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Scalable parallel algorithm for particle transport is one of the main application fields in high-
performance computing. Discrete ordinate method (Sn) is one of the most popular
deterministic numerical methods for solving particle transport equations. In this paper,
we introduce a new method of large-scale heterogeneous computing of one energy group
time-independent deterministic discrete ordinates neutron transport in 3D Cartesian
geometry (Sweep3D) on Tianhe-2A supercomputer. In heterogeneous programming,
we use customized Basic Communication Library (BCL) and Accelerated Computing
Library (ACL) to control and communicate between CPU and the Matrix2000 accelerator.
We use OpenMP instructions to exploit the parallelism of threads based on Matrix 2000.
The test results show that the optimization of applying OpenMP on particle transport
algorithm modified by our method can get 11.3 times acceleration at most. On Tianhe-2A
supercomputer, the parallel efficiency of 1.01 million cores compared with 170 thousand
cores is 52%.
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1 INTRODUCTION

Particle transport plays an important role in modeling many physical phenomena and
engineering problems. Particle transport theory has been applied in (Atanassov et al., 2017)
astrophysics (Chandrasekhar, 2013), nuclear physics (Marchuk and Lebedev, 1986), medical
radiotherapy (Bentel, 2009), and many other fields. The particle transport equation (Boltzmann
equation) is a mathematical physics equation describing the particle transport process, and its
solution algorithm has always been the key to research in this field. The existing commonly used
solutions are divided into two categories, one is the deterministic methods for solving algebraic
equations through discrete space, including spherical harmonic method (Marshak, 1947),
discrete ordinates method (Carlson, 1955), etc. The other is the stochastic methods, for
instance, the Monte Carlo method (Eckhardt, 1987), which simulates particle space using
probability theory (Atanassov et al., 2017). With the development of science and technology,
simulations of particle transport is more and more demanding of precision and realtimeness.
Therefore, facing the rapidly expanding scale of computation and the need for higher
performance, it is necessary for researchers to study scalable parallel algorithms for large-
scale particle transport.
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Currently, the performance of multi-core processors is limited
by frequency, power consumption, heat dissipation, etc. And the
process of adding cores in a single CPU has encountered
bottlenecks. In order to further improve computing
performance under existing conditions, the many-integrated-
core processors have begun to be used to build high-
performance computing systems, including NVIDIA’s GPU
(Wittenbrink et al., 2011) and Intel’s MIC (Duran and
Klemm, 2012). The latest Top500 list released in November
2020 (TOP500.ORG, 2020), most of the top ten are multi-core
heterogeneous systems, including Summit, Sierra, Piz Daint,
ABCI, which are based on NVIDIA-GPU and Trinity which
uses Intel Xeon Phi processors. The Tianhe-2A supercomputer
replaces the Intel Xeon Phi 31S1P accelerators with the
independently developed Matrix2000 multi-core accelerators.
The whole system has a total of 17,792 heterogeneous nodes,
which reaches a peak performance of 100.68 PFlops, and the
measured performance reaches at 61.40 PFlops. Heterogeneous
parallel computing based on coprocessor has become a trend in
the field of high-performance computing, and some
achievements have been made in the fields of particle
transport (Panourgias et al., 2015), fluid mechanics (Cao et al.,
2013) and molecular dynamics (Pennycook et al., 2013).

Scalable parallel algorithm for particle transport is one of the
main application fields in high-performance computing. Since
the solution of the particle transport equation is related to spatial
coordinates, motion direction, energy, and time, its high-
precision solution is very time-consuming (Marchuk and
Lebedev, 1986). Over the years, the simulation overhead of
particle transport problems has dominated the total cost of
multiphysics simulations (Downar et al., 2009). Using the
current discrete simulation algorithm, a transport solver that
completely discretizes all coordinates will require 1017–1021

degrees of freedom (Baker et al., 2012) for each step, even
beyond the reach of the Exascale Computing.

Sweep3D (LANL, 2014) is a program for solving single-
group steady-state neutron equations and also the benchmark
for large-scale neutron transport calculations in the
Accelerated Strategic Computing Initiative (ASCI) program
established by the U.S. Department of Energy. Many
researchers have ported and optimized Sweep3D to
heterogeneous systems. Petrini et al. (2007) and Lubeck
et al. (2009) migrated Sweep3D to the Cell stream
processor in single MPI process mode and multiple MPI
process mode, respectively. Gong et al. (2011) and Gong
et al. (2012) designed a large-scale heterogeneous parallel
algorithm based on GPU by mining fine-grained thread-
level parallelism of particle transport problems, which
breaked the limitations of the particle simulation and took
full advantage of GPU architecture. Wang et al. (2015)
designed Sweep3D with thread-level parallelism and
vectorization acceleration, and ported Sweep3D to the MIC
many-core coprocessors, then applied the Roofline model to
access the absolute performance of the optimizations. Liu
et al. (2016) presented a parallel spatial-domain-
decomposition algorithm to divide the tasks among the
available processors and a new algorithm for scheduling

tasks within each processor, then combined these two
algorithms to solve two-dimensional particle transport
equations on unstructured grids.

Based on Sweep3D, we design and develop the method of
large-scale heterogeneous computing for 3D deterministic
particle transport on Tianhe-2A supercomputer. Compared
with original Sweep3D program, this method develops
OpenMP thread-level parallelism and implements
heterogeneous computing functions based on the Basic
Communication Library (BCL) and the Accelerated
Computing Library (ACL), which are highly customized for
Tianhe-2A.

2 BACKGROUND

2.1 Sweep3D
The particle transport equation mainly describes the process of
collision with the nucleus when the particle moves in the
medium, and with its solution we can obtain the
distribution of the particle with respect to space and time.
According to the particle conservation relationship, the
unsteady integral-differential particle transport equation can
be obtained. Eq. 1 gives the particle angular flux density
expression of the transport equation. ψ(r⃗ ,Ω⃗ , E, t) represents
the particle angular flux density, which is a function of the
moving directionΩ⃗, time t, the energy E and the spatial point r⃗ ,
and v(E) represents the velocity of the kinetic energy E particle,
σt(r⃗ , E) indicating the sum of the cross sections of the particle’s
collision with the nucleus at the position r⃗ and energy E.
σs(r⃗ ,Ω′⃗ →Ω⃗, E′ → E) indicates that the moving particles at
position r⃗ are scattered from energy E and direction Ω′⃗ to
energy E and direction Ω⃗ . Qt(r⃗ ,Ω⃗, E, t) represents source
items, including fission sources and exogenous sources.

1
v(E)

z

zt
ψ(r⃗ ,Ω⃗ ,E, t) +Ω⃗ ·▽ψ(r⃗ ,Ω⃗ , E, t) + σ t(r⃗ , E)ψ(r⃗ ,Ω⃗ , E, t)

� Qt(r⃗ ,Ω⃗ ,E, t) + ∫
4π
σs(r⃗ ,Ω′⃗ →Ω⃗ , E′ →E)ψ(r⃗ ,Ω′⃗ ,E′, t)dΩ′⃗ dE′. (1)

By discretizing the variables t and E in Eq. 1, we can obtain the
time-independent single-group particle transport equation, as
shown in Eq. 2.

Ω⃗ ·▽ψ(r⃗ ,Ω⃗ ) + σ t(r⃗ )ψ(r⃗ ,Ω⃗ ) � Qext(r⃗ ,Ω⃗ )
+∫

4π
σ s(r⃗ ,Ω′⃗ →Ω⃗ )ψ(r⃗ ,Ω′⃗ )dΩ′⃗ . (2)

The right-hand side of the equation is the source item,
including the scattering source and external source. Qext(r⃗ ,Ω⃗ )
expresses the external source.

In Sweep3D, the discrete ordinate method Sn is used to
discretize the angular-direction Ω into a set of quadrature
points and discretize the space into a finite mesh of cells. In
the angular direction, we choose several specific discrete angular
directions Ωm (m � 1, 2, . . ., N), so that the integral concerning
the direction of Ω is approximated by numerical summation
instead, as shown in Eq. 3, where wm is the weight of integration
in the discrete direction Ωm.
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ψ(r⃗ ) � ∫
4π
ψ(r⃗ ,Ω⃗ )dΩ⃗ � ∑

M

m�1
wmψ(r⃗ ,Ω⃗ m). (3)

Integrating both sides of Eq. 2 over the neighboring angular-
directions region, ΔΩm, of a given discrete angle Ωm (μm, ηm, ξm)
where μm, ηm, ξm represent the components of the unit vector of
the particle in the direction Ωm on the X, Y, Z coordinates with
respect to μ2m + η2m + ξ2m � 1, we get the balanced equation as
follows:

μm
zψm

δx
+ ηm

zψm

δy
+ ξm

zψm

δz
+ σ t(r⃗ )ψm � Qm(r⃗ ). (4)

The three-dimensional discrete solution of the space is solved
by the finite difference method, and the XYZ geometry is
represented by an IJK logically rectangular grid of cells, shown
in Figure 3. The finite difference method discretizes the
geometric space (xi, yj, zk) � (iΔx, jΔy, kΔz), i � 0, 1, . . ., I;
j � 0, 1, . . ., J; k � 0, 1, . . ., K, where Δx � xmax

I ,Δy � ymax

J ,Δz � zmax
K .

Then we can get the difference equation as follows:

μm

ψ
i+
1
2
, j, k,m − ψ

i−
1
2
, j, k,m

Δx + ηm

ψ
i,j+

1
2
, k,m − ψ

i,j−
1
2
, k,m

Δy +

ξm

ψ
i,j,k+

1
2
,m − ψ

i,j,k−
1
2
,m

Δz + σ t,i,j,kψi,j,k,m � Qi,j,k,m.

(5)

To solve the difference Eq. 5, additional auxiliary relations,
such as the rhombic difference relation, need to be added:

ψi,j,k,m �
ψ
i+
1
2
, j, k,m + ψ

i−
1
2
, j, k,m

2
;

ψi,j,k,m �
ψ
i,j+

1
2
, k,m + ψ

i,j−
1
2
, k,m

2
;

ψi,j,k,m �
ψ
i,j,k+

1
2
,m + ψ

i,j,k−
1
2
,m

2
.

(6)

Sweep3D uses the Source Iteration (SI) method to solve the
discrete Eq. 5. Each iteration includes computing the iterative
source, wavefront sweeping, computing flux error, and judging
whether the convergence condition is met or not. Wavefront
sweeping is the most time-consuming part. In the Cartesian
geometries (XYZ coordinates and IJK directions), each octant of
angle sweeps has a different sweep direction through the mesh
grid, and all angles in a given octant sweep the same way. In SI
method, Qi,j,k,m is known. The sweep of Sn method generically is
named wavefront (Lewis and Miller, 1984). A wavefront sweep
for a given angle proceeds as follows. Every cell (mesh grid) has
4 equations (Eq. 5 plus Eq. 6) with seven unknowns (6 faces
plus one central). Boundary conditions initialize the sweep and
allow the system of equations to be completed. For any given
cell, three known inflows allow the cell center and three
outflows to be solved, and then the three outflows provide
inflows to three adjoining cells in particle traveling directions.
Therefore, there is recursive dependence in all three grid

directions. The recursive dependence causes the sweep to be
performed in a diagonal wave across the physical space, and
Figure 1A gives a sweep of the wavefront from state (a) to
state (d).

Therefore, the parallelism is limited by the length of the JK-
diagonal line in Figure 2. To alleviate this problem, MMI angles
for each octant are pipelined on JK-diagonal lines to increase the
number of parallel I-lines. MMI is the number of angles for
blocking and can be chosen as desired, but it must be a integral
factor of the number of angles in each octant. Moreover, Sweep3D
utilizes Diffusion Synthetic Acceleration (DSA) (Adams and
Larsen, 2002) to improve its convergence of source iteration
scheme. So wavefront sweeping subroutine mainly involves
computing sources from spherical harmonic (Pn) moments,
solving Sn equation recursively with or without flux fixup,
updating flux from Pn moments, and updating DSA face
currents, as shown in Algorithm 1.

Algorithm 1 Wavefront sweeping subroutine in Sweep3D

for iq � 1 to 8 do//octants
for mo � 1 to mmo do//angle pipelining loop.

for kk � 1 to kb do//k-plane pipelining loop
RECV EAST/WEST//recv block I-inflows
RECV SOUTH/NORTH//recv block J-inflows
for idiag � 1 to jt + nk − 1 + mmi − 1 do.

for jkm � 1 to ndiag do//I-lines grid columns
for i � 1 to it do
Calculate discrete source term in Pn moments

if not do fixup then
for i � 1 to it do

Solve Sn equation
else
for i � 1 to it do

Solve Sn equation with fixup
for i � 1 to it do
Update flux from Pn moments

for i � 1 to it do
Update DSA face currents
SEND East/West//send block I-inflows. SEND North/

South//send block J-inflows

2.2 Matrix2000 Accelerator
In the Tianhe-2A supercomputer, each node consists of two Intel
Xeon microprocessors and two Matrix2000 accelerators, as
shown in Figure 3.

Each of these Intel Xeon microprocessors is a 12-core
processor operating at 2.2 GHz, based on the Intel Ivy Bridge
microarchitecture (Ivy Bridge-EX core), with a 22 nm process
and a peak performance of 0.2112TFLOPS. The Matrix2000
consists 128 cores, eight DDR4 memory channels, and x16
PCIe lanes. The chip consists of four supernodes (SN)
consisting of 32 cores each operating at 1.2 GHz with a peak
power dissipation of 240 Watts. Operating at 1.2 GHz, each core
has a peak performance of 19.2 GFLOPs (1.2 GHz * 16 FLOP/
cycle). With 32 such cores in each SuperNode, the peak
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performance of each SN is 614.4 GFLOPS. Likewise, with four SN
per chip, the peak chip performance is 2.458 TFLOPS double
precision or 4.916 TFLOPS single-precision.

3 SCALABLE PARALLEL ALGORITHM FOR
PARTICLE TRANSPORT

3.1 Heterogeneous Parallel Algorithms
The process-level parallel algorithm with our method, as shown
in Figure 1B, divides the overall mesh space from three
directions: I, J, and K. We use a two-dimensional process
topology division along the I, J direction for the spatial mesh,
so that each K-column mesh along the K direction is stored in a
process. Due to the strong data dependency of the sweeping
algorithm, in order to improve the parallelism, we need to
subdivide the K direction so that each process can quickly
complete the data computation of the small mesh and then
pass the results to the adjacent meshes in the three directions.
The I and J directions are controlled by the process numbers
I_PRO and J_PRO, and K direction is controlled by parameter kb.
Then we get a mesh space divided into I_PRO*J_PRO*kb mesh
of cells.

The sweep calculation is the core of the whole algorithm.
Sweeping is running in the diagonal direction of IJK, as shown in
Figure 1A. Firstly, in subfigure (a), only the process where the
data of the small gray mesh is located performs the calculation,
and then passes the results to the three adjacent gray grids along
the IJK direction, as shown in subfigure (b), where the two small
meshes in the IJ direction are in other processes and the small
mesh in the K direction is still in the current process. There is no
data dependency between these three small meshes, which can be
executed in parallel. Then, the results are transmitted to three
adjacent directions, and this operation is repeated to obtain the
wavefront sweeping in the order from (a) to (d). Since adjacent
mesh involve data dependence, adjacent mesh need to
communicate during wavefront sweeping, and lines 4-5 and
20-21 in Algorithm 1 describe this communication process.
The idea of our heterogeneous algorithm design is to put all
the computations on the Matrix 2000, while the processes on the
CPU are only responsible for the MPI communication during the
wavefront sweeping.

The heterogeneous communication interfaces supported by
the Tianhe-2A supercomputer include OpenMP 4.5, BCL and
ACL. Among them, BCL is a simple and efficient symmetric
transmission interface, which enables data to be transmitted
on the coprocessor and CPU through the PCI-E bus. Although
the program migration is more complicated, the transmission
rate is faster and the transplant flexibility of the program is
better. The heterogeneous program based on the BCL interface

FIGURE 1 | Wavefront sweeping and two-dimension topological structure.

FIGURE 2 | This MMI-pipelined JK-diagonal wavefront is depicted
below at the fourth stage of a 3-deep wavefront that started in the upper right
corner.

FIGURE 3 | Architecture of a computing node.
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needs to compile two sets of programs, which will be
running simultaneously on the CPU and the accelerator.
First, one of the program is initialized on the CPU, and
then the ACL interface is activated to load the other
program running on accelerator of the Matrix 2000. The
heterogeneous mode flow of our method is given, as shown
in Figure 4 and Algorithm 2.

First, the CPU starts the MPI to initialize the process, the
master process reads the file data, divides the task according to the
computing capability, and then transfers the task size to the slave
process. Each slave process controls a Matrix2000 supernode
and uses the ACL interface to load the programs that need to run
on the accelerator of the Matrix 2000, and then establishes a
connection between the CPU and the Matrix2000 supernode
via the BCL interface. Once the connection is established, the
slave processes on the CPU side can communicate with the
Matrix2000 via the BCL interface. Then, a small number of
parameters are transferred from the slave process to Matrix
2000. The program on the Matrix2000 side receives the
parameters and initializes the data directly on the accelerator
and proceeds to calculate the iterative source, wavefront
sweeping, and compute flux error. Since there is no
communication interface between Matrix2000 supernodes,
resulting in Matrix2000 supernodes cannot communicate
directly and need to go through CPU transition to achieve
communication between supernodes. The main function of
Matrix2000 supernodes is responsible for intensive data
computation. In the wavefront sweeping algorithm 1, the
incoming flux and outgoing flux in lines four to five and lines
20-21, respectively, need to involve communication between
Matrix2000 supernodes, so the communication between them
needs CPU processes to assist.

Algorithm 2 Heterogeneous logic algorithm

if rank_id � 0 then//master process
Read file and Initialize
MPI_Send task to slave processes

else
slave process MPI_Recv the task assigned by the master

process//slave process
if rank_id ≠ 0 then//slave process

Invoke ACL to start the accelerator Matrix2000
Establish the connection between CPU and Matrix2000
Invoke BCL to transport initialized data to Matrix2000
/* the Source Iteration (SI) running on Matrix 2000 */
#pragma omp parallel for
{
Calculate source//Matrix2000
}
/* Wavefront sweeping in algorithm 1 */
for iq � 1 to 8 do

for mo � 1 to mmo do
for kk � 1 to kb do

MPI recv east/west block I-inflows//CPU rank_id
MPI recv south/north block J-inflows//CPU rank_id
Invoke BCL to recv the block I-inflows from slave

process//Matrix2000
Invoke BCL to recv the block J-inflows from slave

process//Matrix2000
#pragma omp parallel for
{
Calculate discrete source in Pn moments//

Matrix2000
Solve Sn equation//Matrix2000
Update flux//Matrix2000
}
Invoke BCL to send block I-inflows to slave

process//Matrix2000
Invoke BCL to send block J-inflows to slave

process//Matrix2000
MPI send east/west block I-outflows//CPU rank_id
MPI send south/north block J-outflows//CPU

rank_id
/* Calculate flux error */
Calculate flux error and invoke BCL to sen//Matrix2000

Calculate total flux error//CPU
if Converge then

Invoke BCL to send converge signal to Matrix2000
Break

else
Continuing the calculation in lines 10-30

3.2 OpenMP Thread Level Parallelism
A supernode in Matrix2000 contains 32 cores. In order to fully
utilize the performance of Matrix 2000, we use OpenMP
instructions to implement thread-level parallelism. Figure 5
shows the optimization process based on OpenMP thread-level

FIGURE 4 | Heterogeneous logic flowchart.
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parallelism. Among them, the calculation of iterative source,
wavefront scanning, and flux error calculation can be
performed in thread-level parallel optimization.

The iterative source is equal to the sum of the external and
scattering iterative sources. As shown in Eq. 7, the scattering
iterative source is equal to the product of the fluxmoment and the
discrete cross section, where i represents the ith iteration, and
when i � 1, the scattering source can be initialized by any non-
negative value.

Q(r⃗ i) � σs(r⃗ )ψ(r⃗ )i−1 + Qext(r⃗ ) (7)

When calculating, the grids are independent of each other and
have no data dependency. If the single grid is used as the parallel
granularity, the overhead of OpenMP scheduling will be too large.
Therefore, the IJ plane is used as the parallel granularity, and only
the OpenMP thread-level parallelism is performed in the K
direction. As shown in Algorithm 3, it is divided into two
cases where the discrete order of Pn is 0 and 1.

Algorithm 3 OpenMP thread-level parallelism in source iteration

if isct. Eq. (0) then
#pragma omp parallel for
for k � 0; k < kt; k + + do

for j � 0; j < jt; j + + do.
for i � 0; i < it; i + + do

Src(1,k,j,i) � Srcx (k,j) + Sigs (1,k,j,i)*Flux (1,k,j,i)
Pflux (k,j,i) � Flux (1,k,j,i) Flux (1,k,j,i) � 0.0
else

#pragma omp parallel for
for k � 0; k < kt; k + + do

for j � 0; j < jt; j + + do
for i � 0; i < it; i + + do

Src(1,k,j,i) � Srcx (k,j,i) + Sigs (1,k,j,i)*Flux (1,k,j,i)
Src(2,k,j,i) � Sigs (2,k,j,i)*Flux (2,k,j,i)
Src(3,k,j,i) � Sigs (3,k,j,i)*Flux (3,k,j,i)
Src(4,k,j,i) � Sigs (4,k,j,i)*Flux (4,k,j,i)
Pflux (k,j,i) � Flux (1,k,j,i)
Flux (1,k,j,i) � 0.0
Flux (2,k,j,i) � 0.0
Flux (3,k,j,i) � 0.0
Flux (4,k,j,i) � 0.0

Algorithm 4 Iterative OpenMP optimization algorithm in
wavefront scanning

#pragma omp parallel for
for jkm � 1 to ndiag do.

for i � 1 to it do
Compute source from Pn moments

if not do fixup then
for i � 1 to it do

Solve Sn equation
else

for i � 1 to it do
Solve Sn equation with fixups

for i � 1 to it do
Update flux from Pn moments

for i � 1 to it do
Update DSA face currents

During the wavefront scanning process, there is a strong data
dependency between the wavefronts, and it is not possible to
perform calculations in multiple directions at the same time.
However, the calculation of all I-line grids in the wavefront of a
single direction is independent of each other. OpenMP thread-
level parallelism is performed on the I-line grid column, as shown
in Algorithm 4. The parallel granularity of threads is limited by
the number of I-line grid columns on the JK diagonal. The
number of I-line grid columns changes with particles’
movements. The minimum is one and the maximum is the
larger of J and K. flushleft.

We determine the flux error by calculating the flux for twice in
succession, as shown in Eq. 8, setting the maximum relative error
as the overall error value. The calculation of each grid is

FIGURE 5 | OpenMP thread parallelism flowchart.
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independent of each other in the process. The JK plane is used as
the parallel granularity, and the OpenMP thread-level parallelism
is performed from the I direction. The max value in all threads is
calculated by the OpenMP reduction statement.

Errormax � max
ψ(r⃗ i) − ψ(r⃗ i−1)

ψ(r⃗ i)
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣ (8)

3.3 Flux Fixup
Sweep3D solves a single-group, time-independent set of Sn
equations on each grid cell. The set of equations consists of
the discretized balanced Eq. 9 with three rhombic difference
auxiliary Eq. 10, where Eq. 9 is transformed from Eq. 5 combined
with the rhombic difference auxiliary equations.

ψi,j,k,m � 1
D

Qi,j,k,m + A · ψi−12,j,k,m + B · ψi,j−12,k,m + C · ψi,j,k−12,m[ ]. (9)
ψ
i+
1
2
, j, k,m � 2 · ψi,j,k,m − ψ
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1
2
, j, k,m

ψ
i,j+

1
2
, k,m � 2 · ψi,j,k,m − ψ

i,j−
1
2
, k,m

ψ
i,j,k+

1
2
,m � 2 · ψi,j,k,m − ψ

i,j,k−
1
2
,m.

(10)

whereψi−1
2,j,k,m

,ψi,j−1
2,k,m

,ψi,j,k−1
2,m

are the input fluxes of the grid cell (i,

j, k) in the I, J and K directions, respectively, ψi,j,k,m is the central flux of
the cell (i, j, k) for the current dispersion angle, and D, A, B and C
represent the relative difference parameters. Pn(spherical harmonic)
moments have been used to obtain the source term Qi,j,k,m. Thus, for a
single grid cell in the I-line grid column, the input flux is known, and
the central flux of the cell grid can be found, and then the output fluxes
ψi+1

2,j,k,m
,ψi,j+1

2,k,m
, and ψi,j,k+1

2,m
are immediately obtained from the

rhombic difference auxiliaryEq. 10.Moreover, inEq. 9, the centralflux
ψi,j,k,m cannot be negative as long as the input fluxes ψi−1

2,j,k,m
,ψi,j−1

2,k,m
,

and ψi,j,k−1
2,m

are not negative, but the output flux obtained by equation
Eq. 10 can be negative.

When the negative flux is transmitted along the iterative
solution direction, more negative fluxes may be generated, thus
triggering fluctuations in the simulation results, and in this case, a
negative flux correction is required. In Sweep3D, a zero-setting
method is used to correct the negative flux. The iterative solution of
the Sn equation with flux correction is similar to that without flux
correction, except that the process of negative flux correction is
added. The process of flux correction is full of judgments and
branches, so it is difficult to exploit the data-level parallelism.
Therefore, the iterative solution of the Sn equation with flux
correction is still implemented in a serial manner. Lines 5-10 in
Algorithm 4 give two different cases of solving the Sn equation with
and without flux correction, respectively. For the test cases with
different grid sizes and number of threads, the experimental results
in Section 4 will give the difference between flux correction or not.

4 EXPERIMENT AND RESULTS

The benchmark code Sweep3D represents the heart of a real
ASCI(Accelerated Strategic Computing Initiative) application

established by the U.S. Department of Energy. It solves a 1-
group time-independent discrete ordinates (Sn) 3D Cartesian
(XYZ) geometry neutron transport problem. Sweep3d is not a
program that solves realistic applications, but a realistic Sn code
would solve a multi-group problem, which in simple terms is
nothing more than a group-ordered iterative solution on top of
what Sweep3D does. To keep the problem setup simple, the cross
section, external source and geometric array are set to constants
in the Sweep3D code. The case of our calculation also follow
exactly this simple problem setup.

The test platform is the Tianhe-2A supercomputer. Since ACL
and BCL instructions only provide C/C++ interfaces, the
implementation of our method is a hybrid encoding of
FORTRAN and C. The CPU-side program is compiled with
Intel compiler and high-speed network-based MPICH3.2. The
accelerator side uses a customized cross-compiler, which
supports OpenMP instructions. The compilation option takes
”−O3”. The specifications of test environment and parameters
configured for Sweep3D are as shown in Table 1.

4.1OpenMPPerformanceOptimization Test
In order to effectively evaluate the performance of the OpenMP
thread parallel optimization, we run a test with the single-process
mode on a CPU core and a Matrix2000 super-accelerated node
(32 cores). There are two primary ways to scale Sweep3D on
Matrix 2000, including strong scaling and week scaling. Strong
scaling means that more cores are applied to the same problem
size to get results faster. Weak scaling refers to the concept of
increasing the problem size as Sweep3D runs on more cores. This
subsection focuses on strong scaling tests, weak scaling tests will
be discussed in the next subsection. Table 2 gives the
configuration of some parameters of the program during the
openMP test.

Figure 6 shows the results of four sets of strong scalability
tests, where the size of the (I, J, K)-grid is increased from 32 × 32 ×
256 to 256 × 256 × 256. To test the performance of the OpenMP
algorithm, the four sets of results in Figure 6 give the comparison
results for two scenarios with and without flux correction at
different (I, J, K)-grid sizes, and each subplot gives the
comparison results of time and speedup ratio separately,
where the bars indicate the time and the dashes indicate the
speedup ratio curves. It can be seen that the computation time of
the case without flux correction is less than that of the case with
flux correction for all four different problem sizes because
performing flux correction increases the number of
conditional statements and computation steps in the program
code, which leads to an increase in time. From the viewpoint of
the speedup ratio, the difference between the speedup ratio curves

TABLE 1 | Specification of the experiment platform.

Processor Intel Xeon E5-2692v2 12C 2.2 GHz
Accelerator Matrix2000
Interconnect TH Express-2
Operating System Kylin Linux
Host-side Compiler ICC, MPICH3.2
Acce-side Compiler Customized Cross-compiler
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with and without flux correction is not significant when the grid
size is 32 × 32 × 256, especially when the number of threads is 32,
the speedup ratio of both cases is approximately equal to 4.7.
However, the Figures 6B–D show that as the grid size increases,
the difference between the speedup ratio curves of the two cases is
small for the number of threads below 8, but the difference

becomes larger for 16 and 32 threads. For example, in Figures
6B–D, the network sizes are 64 × 64 × 256, 128 × 128 × 256 and
256 × 256 × 256, respectively, corresponding to a speedup ratio
difference of 0.3, 1.2, and 0.9 for 16 threads, and 0.5, 1.6, and 1.8
for 32 threads, respectively.

To more intuitively distinguish the difference between with
flux fixup and without flux fixup as the grid size increases,
Figure 7 exhibits the speedup of Sweep3D running on all 32
cores of Matrix2000 supernode in comparison with that on
only one core under different problem sizes. Both with and
without flux fixup, the speedup rises gradually with problem
size at the beginning, and the speedup between the two flux
fixup is still very close at the grid sizes of 32 × 32 × 256, but the
difference is gradually increasing as the scale increases,
reaching a maximum at 256 × 256 × 256. As the problem
size is equal to 256 × 256 × 256, the maximum speedup reach
11.18 and 13.02 for with flux fixup and without flux fixup,
respectively. This is because performing flux fixup increases
the number of conditional statements and computational

TABLE 2 | Parameters configured for sweep3D.

32–256 # Grid points in I-direction
32–256 # Grid points in J-direction
256 # Grid points in K-direction
0.1 # delta-x for I-direction
0.1 # delta-y for J-direction
0.1 # delta-z for K-direction
3 # angles for blocking
6 # angles per octant
Reflective # BC flag for I/J/K-direction
1 # Pn scattering order
off/on # flux fixup flag

FIGURE 6 | Execution time of Sweep3D running on different number of cores in Matrix2000 supernode and speedup in comparison with the simulation on only one
core of Matrix 2000. The comparison results for two scenarios with and without flux correction at different (I, J, K)-grid size.
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steps in the program code, which leads to an increase in time.
The time gap between flux fixup and no-fixup becomes smaller
as the number of threads increases, but because the single-
core time for flux fixup is larger than the no-fixup time,
resulting in a smaller speedup ratio, which affects parallel
efficiency.

To better illustrate the results of the strong scaling test for
thread-level parallelism, we combine the above data to obtain the
results in Figure 8. Figure 8 gives the strong scaling results for a
variety of different scales in both with flux fixup and without flux
fixup cases. Both subplots show that the performance of the
strong scaling test gets better as the size increases, but the
efficiency does not reach the desired value as the number of

threads reaches 32. There are two main reasons: First, although
thread-level parallelism does not involve MPI communication,
the computational process in the mesh of a single process is
exactly similar to the full-space computational process, which
also requires the computational wavefront sweeping process,
i.e., the adjacent regions in the mesh also have data
dependencies and are also limited by the length of the JK
diagonal in the mesh as in Figure 2; Second, the
communication between the CPU and Matrix2000 also takes
time, which cannot be eliminated by increasing the number of
threads.

4.2 Large-Scale Extension Test on
Tianhe-2A Supercomputer
We performed a weak scalability test for our method. During the
test, we run 8 processes on each node, using 8 CPU cores and 8
Matrix2000 supernodes, and each Matrix2000 supernode starts
32 threads. For the problem sizes, the grid size on a single process
remains 32 × 32 × 256, and the size of the K dimension is fixed to

256 while the sizes of the I and J dimensions keep a linear
relationship with the number of processes. The test results are
given in Table 3.

The correlation between core size and efficiency and time is shown
in Figure 9, where the computation time increases slowly and linearly
with the number of cores, and the efficiency decreases slowly and
linearly with the number of cores. The decisive effect on the parallel
efficiency ismainly the strong data dependency between two adjacent
wavefronts in the wavefront sweeping algorithm, which requires data
communication. As the size increases, that is, the I and J increases,
leading to an increase in the number of wavefronts required to
complete a global spatial grid sweep, which leads to an increase in
communication and causes a decrease in parallel efficiency. Another

FIGURE 7 | Speedup of Sweep3D running on all 32 cores of Matrix 2000
supernode in comparison with that on only one core under different
problem sizes.

FIGURE 8 | Speedup of Sweep3D running on the different problem sizes after by OpenMP optimizing in the two cases of with and without flux fixup.
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factor is that the communication between Matrix2000 needs to be
relayed through CPUs, which leads to a three-step communication
process, adding two CPUs to the Matrix2000 supernode
communication process compared to the simple inter-process
communication. Although the efficiency decreases as the size
increases, our algorithm can still maintain the efficiency of the
540,000 cores versus 170,000 cores is 72%, and the efficiency of
the 1.01million cores versus 170,000 cores is 52%whichmeansmuch
better scalability.

5 CONCLUSION AND FUTURE WORK

We introduce a new method of large-scale heterogeneous
computing for 3D deterministic particle transport, which is
designed for Tianhe-2A supercomputer. The CPU and
Matrix2000 data transmission is completed through the
BCL and ACL interfaces. We construct a heterogeneous
parallel algorithm to optimize OpenMP on the thread-level
parallelism on the Matrix2000 side to improve performance.
Our optimization on thread-level parallelism includes

iteration source calculation, I-line grid column calculation,
and flux error calculation. In the single node test, this method
achieves a maximum of 11.3 speedups on the
Matrix2000 super-acceleration node. The extension test of
the million-core scale was completed on the Tianhe-2A
supercomputer, the test efficiency was high, and the
program has good scalability. As a part of the future work,
we will study on the performance and scalability issues of
particle transport algorithms on next-generation China CPU/
Accelerator heterogeneous clusters.
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