the power flow in transmission lines.

While paying attention to the scheduling of non-dispatchable
sources of energy, it is desirable to incorporate artificial
intelligence (AI) and machine learning (ML) algorithms with
the traditional OPF program. Nowadays, AI and ML algorithms
are performing tasks much like a human would do. In particular,
artificial neural networks (ANNs) can predict process models for
process control using the data collected by the sensors and
transducers. Moreover, these algorithms are capable of
learning patterns and producing results in alternate ways
instead of doing hectic calculations. They are inspired by the
biological neural system of the human brain and are capable of
duplicating the learning, consolidation, adaptation, and
generalization skills of the human brain (McCulloch and
Walter, 1943). When it comes to non-linear problems, ANNs
are the most powerful tools to solve them. ANNs consist of
neurons, which are the highly interconnected processing units.
Information is passed between these neurons. Each neuron
decides based on two input values: one is an input and the
other is the weight. The ANNs are not developed to perform a
specific task; in fact, they are designed to learn patterns by
gathering, storing, and generalizing information. ANNs consist
of many layers, and to reach the target, different stochastic
algorithms renew the weights of ANNs. The backpropagation
network (BPN) is the most common algorithm to update weights
in the ANN (İnal and Aras, 2005). In the past decade, the use of
ANNs has been increasing substantially, and this is due to their
versatility, robustness, availability of data, and increased
computational power. Their ability to learn from sequence
patterns enables ANNs to work with noise data, fuzzy
information, and non-linear and ill-defined problems. Their
fault tolerance capability further expands the implementation
of ANNs. Recently, ANNs have become an ideal tool to apply in
the fields of medicine, economics, meteorology, psychology,
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neurology, and many others. Medical imaging, identification of
military targets, market forecasting, weather forecasting, flood
forecasting, and electrical and thermal load forecasting are some
common examples of ANN applications.

It is suggested that the integration of VESs enhances the
overall efficiency of the existing grid. However, it is an
obvious fact that these sources are weather dependent like a
photovoltaic (PV) cell depending on solar irradiance or sunlight
intensity to produce electrical energy. Similarly, wind turbines
produce electrical energy by using the natural pressure of the
wind. Moreover, this natural dependence forces the utility to
install these generation sources at distributed places, which are
favorable for these sources in regard to electricity generation.
Although these VESs bring stability and reliability to the power
system and are the cause of a green and clean environment, yet
many concerns are associated with the integration of these VESs
into the existing grid. The intermittent nature of these VESs
makes it difficult to guess the available power from these sources.
However, the utility needs to know the available power to
estimate the reserve capacity of the generation system.
Additionally, on the facade of force framework activity and
control, the circulated idea of these sources and a variety of
inaccessible forces makes it hard to set the estimations of control
factors of the force framework. Subsequently, the force
framework administrator needs notable anticipated estimations
of these control factors to keep up the overall influence stream in
the framework. Along these lines, there is space to build up a
strategy to give the most plausible estimations of control factors
of the force framework to the framework administrator. In such a
manner, the proposed strategy will utilize an ANN model to
anticipate the breeze and sunlight–based irradiance for wind and
sun–oriented age plants. Afterward, it will foresee the practical
warm age plants to limit the age cost regarding punishment cost,
save cost, and all-out cost. In doing so, we need to make sure that
the variables of the power system will remain within their
boundary limits. Therefore, the power system will remain at
its state of equilibrium.

From the above discussion, it is revealed that there is enough
room to propose the optimal scheduling strategy, which can
handle the intermittency of VESs. This study is presented to solve
the power flow problem in a dynamic power system. The major
components of this dynamic power system are conventional
thermal generators, wind farms, and solar PV plants. The key
problem of this study is to schedule these power generation
sources at optimal values. Moreover, along with different
constraints of the power system, the problem becomes more
complicated. Furthermore, VESs like wind and solar generators
cannot be scheduled in the same manner as conventional thermal
generators, due to the inherent property of weather dependency,
e.g., wind velocity and solar irradiation. The uncertainty and
intermittency of these VESs make this challenge more difficult. In
addition to this, load on a power system is variable, and the
availability of VESs is irrelevant to this variable load. A system
operator cannot know the actual real-time (RT) conditions for a
specified day-ahead (DA) schedule. To solve this day-ahead
dynamic optimal power flow (DA-DOPF) problem, an RT-
OPF problem is integrated with the ANN model to predict the

wind speed and solar irradiance. Therefore, the novelty of the
proposed DA-DOPF approach is a two-stage optimization
approach consisting of an LM algorithm–based ANN model
and particle swarm optimization–based economic load
dispatch along with OPF problem constraints with an effective
constraint handling technique. The former precisely generates the
available power of VESs with respect to the wind speed and solar
irradiance, and the latter provides the best-fit generation schedule
of the generation sources along with the satisfaction of power
system constraints. Our proposed study characterizes the
structure of the predicted output of the ANN model and RT-
OPF. And to the best of authors’ knowledge, it is not presented in
the previous existing literature. Furthermore, the main
contribution of the present study is listed in the next section.

1.1 Contribution of the Paper
The real contributions of this work are given as follows:

• The improvement in RT-OPF is evaluated by incorporating
ANN-based predictive modeling in the OPF program. Here,
the ANN uses real and noticed climatic information which
incorporates both meteorological changes and barometric
impacts, such as temperature and overcast cover.

• Improvement in loss minimization is achieved by using the
Levenberg–Marquardt (LM) algorithm for the adopted
three-layer shallow ANN (Section VI).

• An efficient constraint handling technique is adopted to
guide the search process toward a global optimal solution
and thoroughly discussed in Section IV-E.

• Real-time scheduling of generation sources is achieved in a
single run of the program by incorporating T-FMF, to
compute the CFs at the start of DA-DOPF.

• A systematic approach is used to combine all the above-
mentioned techniques with a particle swarm optimization
(PSO) economic dispatched algorithm for the IEEE 30-bus
system, and critical analysis of simulation results has been
done to identify the effectiveness of the proposed approach.

Simulations results depict that the proposed approach
efficiently handles the complexities of the OPF problem.
Moreover, the present study shows the efficient integration of
RESs and maximum power utilization from these sources can be
made possible by using NNs.

The remainder of this paper is organized as follows: Section II
presents literature review. Section III provides details of
inspiration. Section IV presents the numerical demonstration
and issue definition. Section V gives the force models of VESs.
The breeze and sun–oriented determining models are discussed
in Section VI. The proposed DA-DOPF approach is introduced
in Section VII. The results and conversations are examined in
detail in Section VIII. Conclusions are outlined in Section IX.

2 LITERATURE REVIEW

As of late, the OPF issue has acquired a lot of consideration from
scientists since OPF is an essential requirement for the smooth
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and dependable activity of the power system. The power system
administrator needs to limit the general age cost, limit system
misfortune, and keep up as far as possible by controlling the
responsive power stream in the current transmission system.
Subsequently, OPF is a fundamental instrument for power system
administrators in the activity and control of power systems.
Notwithstanding, because of the non-linear and non-convex
nature alongside different limitations, numerous calculations
and improvement methods are created to tackle the OPF
issue. These methods are comprehensively grouped into two
classifications: 1) traditional advancement procedures and 2)
transformative enhancement strategies. A wide assortment of
traditional improvement strategies have been utilized to tackle
OPF such as non-straight programming (Dommel and Tinney,
1968b; Alsac and Stott., 1974; Happ, 1977; Mamandur and
Chenoweth, 1981; Shoults and Sun, 1982; Habibollahzadeh
et al., 1989), direct programming (Stadlin and Fletcher, 1982;
Mota-Palomino and Quintana, 1986; Abou El-Ela and Abido,
1992), quadratic programming (Reid and Lawrence, 1973;
Burchett et al., 1984; Aoki et al., 1987), Newton-based
procedures (Sun et al., 1984; Santos and Da Costa, 1995),
successive unconstrained minimization strategy (Rahli and
Pirotte, 1999), and inside-point techniques (Momoh and Zhu,
1999). All these techniques for streamlining have some normal
disadvantages such as issues of non-assembly, non-direct target
capacities and requirements, introductory supposition, and step
size. A nitty gritty overview identified with these issues is
introduced by Momoh et al. (1999a) and Momoh et al.
(1999b). For the most part, these old-style methods use
inclination-based advancement calculations to linearize the
goal work. The OPF issue is profoundly non-direct and has
numerous neighborhood minima, for example, multi-modal,
so these procedures do not perform well to track down the
doable arrangement. Moreover, the OPF issue is non-
differentiable, non-smooth, and non-curved, while these
procedures depend on inclination strategies. In this manner, it
is fundamental to grow such methods that can beat these
challenges. As of late, on the facade of transformative
calculations, new improvement procedures have been created.
These high-level enhancement procedures are computationally
effective, quick, and solid. These techniques do not suffer from
convergence issues and local optimality. Some common examples
of these techniques are genetic algorithm (GA) (Lai et al., 1997),
Osman et al.’s algorithm (Osman et al., 2004), simulated
annealing (SA) by Miranda et al. (1998), tabu search (TS), and
PSO (Abido, 2002a; Abido, 2002b), respectively. With due respect
to these advanced techniques, unfortunately, it has been found
that they have a problem of pre-mature convergence and
parameter selection. It is difficult to fine-tune the parameters
of these algorithms and to handle constraints. These difficulties
lead to the infeasible solution, computational time complexities.
Therefore, there is always a trade-off between the complexity and
the solution.

In AlRashidi and El-Hawary (2009) and Frank et al. (2012),
the detailed comparison to solve the OPF problem is discussed.
Improved GA has been used to find the feasible values of control
variables of the load flow problem by Lai et al. (1997). In Abido

et al. (2002b), the PSO algorithm is used while solving an OPF
problem. Variants of PSO are presented by Kennedy and Russell
(1995), Kennedy (2000), Saber et al. (2007), Dutta and Singh
(2008), and Gnanadass and Venkataramana (2008). Niknam et al.
(2012a) examined an improved PSO to streamline the various
goals of OPF at the same time while considering generator fuel
cost, genuine power misfortune, fossil fuel byproduct, and
solidness file of voltage as numerous targets for enhancement.
In the work of Niknam et al. (2012b), the shuffle frog leaping
algorithm (SFLA) and SA have acquainted with managing the
non-bended nature of old enough expense target work. The ideal
estimations of control factors have been accomplished utilizing a
versatile genuine coded biogeography–based improvement
calculation; subsequently, precision and heartiness are
observers in the aftereffects of OPF (Ramesh Kumar and
Premalatha, 2015). The ideal power stream issue is introduced
as a multi-target enhancement issue and has been settled utilizing
a concordance search calculation with an all-encompassing quick
non-ruled arranging and positioning method, so the best trade-
off arrangement is extricated in various cases (Sivasubramani and
Swarup, 2011). Recently, the conventional stochastic methods
were also used for weather prediction. Muneer and Gul (2000)
and Muneer et al. (2000) presented another forecasting model
based on meteorological radiations and cloud cover radiations for
solar radiations. All these mathematical stochastic models and
probability density functions use radiation theories and
meteorological data collected by sensors to predict the solar
radiations (Tobiska, 2000; Reddy and Ranjan., 2003).
Additionally, for wind speed anticipating, analysts have built
up certain models, because of recursive least-squares relapse or
auto-regressive coordinated moving normal techniques, much
precisely figure on account of noticed time-arrangement
information and their connections (Giebel et al., 2003;
Landberg et al., 2003).

Similarly, after the development of the probabilistic optimal
power flow (POPF), the direction of research is shifted toward the
development of model and calculation methods. In Huynh et al.
(2018), the probabilistic power flow methodology for large-scale
power systems incorporating renewable energy sources is
presented. Dynamic radial basis functions of neural networks
are used to generalize three-phase robust load flow for radial and
meshed power systems with and without uncertainty in energy
resources (Baghaee et al., 2018). The Markov chain quasi-Monte-
Carlo sampling method is utilized to perform POPF with
correlated wind power uncertainty in Sun et al. (2019). In
Wang and Guo (2018), a real-time power balancing critical
time scale is achieved with intermittent power sources. The
bidding methodology in a joint hydro-electric and wind park
is proposed by Kneevi et al. (2019). Baghaee et al. (2017)
introduced the fuzzy unscented transform for uncertainty
quantification of correlated wind/PV microgrids. An efficient
approach for practical approximations and heuristic approaches
for managing shiftable loads in the multi-period optimal power
flow are discussed by Avramidis et al. (Iason-Iraklis et al., 2021).

As of late, ANNs are the focal point of consideration for sun
and wind–oriented gauging because of their characteristic ability
to deal with the non-linearities of forecast goals (Kalogirou,
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2000). Furthermore, integration of fuzzy rules and wavelet
transformation with NNs gives new directions to the research
by Barbounis et al. (2006), Cao and Cao (2006), and Chaabene
and Ben Ammar (2008). Moreover, to reduce the prediction error
and to enhance the convergence rate, different algorithms are
presented by the researchers in recent literature. Mishra et al.
(2015) published a scaled conjugate algorithm to train an MLP-
based ANN for least squares (LS) and minimum mean square
error (MMSE). Stefenon et al. (2020) presented the well-known
BFGS quasi-Newton optimization method to achieve better
performance of the ANN. Plumb et al. (2005) discussed the
predictive ability of artificial neural network (ANN) models
along with four classes of training algorithms.

It has been found in the previous literature that constraint
handling techniques are not considered in a day-ahead OPF
problem along with the prediction of available real power
from VESs. Moreover, the complexity of real-time OPF is
pretty much high due to the multiple runs of the program.
The idea presented in this work is different from that of the
earlier proposed work, and its focus is on the prediction of solar
irradiance and wind speed by the ANN, and then it is used to
calculate the available power from these VESs. In addition to this,
the LM algorithm is used to minimize the prediction error and to
increase the convergence rate of the ANN. Along with this,
T-FMF is used to calculate the CFs for VESs in each sub-
interval. The SF solution constraint handling approach is used
to handle constraint violation. Moreover, 24-h variable load is
assumed to be known, and each 1-h interval is subdivided into six
sub-intervals each of 10 min to find the values of control variables
to convert the conventional OPF into the DA-DOPF. In the end,
the optimal schedule of generation sources and feasible values of
control variables are presented in Section VIII for each sub-
interval, which shows the effectiveness of the study.

3 PROBLEM OVERVIEW AND MOTIVATION

This work considers and solves the OPF problem of the power
system having multiple VESs. The main components of this
system comprise the conventional thermal generators, wind
farms, and solar PV plants on different buses. The scheduling
of generation sources in such a system is a challenging task due to
the integration of VESs because VESs are weather dependent and
a little change in climate conditions may affect the available
output power of these sources. Moreover, the load is variable, and
the power system operator is responsible to fulfill this load
demand by scheduling the generation sources at the optimal
generation point. In a hybrid system, an optimal scheduling
approach is presented by Yang et al. (2013) to manage a wind,
solar, and storage system. Gayme and Topcu (2012) figured an
OPF issue to track down the ideal estimations of factors of a
power system having a capacity limit. Levron et al. (2013)
introduced a strategy to deal with the capacity gadgets of the
microgrid. The customary OPF is a static improvement issue in a
power system having no wellspring of shifting yield power like
solar and wind. In conventional OPF, the lone goal is to satisfy the
heap need by running the OPF program at various stretches. To

take care of the OPF issue with the wind age, the creators utilized
the stochastic model to anticipate the wind speed by Jabr et al.
(Jabr and Pal, 2009). Here, the OPF issue is defined to limit the
fossil fuel byproduct, power misfortune, and age cost with and
without valve point impact in Dubey et al. (2015). The issue with
infiltration of wind age and DC OPF is tackled by Zhang and
Giannakis (2013). Nowadays, the integration of renewable energy
is rapidly expanding and trending in many power systems of the
world. VESs are principally nature-friendly and contamination-
free, and they can serve longer as compared to conventional
generation sources. However, VESs are weather dependent, and
therefore, available real power is always variable. For example,
cloud cover on a clear day suddenly decreases an available output
power from the PV plant. Similarly, variation in wind speed
affects the available output power of wind turbines. Therefore,
power output from these sources varies from minute to minute
scale. Hence, the power system operator needs an efficient power
flow program that is capable of running again and again to
maintain power flow in the system by scheduling generation
sources, managing tap changing, and connecting and
disconnecting VAR compensation devices. Although the
methods reported earlier are quite capable of solving the OPF
problem, there is an opportunity available to develop a new
technique to solve OPF dynamically. Hence, the motivation
behind this study is listed as follows:

• ANNs are incorporated to schedule the generation sources
more accurately.

• An efficient constraint handling approach is considered to
find the most feasible solution.

• To reduce the complexity of the OPF program, contribution
factors (CFs) are calculated prior to running the load flow
for each sub-interval.

Therefore, in this study, the ANN is used to predict the
meteorological values for the power models of solar and wind
power generators, and CFs are calculated using T-FMF, before
going into the load flow loop of the program. Furthermore, to
guide the search process of optimization toward a feasible
solution, the SF constraint handling technique is used in the
single run of the DA-DOPF program. And to the best of the
authors’ knowledge, such a mechanism has not been developed
before to solve the real-time OPF.

4 DA-DOPF PROBLEM FORMULATION

The DA-DOPF problem is formulated as an optimization
problem with the objective of minimizing generation cost of
conventional thermal generators along with the cost equations of
VESs. A general optimization problem subjected to constraints
can be expressed as follows:
minimize:

min { f (a, b) � f 1(a, b)} (1)

subject to
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gj(a, b)≥ 0, j � 1, 2, . . . ,M, (2)

hk(a, b) � 0, k � 1, 2, . . . ,N , (3)

where a � {a1, a2, . . . , an}T represents a vector of independent
decision variables and b � {b1, b2, . . . , bn}T represents the
dependent decision variable vector. The inequality constraints
are gj (a, b) where j � {1, 2, . . .,M, }, and the equality constraints
are hk (a, b), where k � {1, 2, . . ., N}. Total numbers of inequality
and equality constraints are M and N, respectively. Table 1 shows
the state and control variables.

Def. 1. Control (independent) variables: The following
equation represents a set of control variables:

b � {(PG2, ‥, PGN), (VG1, ‥,VGN), (QC1, ‥,QCN), (T1, ‥,TNT)},
(4)

whereGN represents the number of generators, CN is the number
of VAR compensation devices, and NT represents the number of
transformers.

Def. 2. State (dependent) variables: The following equation
represents a set of state or dependent variables:

a � (PG1), (VL1), ‥,VLN), (QG1, ‥,QGN), (S1, ‥, STL){ }, (5)

where LN is the number of load buses and TL is the number of
transmission lines. Nevertheless, definite interpretation of Eqs.
1–5 can be taken from Ilyas et al. (2020a).

4.1 Objective Functions
To assess the effectiveness of the proposed technique, three
minimization objective functions have been formulated for
the DA-DOPF problem. The IEEE 30-bus modified system

model is considered in this study. The summary of the system
model is given in Table 2. The slack bus is responsible to
balance the active power flow in the system, and it is known
as the swing bus. The voltage magnitude (V) and angle (δ) are
taken as 1 p.u. and zero, respectively, for a swing bus. The
formulation of optimization objectives is presented
subsequently.

4.1.1 Minimization of Cost Without Valve Point Effect
Generally, the cost function is quadratic and the cost curve is
plotted in between real power (MW) and fuel cost ($/hr).
Similarly, the objective function for cost minimization without
valve point is presented as

OFcost � ∑NG
i�0
(ai + biPgi + ciP

2
gi)$/hr, (6)

where OFcost represents the cost in $/hr. ai, bi, and ci are cost
coefficients of thermal generators, listed in Table 3.

4.1.2 Minimization of Cost With Valve Point Effect
The cost function as a function of valve point effect can be
expressed as

OFcostvp � ∑Ng

i�0
(ai + biPgi + ciP

2
gi|di × sin(ei × (Pmin

gi − Pgi))|) $/h,

(7)

where ai, bi, ci, di, and ei are again the cost coefficients with valve
point effect and Pmin

gi is the minimum power limit on the ith
generator.

4.1.3 Minimization of Cost for Multi-Fuel Thermal
Generators
In a power system, each generation station has different fossil
fuels to produce electricity, e.g., coal, gas, and oil. The generation
station with multi-fuel has a piece-wise quadratic relationship
between power and cost, and the number of pieces depends on the
type of fuel used. The cost of the ith generator considering multi-
fuel is expressed as

OFmulti � aik + bikPGi + cikP
2
Gi $/h for fuel ′k′ (8)

where k is the type of fuel such as diesel, natural gas, or heavy furnace
oil. In this work, there are two generators considered multi-fuel and
remaining one has a single-fuel function as explained earlier. Cost
coefficients for single-fuel generators are given in Table 3 and those
for multi-fuel generators are given in Table 4, whereas the precise
meaning of Eqs. 6–8 is given in Ilyas et al. (2020a)

TABLE 1 | Control and dependent variables.

Control (independent) variables State (dependent)
variables

Generator buses’ active power (excluding
slack bus)

Active power of slack bus

Generator buses’ voltage magnitude Generator bus reactive power
Transformer tap Load bus voltage magnitude
Shunt compensation devices Line loading

TABLE 2 | System model summary.

Items Quantity Details

Buses 30 Biswas et al. (2017)
Branches 41 Biswas et al. (2017)
Thermal generators 4 At (bus 1 is swing bus) buses 2,5, and 8
Wind 25 At 11th bus 75 MW (each of 3 MW)
Solar PV 1 At 13th bus 60 MW
VAR compensation devices 9 At buses 10, 12, 15, 17, 20, 21, 23, 24,

and 29
Transformer with tap
settings

4 At branches 11, 12, 15, and 36

Controlled variables 24 —

Connected load — 283.4 MW, 126.2 MVAr
Load bus voltage allowed
range

24 [0.95–1.05] p.u.

TABLE 3 | Cost coefficients of single-fuel generators (Biswas et al., 2018).

Units Bus # a b c d e

1 1 0 2 0.00375 18 0.037
2 2 0 1.75 0.0175 16 0.038
3 5 0 1 0.0625 14 0.04
4 8 0 3.25 0.00834 12 0.045
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4.2 VES Cost Model
In a power system, VESs are generally owned by private bodies.
They sell power to the utility under a predefined contract.
Therefore, the control and operation of VESs are in the hands
of private bodies. In contrast to the conventional generation
sources, VESs do not require any fuel to produce electrical
energy as they utilize wind speed or sunlight to produce
electrical energy which is freely available in nature. However,
these private bodies charge some operation and maintenance cost
to run their plants (Wijesinghe and Lai, 2011). The cost of
electricity generation from these VESs mainly comprises direct
cost, reserve cost, and penalty cost. The direct cost for wind and
the solar plant can be calculated as in Biswas et al. (2017) and
given as

Cw(Pw) � gwPw, (9)

Cpv(Ppv) � hpvPpv, (10)

where Pw and PPV represent the scheduled output power from the
wind farm and solar photovoltaic, respectively, and gw and hpv
represent direct cost coefficients of VESs. As the VESs are weather
dependent and due to the variable patterns of wind speed and
solar irradiance, there is always uncertainty associated with the
production of electricity generation from VESs. This
intermittency of VESs makes it difficult to schedule generation
sources. Hence, the burden on the power system operator (SO)
increases in terms of optimal scheduling of its generation
sources. Moreover, this variability increases the operational
cost of electricity production as it becomes compulsory for the
system operator to have reserve generation capacity to balance
the natural fluctuations of VESs. This also introduces some
computational difficulty to calculate the aggregated cost of
electricity generation in OPF. Therefore, reserve and penalty
cost models are introduced and integrated with the cost
function in mathematical modeling as presented by Reddy
et al. (2014).

Def. 3. Cost in case of overestimation: If the available power
from a VES is less than the contractually agreed scheduled power,
then the reserve cost model for wind power can be stated as

CWR,i(ΔP) � krw,i(ΔP), (11)

ΔP � PWsh,i − PWav,i, (12)

where PWsh,i and PWav,i represent scheduled and available power
capacities from a wind power source, respectively, and krw,i
represents the reserve cost coefficient for wind.

Def. 4. Cost in case of underestimation: In contrast to the
above stated case, if the available power exceeds the scheduled

power, then the system operator (SO) will pay a penalty as per the
following cost model:

CWP,i(ΔP) � kPw,i(ΔP), (13)

ΔP � PWav,i − PWsh,i, (14)

where kPw,i denotes the penalty cost coefficient for the ith windmill.
Similarly, the reserve and the penalty cost of solar can be calculated.
Cost coefficients used in this study are given in Table 5. The reserve
and penalty cost for wind and the solar plant can be calculated as in
Biswas et al. (2017) and given in Eqs. 11–14. Finally, the cumulative
objective function to minimize the cost is given as

min(fcost) � fcosti + [Cw(Pw) + CPV(PPV )] + [CWR,i(△P) + CPVR,i(△P)]
+ [CWP,i(△P) + CPVp,i(△P)] $/h,

(15)

where fcosti is the cost of the ith thermal generator whichmay be single
fuel andmulti-fuel. The second term represents the direct cost of wind
and solar. The third term represents the reserve cost of wind and solar,
and the fourth term represents the penalty cost of wind and solar.

4.3 Equality Constraints
• The nodal active power balance at the ith bus is given as follows:

PGi − PDi � Vi ∑NB
j�1

Vj[Gijcos(δij) + Bijsin(δij)], i ∈ N. (16)

• The nodal reactive power balance at the ith bus is given as

QGi − QDi � Vi ∑NB
j�1

Vj[Gijcos(δij) + Bijsin(δij)], i ∈ N , (17)

where elements of the admittance matrix are calculated as

Yij � Gij + Bij. (18)

Equality constraints shown in Eqs. 16–18 are thoroughly
discussed by Chen et al. (2018). The convergence process of load
flow will not violate the equality constraint limits eventually.

4.4 Inequality Constraints
• Real power limits of generation sources including maximum
penetration of wind and solar can be written as

TABLE 4 | Cost coefficients for A and B fuels (Biswas et al., 2018).

Units Bus # a b c Min. Max.

A-1 2 55 0.7 0.005 50 140
A-2 5 40 0.3 0.01 20 55
B-1 2 82.5 1.05 0.0075 140 200
B-2 5 80 0.6 0.02 55 80

TABLE 5 | Cost coefficients for RESs (Biswas et al., 2017).

Direct cost coefficient

Wind gw � 1.6
Solar gs � 1.6

Reserve cost coefficient

Wind krw � 3
Solar krs � 3

Penalty cost coefficient

Wind kpw � 1.5
Solar kps � 1.5
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Pmin
Gi ≤ PGi ≤ Pmax

Gi ∀ i � 1, 2, . . . ,NG. (19)

• Reactive power limits of generation sources can be
written as

Qmin
Gi ≤QGi ≤Qmax

Gi ∀ i � 1, 2, . . . ,NG. (20)

• Voltage limits of generator buses are given as

Vmin
Gi ≤VGi ≤Vmax

Gi ∀ i � 1, 2, . . . ,NG, (21)

where NG is the total number of thermal generators, wind and
solar plant.

• The line thermal limit of all branches is given as

Pij <TLij, (22)

where TLij gives the thermal limit of the power flow line from
node i to j.

• For the secure operation of the power system, it is
compulsory to maintain the load bus voltages within the
allowable range. Load bus voltage limits are given as

Vmin
Li ≤VLi ≤Vmax

Li ∀ i � 1, 2, . . . ,NG. (23)

The specific meaning of each variable in Eqs. 19−23 is well
explained by Chen et al. (2018). Feasible values of control or
independent variables among the inequality constraints are selected
by the optimization algorithm within their allowable boundaries. An
effective constraint handling technique to pick the feasible values of
state or dependent variables is discussed in Section IV-E.

4.5 Constraint Handling Approach
While using an evolutionary algorithm (EA) to solve an
optimization problem, it is important to use a proper
constraint handling approach (CHA). An EA equipped with a
proper CHA can guide the search process toward a globally
feasible solution. CHAs are able to use the information hidden in
infeasible solutions, and hence, they do not discard any infeasible
solution immediately by Tessema et al. (2006). Deb (2000a)
proposed an efficient method to handle the constraint
diversification. Equality constraints are converted to inequality
constraints by introducing the tolerance factor δ in equality
constraints. The ultimate constraint violation for an infeasible
solution is calculated as in Biswas et al. (2018) and Deb (2000b)
and given in Eqs. 24, 25:

K(X) � ∑N
j�1 wh Gi(X)(
∑N

j�1 wh

, (24)

where wh is the weighting parameter for constraint violation, and

wh � 1
Gi,max

, (25)

where Gi,max is the maximum value of constraint violation from
the Gi(X) set. Consequently, equality constraints in three are

converted into inequality constraints. A brief description of CHA
is presented in the next section.

4.5.1 SF
In the SF approach, two fitness values of the objective function
(Xi, Xj) are always compared to each other, and a decisive logic is
used to discard the less feasible value. The algorithmic logic to
pick a superior solution is explained in Algorithm 1.

The SF approach always picks a feasible solution when other
belongs to the infeasible search space. On the contrary, a solution
having a smaller fitness value has been picked when both belong
to a feasible region F. Similarly, a solution with the lowest overall
constraint violation K(X) in Eq. 24 has been picked when both do
not belong to the feasible space F. That is how this approach
pushes infeasible solutions toward feasible space and converges
the search process to an optimal solution.

5 VES MODELS

5.1 Wind Generator Model
In this work, a wind farm that has 25 wind turbines is associated
with transport 13, as demonstrated in Figure 1. Every turbine has
3 MW appraised power. In any case, the accessible power got
from a wind farm differs from the wind speed. Along these lines,
to compute the accessible genuine power, the model introduced
by Biswas et al. (2017) is utilized. The yield power of a wind
turbine relies upon wind speed and can be numerically
communicated through Eq. 26 taken from Biswas et al. (2017):

Pw(v) �

0 for v < vin & v > vout

pwr
v − vin
vr − vin

( ) for vin ≤ v ≤ vr

pwr for vr < v ≤ vout ,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(26)

where pwr is the rated power of the wind turbine and v, vr, vin, vout
are the actual and rated speed and cut-in and cut-out
speed, respectively. The rated values are considered as
vr � 16 m/s, vin � 3 m/s, and vout � 25 m/s.

5.2 Model of Photovoltaic Generation
5.2.1 Power Model
For the solar power, the energy conservation model given by
Biswas et al. (2017) is expressed through the following equation:
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FIGURE 1 | IEEE 30-bus system model.
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Ps(G) �
Psr

G2

GstdRc
for 0≤G≤Rc

Psr
G
Gstd

for G≥G,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (27)

where G, Gstd, Rc, and Psr are forecasted solar radiation,
solar radiations at STP, actual solar irradiation, and rated
output power, respectively. In simulations, Gstd � 800 W/
m2, Rc � 120 W/m2 are considered.

6 WIND AND SOLAR FORECASTING
MODEL

As the VESs are intermittent, the variability of the available power
from these sources poses a challenge to meet the variable load
demand of the power system. Therefore, it is important to predict
the wind speed and solar irradiance before scheduling the
generation sources. For this purpose, the ANN is used to
predict wind speed and solar irradiance. The details are
given below.

6.1 Fundamentals of ANN
In energy engineering systems, the ANN is being used extensively
for modeling and prediction purposes. The requirement to set up
an ANN is the historical datasets. In the case of weather
forecasting, historical data can be collected by using sensors,
which can continuously monitor and record different attributes
of weather. The meteorological data used in this paper are
collected during the period from January 1, 2015, to December
31, 2017, from Danyore Weather Station (DWS) at Hunza,
Pakistan, and Lahore Weather Station (LWS) at Lahore,
Pakistan. Different algorithms are used to predict wind speed
and solar irradiance by using the ANN. The basic ANN equation
to map the output Y via a non-linear input feature vector X given
in Eq. 28 is taken from Quej et al. (2017). The architecture
diagram of the presented ANN is given in Figure 2. However, for
the backpropagation error minimization, the LM algorithm is
finally adopted because it is efficient in handling errors in shallow
networks. The details of this algorithm are given below.

Y � f (X) � XTw + b. (28)

6.1.1 LM Algorithm
This algorithm uses two numerical minimization methods:
gradient descent and Gauss–Newton. The former algorithm is
based on backpropagation (BP) training of the NN. It has been
widely used in weather forecasting because of its ability to model
non-linear separable problems by Qazi et al. (2015). In the latter
method, the sum of squared errors is minimized by assuming that
the least-squares function is locally quadratic in the parameters
and finding the minimum of this quadratic. When the parameters
are found far away from the feasible value, the LMmethod adopts
the gradient-descent method. On the contrary, the
Gauss–Newton method is opted when the parameters are
found near the feasible value. The LM algorithm modifies the

parameter updates, and the update function U(k) can be
computed using Eq. 29 given in Qazi et al. (2015):

U(k) � − JT × J + β × I(JT × J)[ ]−1 × JT × ε, (29)

where first-order derivatives of the network errors for the weights
and biases are included in a Jacobian matrix J, ε is the network
error vector, β is a non-negative scalar number called the
damping factor, and I is a diagonal identity matrix. The
performance parameters used for the LM algorithm are given
in Table 6. The values of these parameters are selected as default
settings by the NN tool of Matlab program.

7 THE PROPOSED DA-DOPF APPROACH

7.1 Overview of the Proposed Approach
Recently, numerical optimization techniques are used in the
development of EA, which are population-based and a potential
candidate to solve optimization problems, and can efficiently avoid
the problems of classical methods, e.g., lack of convergence or step
size issues. PSO has been used in many power flow studies to solve
OPF because of its efficient population-based heuristic nature and
flexible and well-balanced approach of global and local exploration
(Abido, 2002c). Moreover, scheduling and planning of power
systems having VESs is a difficult task due to the unpredictable
available power of VESs. It is worth mentioning here that many
researchers have used ANNs for weather forecasting to estimate the
generated power of VESs in the smart grid (Moghaddam and Seifi,
2011). This study is carried out to solve a DA-DOPF problem for a
power system having renewable energy sources. The main objective
of this study is to schedule the generation sources at optimal values
so that the cost of electricity generation remains at its minimum
value, with the satisfaction of OPF constraints as explained earlier in
Section IV. The said objective is achieved by using the PSO/ELD
algorithm in conjunction with the ANNwhich is used to forecast the
solar radiation and wind speed pattern on an hourly basis to
calculate the available power of VESs. Moreover, the developed
technique is equipped with an effective constraint handling
approach to handle the violation of inequality constraints.
Therefore, to handle the diversification of these inequality
constraints, the SF constraint handling technique is used. Hence,
the proposed approach differs from other available approaches
found in the literature regarding violation of equality constraints
on dependent variables (Surender Reddy and Bijwe, 2016; Grover-
Silva et al., 2018). Moreover, the 1-h interval is divided into fifteen
sub-intervals to achieve the dynamic generation schedule. It is worth
mentioning here that the idea of using T-FMF to calculate CFs is
never used before which provides the sub-interval variation of VESs
and makes it easy to analyze the setting of control variables.

7.2 PSO
Numerical optimization has the ability to overcome convergence
or step size problems in classical optimization techniques. PSO
has been used in many power flow studies to solve OPF because of
its efficient population-based heuristic nature and flexible and
well-balanced approach of global and local exploration by Abido
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(2002c). Moreover, scheduling and planning of power systems
having VESs is a difficult task due to the unpredictable available
power of VESs. It is worth mentioning here that many researchers
have used ANNs for the purpose of weather forecasting to
estimate the generated power of VESs in the smart grid
(Moghaddam and Seifi, 2011).

This study is carried out to solve a DA-DOPF problem for a
power system having renewable energy sources. The main
objective of this study is to schedule the generation sources at
optimal values so that the cost of electricity generation remains at
its minimum value, with the satisfaction of OPF constraints as
explained earlier in Section IV. The said objective is achieved by
using the PSO-economic load dispatch (ELD) algorithm in
conjunction with the ANN which is used to forecast the solar
radiation and wind speed pattern on an hourly basis to calculate
the available power of VESs. Moreover, the developed technique
is equipped with an effective constraint handling approach to
handle the violation of inequality constraints. Therefore, to
handle the diversification of these inequality constraints, the

SF constraint handling technique is used. Hence, the proposed
approach differs from other available approaches found in the
literature regarding violation of equality constraints on
dependent variables (PSO is a nature-inspired optimization
algorithm that starts with the random initialization of
solutions). This swarm of solutions moves with a
randomized velocity within the search space. Each solution
of this swarm is known as a particle. Every particle remembers
its last position in the search space to achieve the best position.
The objective function fitness value at this position is saved as
“pbest.” To achieve the most optimal fitness value, the position
of a global version of the swarm is saved as “gbest” which is the
overall minimum value of objective function achieved at the
present iteration of the algorithm loop. Before the next search
iteration, the velocity of every particle is updated so that the
swarm moves toward the global best value. Basic elements and
mathematics of this algorithm are briefly stated and defined as
follows:

Particle, X(t): It represents a solution of the m-dimensional
vector, where the number of optimized parameters is given by m.
Each search point is known as a particle. The value of the objective
function forX(t) can be a possible solution. The position ofX(t) can
be influenced by different optimized parameters.

Population, pop(t): It is a set of n particles which is known as
the population of size n. At each iteration t, the population vector
can be written as pop(t) � [X1(t), . . . ,Xn(t)]

T .
Particle velocity, V(t): The particles are directed to be moving

with velocity Vj(t) within the search space. This movement is
responsible to find the optimal value of the objective function. At
every generation, each particle can be assigned an updated
velocity to move within the search space given in the

FIGURE 2 | Architecture of the NN.

TABLE 6 | LM algorithm parameters.

Parameters Set values

Max. number of epochs 1,000
Performance goal 0
Maximum validation failures 6
Maximum performance gradient 1.00 × 10–07

Initial μ 0.001
μ increase factor 0.1
Maximum μ 10
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following equation as explained by Surender Reddy and Bijwe
(2016) and Grover-Silva et al. (2018):

Vt+1
i � Vt

i + c1U
t
1(pbti − Xt

i) + c2U
t
2(gbt − Xt

i), (30)

where Vt
i is the initial velocity; pb

t
i − Xt

i is the self-influence; gb
t −

Xt
i is the global influence; c1 is called the cognitive parameter and

c2 is called the social parameter, which both are called
acceleration coefficients; and Ut

1 and Ut
2 are two random

numbers that vary between 0 and 1 and the position is
updated according to the following expression:

Xt+1
i � Xt

i + Vt+1
i . (31)

Inertia weight, w(t): To influence the moving capabilities of a
particle inertia weight, w(t) is used. Global exploration
capabilities of the algorithm can be enhanced at the start by
assigning a large inertia weight. In contrast, at the end of the
search process, they can be reduced to improve the local search
ability of a particle. The inertial weight reduction can be achieved
by using an annealing decrement function as follows:

w(t) � αw(t − 1), (32)

where α is a decrement constant and its value is less than 1. While
solving for minimization problems, the personal best pbi at
iteration t + 1 is calculated as

pbt+1i � pbti if f (Xt+1
i )> pbt+1i

pbti if f (Xt+1
i )≤ pbt+1i ,

{ (33)

where f: Fn→ F is the fitness function. The global best position gb
in each algorithm loop t is calculated as

gb � min[pbti], (34)

where i ∈ pop(t). Here, it is important to note that, at every iteration,
each particle knows its personal best “pb” and remembers this value till
the next iteration.While at the time “t,” the overall minimum value of
swarm is known as the global best position “gb.” In the next loop,
updated velocities and positions are assigned to each particle of the
swarm.Now to calculate the fitness of objective function, these particle
positions are used. In this algorithmic flow, theminimumfitness value
achieved by the entire swarm is called new gbest, and the minimum
fitness value is achieved by the particle itself and is called new pbest.
This process repeats until the user-defined stopping criteria (limitation
of maximum iteration) are satisfied. The control parameters used for
the PSO algorithm are given in Table 7. The values of these
parameters are selected by a training algorithm with different
patterns of parameters and fine-tuning.

7.3 T-FMF
The contributing factors (CFs) for VESs are calculated by using
T-FMF which is derived from the fuzzy decision-making
approach. Hence, variation in the real power of VESs during
the sub-interval is realized by the use of T-FMF; in this way, CFs
are calculated at the start of the algorithm loop, which helps to
inspect the variation in real power loss and overall cost of the
network. Moreover, the proposed technique is capable of
calculating the most economical generation schedule by
assigning CFs to VESs. Therefore, generation cost is kept at its
minimum value along with the reduction in line loss of the
system. The FMF values μ for RES contributions are computed
and defined as in Ilyas et al. (2020a) by the following equation:

ξ j(cfj) �
0 for cfj ≤ y1
(cfj − y1)/(y2 − y1) for y1 < cfj < y2
1 for cfj ≥ y2.

⎧⎪⎨⎪⎩ (35)

Here, cfj shows the value of CF. In this work, y1 and y2 are
considered as 0 and 1.25, respectively, as given by Kaur and Jain
(2017), while the aggregated real power from VESs is expressed
through the following equation:

VESsTP � {ξw × Pw} + {ξpv × Ppv}. (36)

7.4 Computational Flow
As has been discussed in the earlier sections, the intermittency of
VESs in electricity generation introduces a challenge to develop
an efficient DA-OPF program. All the available approaches in the
literature can handle this challenge effectively. Therefore, this
paper proposed a technically and computationally efficient
approach to solve the DA-OPF problem. The computational
flow starts from the prediction of solar intensity and wind
speed pattern which is used in the calculation of available
power from VESs. Then, CFs are calculated using T-FMF to
consider the dynamic behavior of VESs. The variable load pattern
is assumed to be available at the start of the DA-DOPF loop.

TABLE 7 | Control parameters of the PSO algorithm.

Parameters Values

Population size 50
Number of iterations for PSO convergence 300
Inertia of particles 0.9
Weight of particles 0.4
Accuracy 0.001
Acceleration 1.8
Max. iteration for load flow convergence 200

FIGURE 3 | DA-DOPF flow chart.
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Therefore, the remaining load is being calculated which is beyond
the available generation capacity of VESs. Furthermore, thermal
generators are scheduled at the optimal values to cater to the
remaining load. In addition, the SF constraint handling approach
is used to avoid the constraint violation referring to the limits of
the dependent variables. In the end, a confident and global
feasible solution is achieved from the search space. The
computational flow of the proposed approach is further
elaborated in Algorithm 2. Moreover, continuity of the steps
is represented pictorially in Figure 3.

7.5 System Model
In this work, for understanding and analyzing solar and wind, the
standard IEEE 30-bus system of 41 branches is used and VESs are
integrated at different buses. A 75MW wind farm is inserted at bus
11 having 25wind turbines each of 3MW. Similarly, a solar PV plant
of capacity 60MW is integrated at 13. Moreover, bus 1 is taken as a

slack bus, and at buses 2, 5, and 8, conventional thermal generators
are placed. The maximum connected load at once is assumed to be
283.4MW. Furthermore, a variable load is assumed to be available at
every hour. The amended system model is shown in Figure 1. The
summary of the IEEE 30-bus system model is given in Table 2.
Nevertheless, the proposed approach is generic such that it can be
easily implemented on any system model with more buses.

7.6 Climatic Data Representation in 1D
and 2D
Meteorological data are smartly classified in 2D arrays as given in
Eqs. 37, 38. In data matrices, the row shows the number of days in
a month and column shows the number of hours in a day. Here,
each element represents the measured value of solar irradiance
and wind speed. To show the periodic nature of solar irradiance,
meteorological data are plotted in a 2D plot in Figure 4. Similarly,
the stochastic nature can be analyzed by a 2D plot of wind data in
Figure 5. The variable nature of solar irradiance and wind speed
in a single day is shown in a 1D plot in Figure 6.

Solar − Irr(D,H) �
r1,1 r1,2 / r1,24
r2,1 rj,k / r2,24
« « 1 «

r31,1 r31,2 / r31,24

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (37)

Wind − Speed(D,H) �
v1,1 v1,2 / v1,24
v2,1 vj,k / v2,24
« « 1 «

v31,1 v31,2 / v31,24

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (38)

where rj,k, vj,k represent the solar irradiance and wind speed of the
jth day at kth hour.

j(Days) � 1, 2, . . .., 31
k(Hours) � 1, 2, . . .., 24.

FIGURE 4 | Solar data in a 2D plot.
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8 RESULTS AND DISCUSSIONS

8.1 Forecasting Performance Evaluation
The accuracy of the ANN models is analyzed based on the
maximum prediction error (MPE) and root mean square error

(RMSE). However, various training algorithms are tested. During
the trial process, the algorithms are compared based on RMSE and
resemblance of predicted values to target values. Comparison of
different algorithms suggests that the LM algorithm performs
better than others on the input data; therefore, it is adopted for

FIGURE 6 | Wind and solar data in 1D plots.

FIGURE 5 | Wind data in a 2D plot.
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the training phase of the network. Besides, it is tracked down
that the eight neurons in the hidden layer related to the LM
preparing calculation give the best presentation and the least
forecast error. In Figure 7, the performance curve of solar
irradiance is plotted against epochs, and it has been found that
desired results are obtained at the 171st epoch. Similarly, for
wind in Figure 8, it can be noticed that the best results are
achieved after 1,000 epochs because of a large number of
parameters and sparseness in the data. Furthermore,
regression plots of solar and wind generation are shown in
Figures 9, 10, respectively. It is obvious from these plots that
the NN is well trained and data are well fit during all phases of

the algorithm. Furthermore, to highlight the superiority of the
LM algorithm to some other algorithms, the RMSE is
presented in Table 8. It can be noticed that the least error
has been achieved by the proposed algorithm.

8.2 Performance Evaluation of Proposed
DA-DOPF
The DA-DOPF optimized Eq. 15 represents that the scheduling
period considered in this study is 1 h which is further divided into
six sub-intervals of 10 min. Therefore, by keeping in mind the
intermittent nature of VESs, it is considered in this work that the

FIGURE 7 | Solar performance.

FIGURE 8 | Wind performance.
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proposed DA-DOPF is performed every 10 min for the dynamic
dispatch of generation sources. Moreover, optimizing energy for
each hour and optimal generation cost are calculated for (24 × 10)
sub-intervals based on CFs of VESs. The contribution of thermal
generators and VESs in these sub-intervals is shown in the bar
chart plotted in Figure 11. Table 9 shows the optimal
contribution of generation sources (GSs) along with voltages
and reactive power settings. Furthermore, the optimized cost

for sub-intervals is also presented in Table 9 which is calculated
using the PSO-based optimization ELD program. As per
predicted values of solar irradiance and wind speed, available
VES power is calculated. Penalty and reserve costs for wind and
solar are computed using Eqs. 11, 13, respectively. In addition, to
consider the variable nature of the connected load, the varying
load pattern for 24 h is shown in Figure 12. Therefore, the
cumulative basic cost with valve point effect and cost with

FIGURE 9 | Solar regression.

FIGURE 10 | Wind regression.
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multi-fuel are calculated in multiple runs of the algorithm.
Consequently, the convergence plot of PSO for this
optimization problem is shown in Figure 13, where the x-axis
shows the number of iterations and the optimal value of the
objective function (overall cost) is found at the 60th epoch of the
algorithm. However, detailed numerical analysis is presented
subsequently.

8.2.1 Numerical Result Comparison
This sub-section presents the comparison of numerical results
while optimizing the cost for DA-DOPF. Dependent (state)
variables are listed column-wise in Table 9 with their
boundary limits. In addition to this allowable limit of the
dependent and independent variables, bus data and branch
data considered in this study are taken from Zimmerman and
Murillo-Sánchez (2016). During the optimization algorithm,
the active and reactive power of all generation sources and
voltages of generator buses are considered constraints.
Additionally, the SF constraint handling technique is used
to handle the constraint violation for these variables. The
effectiveness of the CH technique can be seen from the
listed values of these variables for a different interval of
DA-DOPF. Moreover, the approximated (CPU) time of the
algorithm run is given in Table 9. Furthermore, a comparison
of the presented approach with some previously mentioned
techniques is given in Table 10. The main advantage of the SF
constraint handling approach can be noticed from this

comparison. It utilizes the information hidden in the
infeasible solution and does not discard it straight away.
Therefore, the solution found by the proposed technique is
most optimal, and the reduction in generation cost is
noticeable. Moreover, it is worth mentioning here that the
proposed approach is compared based on the constraint
handling techniques in conjunction with different
optimization algorithms. Furthermore, it is also compared
with some multi-objective optimization cases. Yet, in all
these comparisons, the proposed approach is found best,
and the values of basic cost, cost with multi-fuel, and
system loss are presented column-wise in bold text. For
Interval 6 of optimizing basic fuel cost, DA-DOPF/SF
algorithms lead to fuel costs of 675.33 $/h. It is important
to explain here that the on front of the inequality constraint of
generator reactive power and load bus voltage, presented
results are satisfactory and operating voltages of all buses of
the IEEE 30-bus system remain within their allowable limits.
The voltage profile of the system is plotted in Figure 14. A
cursory glance at the voltage profile graph shows that most
buses do not fall below the value of 1.0 p.u. On the contrary,
voltages never exceed the value of 1.08 p.u. Therefore, the over-
voltage problem during load management is controlled
through the proposed constraint handling technique. Hence,
the faithful operation of the power system is assured without
any voltage stress for connected load at the PQ buses.

9 CONCLUSION

In the previously presented studies, conventional day-ahead optimal
power flow (CDA-OPF) and real-time optimal power flow (RT-OPF)
approaches did not cover the effects of the integration of VESs.
Additionally, the variability of available power introduces the
additional challenge to consider the scenarios of over- and
underestimation. On the contrary, constraint violation techniques

TABLE 8 | RMSE comparison.

Algorithms Epochs RMSE

Levenberg–Marquardt (proposed) 171 2.52 × 10–07

Scaled conjugate gradient 54 5.5498
BFGS quasi-Newton 1,000 11.1876
Scaled conjugate gradient 33 8.0504
Variable learning rate gradient descent 109 24.5542

FIGURE 11 | Contribution of GSs in sub-intervals.
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are also not considered in the available literature. Therefore, in this
study, the day-ahead dynamic optimal power flow (DA-DOPF)
problem is carried out with effects of intermittency of VESs.
Moreover, to handle the constraint violation, the SF constraint
handling technique is used. Therefore, an infeasible solution was
not discarded straight away. Hence, a more confident and optimal
solution is computed using the optimization program based on the
PSO algorithm. In addition to this, the proposed approach is combined

with the NN-based prediction model which is used to forecast day-
ahead wind and solar irradiance. Moreover, T-FMF calculates the
membership value of VESs in the synergy of generation. Hence,
DA-DOPF has been run for the six sub-intervals, and an optimal
generation schedule is computed while ensuring the physical and
security limits of the power system. Finally, the proposed approach
is tested for an amended IEEE 30-bus system. The optimization
program is coded in MATLAB 2018a and uses the MATPOWER

TABLE 9 | Independent variable settings for DA-DOPF.

Independent
variables

Min. Max. Interval 1 Interval 2 Interval 3 Interval 4 Interval 5 Interval 6

Thermal G1 (MW) 50 140 139.9,987,512 139.9,987,512 139.9,987,512 139.9,987,512 139.9,987,512 139.9,987,512
Thermal G2 (MW) 20 80 53.82,153,942 53.54,290,537 52.15,229,216 55.92,183,367 50.37,481,076 51.13,934,575
Thermal G3 (MW) 10 35 24.46,287,375 23.0922,969 19.86,905,416 27.76,425,755 15.90,186,814 18.67,903,468
Wind farm (MW) 0 75 13.67,273,324 10.55,552,481 25.4,658,112 34.68,505,453 41.87,269,823 52.07,557,486
Solar PV(MW) 0 60 54.79,279,455 59.54,740,526 49.20,782,674 28.43,602,582 38.49,294,761 24.77,789,545
VGB1 p.u. 0 1.1 1.06 1.06 1.06 1.06 1.06 1.06
VGB2 p.u. 0.95 1.1 1.045 1.045 1.045 1.045 1.045 1.045
VGB5 p.u. 0.95 1.1 1.01 1.01 1.01 1.01 1.01 1.01
VGB8 p.u. 0.95 1.1 1.01 1.01 1.01 1.01 1.01 1.01
VGB11 p.u. 0.95 1.1 1.082 1.082 1.082 1.082 1.082 1.082
VGB13 p.u. 0.95 1.1 1.071 1.071 1.071 1.071 1.071 1.071
QGB1 −20 150 43.30,964,861 43.30,964,861 43.30,964,861 43.30,964,861 43.30,964,861 43.30,964,861
QGB2 −20 60 −7.157,757,772 −7.157,757,772 −7.157,757,772 −7.157,757,772 −7.157,757,772 −7.157,757,772
QGB5 −15 62.2 13.43,070,117 13.43,070,117 13.43,070,117 13.43,070,117 13.43,070,117 13.43,070,117
QGB8 −15 48.7 13.47,082,452 13.47,082,452 13.47,082,452 13.47,082,452 13.47,082,452 13.47,082,452
QGB11 −10 40 16.6,374,328 16.6,374,328 16.6,374,328 16.6,374,328 16.6,374,328 16.6,374,328
QGB13 −15 44.7 7.40,190,662 7.40,190,662 7.40,190,662 7.40,190,662 7.40,190,662 7.40,190,662
VES cost ($/hr) — — 103.5,577,286 112.1,646,881 119.4,778,207 100.9,937,286 128.5,850,333 122.9,655,525
Thermal cost ($/hr) — — 596.7,608,331 576.8,561,204 560.2,198,513 602.7,456,592 539.8,471,982 552.3,722,474
Total cost_b ($/hr) — — 700.3,185,617 689.0208,086 679.697,672 703.7,393,877 668.4,322,316 675.3,377,998
Total cost_vp ($/hr) — — 727.3,410,043 714.3,610,375 703.2,578,067 731.3,748,041 689.583,509 698.0901,847
Total cost_mf ($/hr) — — 464.3,239,244 462.5,984,924 599.9,486,988 424.9255932 446.8,781,283 393.5,316,771
Real loss (MW) — — 3.639,502,687 4.287,143,517 4.02,656,791 3.693,738,905 3.864,456,651 3.734,419,925
CPU time (sec) 97.608,342

FIGURE 12 | Variable load pattern.
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FIGURE 13 | Convergence characteristics.

TABLE 10 | Comparison with existing techniques. Cht � constraint handling technique. Basic and other cost are calculated in � $/h. System loss is calculated in MW (mega
watts).

References Algorithms Pop size Iterations Cht Basic cost CostMF System loss

Proposed approach DA-DOPF (SF) 50 300 SF 686.09108 465.36775 3.874,304
Biswas et al. (2018) DE (SF) 30 30,000 SF 800.4131 646.439 9.0104
Biswas et al. (2018) ECHT-DE 30 30,000 SP 800.4148 646.4532 8.9999
Biswas et al. (2020) MOEA (SF) 300 1,00,000 CPA 881.012 — 4.1441
Elattar and ElSayed (2019) MJAYA — — — 818.4464 — 4.4866
Elattar and ElSayed (2019) ABC — — — 820.0032 — 4.5003
Elattar and ElSayed (2019) MSA — — — 821.2871 — 4.7592
Ilyas et al. (2020b) MOPSO (PFA) 50 500 PFA 710.3 — 13.77

FIGURE 14 | Voltage profile.
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toolbox for computing load flow. Consequently, results obtained
from these simulations are presented in tabular form as well as in
graphical plots. However, the approach is quite different from the
available literature, yet the comparison is done based on minimum
generation cost and real loss. It is worth mentioning here that the
presented approach was found superior in numerical analysis to
the other similar approaches.

Nevertheless, the authors suggest the future scopewith the induction
of more renewable energy sources, MPPT for solar arrays, battery
storage system, andmore number of buses in the power system, as well
as future scope in the integration of FACT devices and optimal
placement of distributed generation sources and FACT devices.
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