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Local electricity markets are emerging solutions to enable local energy trade for the end
users and provide grid support services when required. Various models of local electricity
markets (LEMs) have been proposed in the literature. The peer-to-peer market model appears
as a promising structure among the proposed models. The peer-to-peer market structure
enables electricity transactions between the players in a local energy system at a lower cost. It
promotes the production from the small low–carbon generation technologies. Energy
communities can be the ideal place to implement local electricity markets as they are
designed to allow for larger growth of renewable energy and electric vehicles, while
benefiting from local transactions. In this context, a LEM model is proposed considering
an energy community with high penetration of electric vehicles in which prosumer-to-vehicle
(P2V) transactions are possible. Eachmember of the energy community can buy electricity from
the retailer or other members and sell electricity. The problem is modeled as a mixed-integer
linear programing (MILP) formulation and solvedwithin a decentralized and iterative process. The
decentralized implementation provides acceptable solutions with a reasonable execution time,
while the centralized implementation usually gives an optimal solution at the expense of reduced
scalability. Preliminary results indicate that there are advantages for EVs as participants of the
LEM, and the proposed implementation ensures an optimal solution in an acceptable execution
time. Moreover, P2V transactions benefit the local distribution grid and the energy community.
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INTRODUCTION

Despite the pandemic that largely affected the automotive industry in 2020, the electric vehicle (EV)
and renewable energy industry performed remarkably well (Lieven 2021; Wan et al., 2021). In fact,
EV sale numbers in Europe increased to record numbers and all-time highs (up 137% from 2019),
while the overall automotive industry was down by 20% year on year (Irle 2021). Most oil energy
companies quickly shifted investments toward renewable energy projects and became more ESG1-
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1Environmental, Social, and Governance (ESG) is a set of criteria and standards to enable socially and sustainable conscious
decision investments within a company.
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oriented, anticipating an earlier oil use peak (Strauch et al., 2020).
The quicker energy transition motivated by the pandemic, the
need to foster job creation, and new opportunities in the industry
flag the importance to accelerate the conditions to accommodate
a large penetration of EVs (Barbier 2020).

Most researchers agree that a large number of EVs in the grid
will bring new operational challenges but also new opportunities
(Fotouhi Ghazvini et al., 2019; Chung et al., 2019; Das et al.,
2020). Challenges may include distribution lines and
transformers’ capacity limitations, overheating and overvoltage
issues, bidirectional power flows (vehicle-to-grid), and market
price increases (Gesevičius et al., 2021). Opportunities will
include new business models, no-upfront cost grid services,
improved renewable energy use, etc.

In this context, local electricity markets (LEMs) have been
proposed as an effective tool to mitigate some bottlenecks of
renewable and EV penetration in local distribution grids. Local
markets are emerging in order to facilitate energy transactions
among small producers and consumers in nearby energy
communities (Mengelkamp et al., 2017). Their emergence is
not targeting the replacement of wholesale markets and the
retailing activity, but rather coexistence (Lezama et al., 2019a).
Aggregators can participate in a LEM via load and EV aggregation
as well (Lezama et al., 2019b; Masood et al., 2020). Among the
different LEM models that have been proposed in the literature,
the peer-to-peer (P2P) market model appears as a promising
structure to reduce costs (Z. Zhang et al., 2020; Faia et al., 2021a).

A previous work proposed a centralized model to solve the
optimal energy trading in a LEM between prosumers and EVs
(Faia et al., 2021b). However, the scalability of the adopted
centralized model is not enough, and the data privacy can be
easily compromised. We believe that decentralized models can be
a viable alternative to overcome issues previously raised, given the
reduced number of resources involved in energy communities
compared to region-wide scale problems. Therefore, a
decentralized iterative approach is proposed in this study to
solve energy management problems, considering the
possibility of transactions in a prosumer-to-vehicle (P2V)
market, thus enabling the prosumers to sell the surplus
electricity production and to charge the EVs at a lower
price than the retail market price. The price of electricity in
the P2V market is assumed to be the most advantageous for
both parties. The proposed model provides the integration of
RESs and the empowerment of electricity end users in the
power system, namely, by allowing prosumers and EVs to
interact within the P2V market. The case study considers 90
players, composed of 50 domestic prosumers and 40 EVs; three
different models of domestic battery systems; and seven
different models of EVs. Real electricity tariffs from a
Portuguese retailer and current feed-in tariff in the country
are used in the case study. The main contributions of the study
are as follows:

• A decentralized and iterative process is developed to
determine electricity transactions among prosumers and
EVs in a P2V market.

• Considering the reduction of the feed-in tariff, the proposed
approach allows prosumers to have another option to sell
electricity at higher price.

• Development of optimization models (prosumers and EVs)
that include realistic constraints, prosumers load and
generation profiles, photovoltaic (PV) systems, energy
storage systems, and real and updated EV models.

The article is structured in six sections including this
introductory section. A literature review is given in Literature
Review. Proposed Methodology presents the proposed
methodology, namely, formulation and the coordinator
decision process. Case Study presents the details of the case
study. Finally, Results presents the results and its discussion,
while Conclusion and Future Works provides the conclusions of
the article.

LITERATURE REVIEW

Different designs of the LEMs and the market analysis of the
proposed models have been presented in the literature. Absorbing
the output of local generation from renewable sources by the
flexible demand has been widely investigated. A P2P local
electricity market model is developed in Z. Zhang et al.’s
(2020) study which considers local energy trading and the
uncertainty of the demand and PV generation. In this model,
the load flexibility is characterized by time and power flexibility.
The results reveal that this model could be used to enable the local
balancing of the PV forecast power and the uncertain demand,
while both consumers and PV owners could benefit from the local
P2P market.

The P2P energy trading mechanism has also been used to
coordinate the distributed energy generation and consumption
(Matamoros et al., 2016) and the trading among the peers in a
distribution network. C. Zhang et al., (2018) proposed an
innovative platform for P2P energy trading using the game
theory. The test results in a microgrid show that P2P trading
can improve the local balance of consumption and generation.
This trading mechanism can promote increased penetration of
renewable energy sources in the grid.

A local electricity market model is developed in Sæther et al.
(2021) to enable P2P electricity trading for a community of
industrial buildings. The impact of local flexibility on the
usage of DER technologies was investigated in that work;
moreover, the contribution of the local market to peak
demand management was assessed. The authors showed that
the local market approach leads to more local usage of the
distributed resources, eliminating the need to curtail DER
power and reducing the grid feed-in.

A contract-based framework to enable local energy trading for
electricity suppliers in different categories (i.e., small, medium,
and large suppliers) is developed in Oprea and Bâra (2021). The
model helps the suppliers obtain optimal contracts and trade the
surplus power with an aggregator in a hierarchical electricity
trading system. The distributed algorithm for electricity trading
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guarantees the optimal utility of both parties in various trading
scenarios.

A day-ahead local energy market model is developed in
Elbatawy and Morsi (2021) in which the residential consumers
with home battery storage are the main participants. It uses the
utility’s distributed energy management system and the home
energy management system based on the existing
intercommunication system. Moreover, the provision of grid
services, such as voltage support, transformer management,
and phase balancing, as a result of this transactive market
model, is investigated. The results show that the proposed
market can contribute to grid services, while increasing the
profits of the residential consumers.

Different auction mechanisms for the trade of electricity in a
local market using blockchain mechanisms were investigated by
Oprea and Bâra (2021). Suitable auction mechanisms for
blockchain are proposed along with an adjustment of the price
for both sellers and buyers after the initial clearing of the market
at the classical auction levels. The simulation results show that
this approach could improve the trading performance indicators.

The impact of local electricity trade on the operation of the
distribution network is investigated in Lüth et al. (2020). It is
concluded that exempting local trade and self-consumption from
taxes could create distributional effects. That work proposes a
novel market design that requires few legal amendments on the
ownership and participation of renewable technologies to avoid
the distributional effects of local markets, making them more
attractive for the prosumers and consumers.

The work of Mustafa, Cleemput, and Abidin (Mustafa et al.,
2016) provides security analysis for a proposed model of a local
electricity market considering the privacy requirements of the
users. Each user in this model buys or sells electricity in the local
market via the supplier, and the supplier charges the user only for
the electricity supplied to them by the grid and pays to them only
for the exported electricity that was not traded in the local market.
In this model, the DSO will also access the imported and exported
electricity by all the users per supplier for each settlement period.

The aforementioned works indicate the potential of LEMs to
benefit producers and consumers in energy communities.
Nevertheless, further research on decentralized models is
required to overcome scalability limitations when multiple
agents are involved. Thus, Proposed Methodology presented the
proposed methodology based on optimization models solved in a
decentralized way.

PROPOSED METHODOLOGY

In this section, the details of the model used to characterize
the transactions among the local prosumers and EVs are
presented. The optimization models for prosumers and EVs
are presented first and then the iterative process proposed for
ensuring the balance in the P2V market is explained. The
proposed methodology constitutes two different
optimization models: prosumer model and EV model. Both
of them are formulated as a MILP problem with the possibility
of energy exchange among the retailers, the distribution grid,

and the P2V market. It is assumed that EVs are able to buy
electricity from a retailer or the P2V market. The models also
consider the energy management system properties, using
storage systems to obtain the best options for the user.
Figure 1 presents the model scheme of the implemented
methodology.

As can be seen in Figure 1, in the implemented model, the
prosumers can buy electricity from a retailer and sell to the
main grid or in the P2V market; on the other hand, the EV
can buy electricity from the retailer or directly from
prosumers.

Formulation
The formulations are presented for each of the three agents:
prosumers, EVs, and the coordinator in the respective
subsections.

Prosumers
The prosumer operation is represented by the minimization of its
energy costs across a set of time periods. Each agent i belonging to
the set {1, . . . , Ni} optimizes its energy costs according to Eq. 1
and subject to Eqs 2–23. Decision-making is done in a
decentralized way, which means that each prosumer solves its
own optimization process.

minimize ProCostsi � ∑Nt

t�1
(PRetailer buy

i,t · ToUi,t − PGrid sell
i,t · f it

− PP2V sell
i,t · pP2V) · Δt + FCi, (1)

where ProCostsi represents the energy costs for the prosumer,
PRetailer buy
i,t represents the electricity bought from a retailer,

ToUi,t represents the time of use tariff contracted by the
prosumer to the retailer, PGrid sell

i,t corresponds to the
electricity sold in the distribution grid, fit is the feed-in
tariff, PP2V sell

i,t represents the electricity sold in P2V
market, pP2V is the price of electricity in the P2V market,
Δt represents the time adjustable parameter, FCi corresponds
to the daily fix cost paid by the prosumer, and Nt corresponds
to the total number of periods. Indices t and i represent the
respective period and prosumer. Eq. 2 presents the power
balance for prosumer agent i.

PGen
i,t + PRetailer buy

i,t + PDch
i,t � PLoad

t,i + PGrid sell
t,i + PP2V sell

i,t

+ PCh
i,t ,∀t ∈ Nt, (2)

where PGen
i,t represents the electricity generated by the prosumer,

PDch
i,t represents the electricity discharged from the prosumer

battery, PLoad
t,i corresponds to the load demanded by the

prosumer, and PCh
i,t corresponds to the electricity charged by

the prosumer battery. Eqs 3–5 simulate the prosumer’s
transactions.

PRetailer buy
i,t ≤PBuy

i,t · XRetailer buy
i,t ,∀t ∈ Nt, (3)

PGrid sell
i,t ≤PSell

i,t · XGrid sell
i,t ,∀t ∈ Nt, (4)

PP2V sell
i,t ≤P

Sell P2V
i,t · XP2V sell

i,t ,∀t ∈ Nt, (5)
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where P
Buy
i,t represents the maximum buying limit for the

prosumers, XRetailer buy
i,t corresponds to the binary variable for

the buy action, P
Sell
i,t represents the maximum limit for the

sales actions, XGrid sell
i,t is a binary variable for the sale on-grid

actions, P
Sell P2V
i,t represents the maximum limit for the sales on

P2V market, and XP2V sell
i,t represents the binary variable for the

sales on P2V market. Eqs 6, 7 represent the prosumers’
restrictions for buying and selling electricity.

XRetailer buy
i,t + XGrid sell

i,t ≤ 1, ∀t ∈ Nt, (6)

XRetailer buy
i,t + XP2V sell

i,t ≤ 1,∀t ∈ Nt, (7)

where Eq. 6 avoids simultaneous purchase from the retailer and
selling to the grid. Eq. 7 also controls simultaneous purchase from
the retailers and selling to the P2V market. Sells to the grid and
the P2V market can occur at the same time in this model. Eqs
8–10 control charging and discharging decisions of the
prosumers.

PCh
i,t ≤P

Ch
i,t · XCh

i,t ,∀t ∈ Nt, (8)

PDch
i,t ≤PDch

i,t · XDch
i,t , ∀t ∈ Nt, (9)

XCh
i,t + XDch

i,t ≤ 1,∀t ∈ Nt, (10)

where P
Ch
i,t represents the maximum limit for the prosumers

charge battery, XCh
i,t represents the binary variable for the

charge action, P
Dch
i,t corresponds to the maximum limit for the

battery discharge of the prosumer, and XDch
i,t corresponds to the

binary variable for the discharge action. Simultaneously, only one
action (charge and discharge) is possible and the binary variables
control these actions. Eq. 11, 12 model the state of charge of the
storage unit.

SoCBat
i,1 � SoCBat Init

i + (PCh
i,1 · ηChi − PDch

i,1 · 1
ηDch
i

) · Δt, (11)

SoCBat
i,t � SoCBat

i,t−1 + (PCh
i,t · ηChi − PDch

i,t · 1
ηDch
i

) · Δt,∀t ∈ [2,Nt],
(12)

where SoCBat
i,t represents the state of charge of the storage

unit, SoCBat Init
i represents the battery unit’s initial value;

efCh
i and ηDch

i represent the efficiency of charge and
discharge of the battery unit, respectively. Equations
13–23 present the limits for the optimization variables of
prosumer’s operations.

0≤PRetailer buy
i,t ≤PBuy

i,t ,∀t ∈ Nt , (13)

0≤PGrid sell
i,t ≤PSell

i,t ,∀t ∈ Nt , (14)

0≤PP2V sell
i,t ≤P

Sell P2V
i,t ,∀t ∈ Nt , (15)

0≤PCh
i,t ≤P

Ch
i,t ,∀t ∈ Nt , (16)

0≤PDch
i,t ≤PDch

i,t ,∀t ∈ Nt , (17)

SoC Bat
i,t ≤ SoCBat

i,t ≤ SoC
Bat
i,t ,∀t ∈ Nt , (18)

XRetailer buy
i,t ∈ {0, 1} ,∀t ∈ Nt , (19)

XGrid sell
i,t ∈ {0, 1}, ∀t ∈ Nt , (20)

XP2V sell
i,t ∈ {0, 1},∀t ∈ Nt , (21)

XCh
i,t ∈ {0, 1}, ∀t ∈ Nt , (22)

XDch
i,t ∈ {0, 1},∀t ∈ Nt , (23)

where SoC Bat
i,t and SoC

Bat
i,t represent the maximum and minimum

capacity of the battery unit, respectively.

Electric Vehicles
This section presents the optimization model for the EV agents,
which minimizes the daily operation cost through Eq. 24.

FIGURE 1 | Proposed model scheme.
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minimize : EVCosts
j � ∑Nt

t�1
(PEVRetailer buy

j,t · ToUj,t + PP2Vbuy
j,t · pP2V)

· Δt + FCj,

(24)

whereEVCosts
j represents the costs for EV,PEVRetailer buy

j,t corresponds to
the electricity bought from a retailer, ToUj,t is the time of use tariff,
PP2Vbuy
j,t represents the electricity bought in the P2V market, pP2V

corresponds to the price of electricity in P2V market, FCj represents
the fixed costs for EV, andNj represents the total number of EVs. Eq.
25 represents the energy balance for the EVs.

PEVRetailer buy
j,t + PP2Vbuy

j,t � PEVCh
j,t , ∀t ∈ Nt , (25)

where PEVCh
j,t represents the electricity charged for EV battery.

Eqs 26, 27 model the energy balance in EV batteries.

SoCEVBat
j,1 � SoCEVBat Init

j + (PEVCh
j,1 · ηEVCh

j − PEVMove
j,1 ) · Δt , (26)

SoCEVBat
j,t � SoCEVBat

j,t−1 + (PEVCh
j,t · ηEVCh

j −PEVMove
j,t )

× Δt ,∀t ∈ [2,Nt], (27)

where SoCEVBat
j,t represents the state of charge of the EV battery,

SoCEVBat Init
j represents the initial state of EV battery, ηEVCh

j
represents the efficiency of EV charge action, and PEVMove

j,t
represents the EV consumption during trips. Eqs 28, 29 limits
the EV buying of electricity when they are on trip.

PEVRetailer buy
j,t ≤ P

EVBuy
j,t · AEVMove

j,t ,∀t ∈ Nt , (28)

PP2Vbuy
j,t ≤ P

EVP2VBuy
j,t · AEVMove

j,t ,∀t ∈ Nt , (29)

where P
EVBuy
j,t represents the maximum limit for buying electricity,

AEVMove
j,t gives the indication if the EV is travelling (zero) or if is

available to charge (one), and P
EVP2V Buy
j,t represents the maximum

limit for buying electricity in P2V market. Eqs 30–33 present the
maximum and minimum limits for the EV operation.

0≤PEVReatiler buy
j,t ≤PEVBuy

j,t ,∀t ∈ Nt , (30)

0≤ PP2Vbuy
j,t ≤PEVP2VBuy

j,t ,∀t ∈ Nt , (31)

0≤PEVCh
j,t ≤PEVCh

j,t ,∀t ∈ Nt , (32)

SoC EVBat
j,t ≤ SoCEVBat

j,t ≤ SoCEVBat
j,t ,∀t ∈ Nt , (33)

where P
EVCh
j,t represent the maximum limit for EV maximum

charge action and SoC EVBat
j,t and SoC

EVBat
j,t represent the

minimum and maximum level for the EV battery, respectively.

Coordinator
The coordinator is responsible for the process of ensuring the balance
in the P2V market. The coordinator process is based on Eqs 34, 35
and applies four sequential rules. The first two rules limit the periods
for prosumers’ sells (Eq. 36) and EV buys (Eq. 37), respectively. On
the other hand, the last two rules limit the amount of buy and sell
electricity in periods in which transactions are possible. Eq. 38 limits
the maximum amount of electricity that each EV can buy in P2V
market, and similarly, Eq. 39 imposes a limit for prosumers’ sales.

Eq. 34 presents the energy balance in P2V market.

Balance : ∑Ni

i�1
(PP2V sell

i,t · Δt) � ∑Nj

j�1
(PP2Vbuy

j,t · Δt),∀t ∈ Nt . (34)

To ensure the balance in the P2V market, the aggregator executes
four hierarchical rules. Thus, an error is calculated according to
Eq. 35 to indicate the difference between the sell and buy energy
across all time periods.

Error � ∑Nt

t�1
⎛⎝∑Ni

i�1
PP2V sell
i,t · Δt −∑Nj

j�1
PP2Vbuy
j,t · Δt

⎞⎠2

· (35)

The error can be obtained in each iteration of the process and
considers the energy sold by the prosumers and bought by the
EVs. When the process has been finalized, the value of error
should be minimal.

Four different rules are created to achieve the minimal
error and the convergence of the coordinator process. One
algorithm per each rule is presented in order to facilitate the
interpretation of the corresponding rule. The first rule is defined
in Eq. 36.

Rule1: P
EVP2VBuy
j,t,(it�2) �

⎧⎪⎪⎨⎪⎪⎩
0 if ∑Ni

i�1
PP2V sell
i,t � 0

P
EVP2V buy
j,t,(it�1) otherwise , ∀t ∈ Nt ,∀j ∈ Nj.

(36)

Rule 1 is applied to update the values of EV electricity maximum
buy limit in the P2V market for the second iteration. Considering
this rule, the EV in the second iteration only can buy electricity in
periods when the prosumers are available for sale. Algorithm 1
presents the application process of rule 1.

Algorithm 1. Application of Rule 1 (Eq. 36)

1. Coordinator balance check (Eq. 34)
2. Error calculation (Eq. 35)
3. If Error> 1 × 10−2 kW and it � 1
4. For t � 1: Nt

5. For j � 1: Nj

6. If ∑Ni
i�1 PP2V sell

i,t � 0

7. P
EVP2V buy
j,t,(it�2) � 0

8. Else If
9. P

EVP2V buy
j,t,(it�2) � P

EVP2V buy
j,t,(it�1)

10. End If
11. End For
12. End For
13. it � it + 1
14. Else If
15. Converged solution
16. End If
17. Return the solution.
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Eq. 37 presents the rule executed for the second iteration.

Rule 2: P
SellP2V
i,t,(it�3) �

⎧⎪⎪⎨⎪⎪⎩
0 if ∑Nj

j�1
PP2V buy
j,t � 0

P
Sell P2V
i,t,(it�2)otherwise ,∀t ∈ Nt ,∀i ∈ Ni.

(37)

Rule 2 is applied to the maximum limit of electricity sell in the
P2V market for the prosumers side. In this case, in periods where
the EVs do not buy electricity in the P2V market, the maximum
sales limit for prosumers in this same period is zero. Algorithm 2
presents the application of rule 2.

Algorithm 2. Application of Rule 2 (Eq. 37)

1. Coordinator balance check (Eq. 34)
2. Error calculation (Eq. 35)
3. If Error> 1 × 10−2 kW and it � 2
4. For t � 1: Nt

5. For i � 1: Ni

6. If ∑Nj

j�1 P
P2Vbuy
j,t � 0

7. P
Sell P2V
i,t,(it�3) � 0

8. Else If
9. P

Sell P2V
i,t,(it�3) � P

Sell P2V
i,t,(it�2)

10 End If
11. End For
12. End For
13. it � it + 1
14. Else If
15. Converged solution
16. End If
17. Return the solution.

Rule 3 in Eq. 38 presents a new update for the maximum buy
limit for EV buys in the P2V market.

Rule 3: P
EVP2V Buy
j,t,(it�4) �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∑Ni

i�1 P
P2V sell
i,t

PP2V buy
j,t

if PP2V buy
j,t ≥ 0

P
EVP2V Buy
j,t,(it�3) otherwise

,∀t ∈ Nt ,∀j ∈ Nj.

(38)

Using rule 3, the maximum limit for EVs to buy electricity in the
P2V market is limited using the quantity available from
prosumers. In this case, in each period that there is electricity
sold by the prosumers, the maximum limit for the EVs available
to buy will be limited. This limitation will be proportional,
considering the maximum electricity available from prosumers.
Algorithm 3 presents the application of rule 3.

Algorithm 3. Application of Rule 3 (Eq. 38)

1. Coordinator balance check (Eq. 34)
2. Error calculation (Eq. 35)
3. If Error> 1 × 10−2 kW and it � 3
4. For t � 1: Nt

5. For j � 1: Nj

6. If PP2V buy
j,t ≥ 0

7. P
EVP2VBuy
j,t,(it�4) � ∑Ni

i�1 P
P2V sell
i,t

PP2V buy
j,t ≥ 0

8. Else If
9. P

EVP2VBuy
j,t,(it�4) � P

EVP2VBuy
j,t,(it�3)

10. End If
11. End For
12. End For
13. it � it + 1
14. Else If
15. Converged solution
16 End If
17. Return the solution.

Rule 4 limits the maximum electricity sold by prosumers in the
P2V market presented in Eq. 39.

Rule 4: P
SellP2V
i,t,(it�5) �

∑Nj

j�1
PP2V buy
j,t

PP2V sell
i,t

if PP2V sell
i,t ≥ 0

P
SellP2V
i,t,(it�4) otherwise

,∀t ∈ Nt ,∀i ∈ Ni.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(39)

In rule 4, the same process of rule 3 is applied, but for the
maximum limit for prosumers sells in the P2V market.
Algorithm 4 presents the application of rule 4.

Algorithm 4. Application of Rule 4 (Eq. 39)

1. Coordinator balance check (Eq. 34)
2. Error calculation (Eq. 35)
3. If Error> 1 × 10−2 kW and it � 4
4. For t � 1: Nt

5. For i � 1: Ni

6. If PP2V sell
i,t ≥ 0

7. P
Sell P2V
i,t,(it�5) �

∑Nj
j�1 P

P2V buy
j,t

PP2V sell
i,t

8. Else If
9. P

Sell P2V
i,t,(it�5) � P

Sell P2V
i,t,(it�4)

10. End If
11. End For
12. End For
13. it � it + 1
14. Else If
15. Converged solution
16. End IF
17. Return the solution

Iterative Process
An iterative approach is adopted to solve the coordination
process. This is illustrated by the block diagram in Figure 2.
The coordinator is responsible for the perfect match between
the sales of prosumers and purchases of the EVs in the P2V
market. The optimizations of each prosumer and EV are
independent, only needing the information of maximum
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limits for transaction in the P2V market provided by the

coordinator.
The coordinator initializes the process, defines the

maximum limits for prosumers and EV transactions in
P2V market, and passes the information for each
prosumer and EV. Both of those agents optimize
their energy costs with the provided information of
maximum limits for P2V transactions. Those
optimizations run in a parallel and decentralized way in
which prosumers and EVs receive and send the required data
to the coordinator. The latter receives the P2V transaction
information and determines the error considering the
electricity sold by prosumers and bought from EV. The
convergence is tested through two different criteria: the
error value obtained by Eq. 35 and the number of
iterations. Considering the error, if the value is equal to
or less than 0.001 kW, the process converges. On the other
hand, when the process is completed, the limit of iterations
(five) is reached. When none of the aforementioned
conditions is verified, the process proceeds to the next
iteration, and the maximum limits for P2V transactions
are updated.

The created rules are applied in a sequential mode with
respect to the number of respective iterations. During the
iterative process, if the error condition is verified, the model
converges, and all rules may not be applied. At the maximum,
this process has five iterations.

CASE STUDY

To validate the proposed methodology, a case study with a set of
50 residential prosumers and 40 EVs is adopted.2 In total, the
community is constituted by 90 players. All community players
have a contract with the retailer to supply the necessary electricity
that defines the maximum limit for buying electricity, the
maximum limit for injecting electricity into the grid, and the
fixed costs. The prosumers and EVs can transact electricity in the
P2V market, that is, prosumers’ sell and EVs buy electricity,
which presents the mean profiles of generation and
conventional load.

The profiles presented in Figure 3 are the mean profiles
considering the 50 prosumers. The prosumers present a total
consumption of 2001.89 kWh and 1,1417.82 kWh of total PV
generation, which correspond to a mean of 40.04 kWh of
consumption and 28.36 kWh of generation for each prosumer.
The prosumer has installed 248.8 kW of produced capacity for
PV generation, that is, a mean of 4.98 kW. Table 1 presents the
characteristic of batteries used in the prosumers’ facilities.

Three different batteries for prosumers are selected in the case
study. In total, there are 50 units of batteries, one per each
prosumer. The three available battery types are randomly

FIGURE 2 | Block diagram process.

2All data are available in the public datset: https://zenodo.org/record/4737293#.
YJFWT7VKg2x.
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distributed among all prosumers. In total, the prosumers have
715 kWh of storage capacity installed. Table 2 presents the
characteristics of EVs used in the case study, while Figure 4
presents the EV profiles.

Figure 4A presents the profiles of EV trips; most of the EV
trips happen at 8:15 h and 19:45 h (36 trips). In mornings, the EV
starts the movements at 6:15 h and stops at 23:30 h at night.
Regarding the total number of periods, the EVs make 780 trips,
which correspond to a mean of 8.3 trips per period. Figure 4B
presents the mean profile of EV consumption. The peaks of
consumption are verified in the same peak periods of EV
movements.

The seven EVmodels presented inTable 2were also randomly
distributed within the 40 available EV users. Tesla Model 3
Standard Range + is the most used model. Considering all
EVs, they have 1916.60 kWh of capacity. Table 3 presents the

tariffs used in the case study. All buy tariffs are obtained in the
EDP Comercial Portuguese electricity retailer.

Table 3 presents three different tariffs that the prosumers and
EVs can contract with the retailer. The users should contract the
tariff that best fits their needs. Contracted power corresponds to
the maximum power that each user can demand from the
distribution grid. Fixed costs are always associated with
contracted power value; higher contracted power values are
associated with higher values of fixed costs. The price of
electricity varies in two different periods in the day. Off-peak
period (during 22:15 to 8:00 h) are considered the cheapest
periods, while peak time (between 8:15 to 22:00 h) is considered
expensive. Regarding the sell tariff, the price is defined as linear
and can be found in Ambiente. (2020). The limit for export of
electricity to the grid is half of the contracted power. In the set of
prosumers, 21 of them selected the tariff with 6.90 kVA
contracted power, while in the set of EVs, 16 of them
selected the tariff with 13.80 kVA contracted power. Price of
the P2V market (pP2V) is obtained considering the mean
between the minimum value of ToU tariffs (min(ToUj,t))
and the feed-in tariff. The electricity price of the P2V market
is 0.0686 €/kWh, while the minimum EV buy price is 0.0922 €/
kWh and the price of export electricity to the grid (fit) is
0.045 €/kWh.

RESULTS

The results of the proposedmethodology applied to the case study
are shown in this section. The simulations were performed on a
computer with an Intel Xeon(R) E5-2620v2@2.1 GHz processor
with 16 GB of RAM running Windows 10. To emulate the
optimization problem, a MATLAB 2018a with TOMLAB
optimization add-on was used. The CPLEX solver was used to
optimize the proposed model. The simulations are carried out for
a time horizon of 24 h divided into 96 periods (15 min each). The

FIGURE 3 | Mean profiles of prosumers.

TABLE 1 | Prosumers batteries characteristics.

Brand Model Capacity (kWh) Charge/discharge rate (kW) Efficiency (%) No

Sonnen 9.43 15.000 3.300 90 16
Tesla Powerwall 13.500 5.000 90 18
Alpha Smile 14.500 2.867 90 16

TABLE 2 | EV characteristics.

Brand Model Capacity (kWh) Charge rate (kW) Efficiency (%) No

Honda e 35.500 6.600 90 2
WV ID.4 82.000 11.000 90 6
WV e-Golf 35.800 7.200 90 8
Tesla Model 3 Standard Range + 50.000 11.000 90 10
Peugeot e-208 50.000 7.400 90 2
Nissan Leaf 40.000 3.600 90 8
WV e-UP! 36.800 7.200 90 4
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load and generation data are obtained through forecasts. Two
different scenarios are considered to enable the comparison:
scenario A for the possibility of transacting electricity with
retailers and the option of exporting to the grid, and scenario
B for the possibility of transacting electricity with retailers, the
option of exporting to the grid, and transacting electricity in the
P2V market. Table 4 presents the optimization results for a
centralized approach and the decentralized approach proposed in
this work.

Table 4 presents the optimization results for the same case
study with two different variants (with and without P2V market)
and for two different implementations (centralized and
decentralized). It was found that the results are the same when
the P2V market is not available; however, as expected, the
centralized method provides slightly better total costs for the
P2V market variant. The only difference is the implementation,
which has disadvantages considering the privacy issues.
Comparing the two different implementations when the P2V

FIGURE 4 | EV profiles, (A) movements, and (B) mean consumption.

TABLE 3 | Tariffs description.

Tariff Type Price (€/kWh) Contracted power
(kVA)

Fixed costs
(€/day)

No

Off-peak Peak Prosumer EV Total

Buy ToU 0.0923 0.1833 4.60 0.3251 12 8 20
0.0924 0.1834 5.75 0.3847 10 0 10
0.0924 0.1836 6.90 0.4448 21 2 23
0.0922 0.1829 10.35 0.6209 7 14 21
0.0926 0.1838 13.80 0.8022 0 16 16

Sell Feed-in tariff (fit) 0.0450 50% of buy limit 0.0000 50 0 50

TABLE 4 | Optimization results (€).

Centralizeda Decentralized

No P2V market P2V market No P2V market P2V market

Scenario

A B A B

Mean cost Prosumers 2.10 2.10 2.10 2.06
EV 4.62 4.37 4.62 4.44

Sum of costs Prosumers 104.84 104.96 104.84 102.82
EV 184.85 174.95 184.85 177.52

Total costs 289.69 279.92 289.69 280.34
Reduction (%) 3.37 3.23

aConsidering model presented in reference (Faia, et al., 2021b).
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market is available, the centralized implementation has better
results with a minimal difference (0.15% comparing the total
costs). Analyzing other indicators’ results, different values are
presented when considering scenario B in the two different
implementations. In the decentralized option, the values of
mean prosumer cost decreases (2.04%) and the mean EV costs
increase (1.45%). Since each player is trying to make the most
advantageous transaction for itself, which leads to a suboptimal
cost. On the other hand, in a centralized implementation, the
community profit is maximized.

Table 5 presents the optimization time results for both
implementation scenarios. In the decentralized
implementation, the time presented in each iteration
corresponds to the maximum resolution time in the set of all
players. Execution times in the decentralized implementation for
both scenarios A and B are lower than the times required by the
centralized implementation. The big difference and the advantage
of the decentralized implementation are verified when the
resolution times for scenario B are presented. As can be seen,
when the centralized implementation is considered, the
resolution time is 144 times greater than the decentralized
implementation.

Figure 5 shows the convergence of the optimization process.
Three different variables are presented in Figure 5, the error

(obtained by Eq. 34), the value of prosumers sells in P2V, and the
EV buys in P2V. The sales and buys should have the same value.
In the first iteration of Figure 5, the EVs are buying more units of

TABLE 5 | Optimization time results (seconds).

Centralized DecentralizedIteration

No P2V market P2V market No P2V market P2V market

1 9.74 1,118.57 1.78 1.64
2 − − − 1.34
3 − − − 1.59
4 − − − 1.58
5 − − − 1.58
Total 9.74 1,118.57 1.78 7.73
Total (minutes) 0.16 18.64 0.03 0.13

FIGURE 5 | Process convergence. FIGURE 6 | Buys and sells of scenario B.

FIGURE 7 | Buys and sells of scenario B.
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electricity than the amount available on the market, corresponding
to the prosumers’ selling. The electricity sold by the prosumers in
the P2V market remains constant in all iterations. However, in the
end, the EVs adjust their purchased electricity with what is sold by
the prosumers. Throughout the iterations, the amount of purchase
of EVs decreases as a result of the application of the rules created,
leading the error to zero. In this case, the EVs adapt their actions to
the behavior of the prosumers. This is because the amount of
electricity available on the part of the prosumers is less than that
required by the EVs.

Figure 6 presents the electricity transaction of scenario B in
centralized and decentralized implementations. The presented
results are very similar, although there are differences, mainly in
the electricity exported to the grid. Electricity is exported in the
centralized implementation, while it is not exported in the
decentralized approach. One of the important aspects observed
is the value of electricity traded in the P2V market, which is
superior to decentralized implementation. Figure 7 presents the
transaction on P2V electricity market considering the centralized
and decentralized implementation.

As can be seen in Figure 7, the transactions of P2V for the
centralized and decentralized solutions have differences. The main
difference is related to the period of transaction: in the centralized
approach, the transactions occur between 9:00 h and 19:00 h and also
between 21:00 and 22.30 h. In the case of decentralized resolution, the
transactions occur during 9:00 h to 16:00 h, which corresponds to the
PV prosumers’ production hours. Figure 8 presents the electricity
transaction on grid for the decentralized approach.

Both Figures 8A and B present results for the decentralized
resolution, Figure 8A for scenario A, where P2V market is not
available, and Figure 8B for scenario B where P2V market is
available. The big difference presented in the figures is related to
the prosumers’ sell to grid values. In the case of scenario A, there
are sells to the grid made by prosumers, while in scenario B, all the
electricity units available to be sold is sold in the P2V market.
Figure 9 presents the mean costs for prosumers and EV of
scenario B.

The mean costs for prosumers and EVs regarding the iterations
are presented in Figure 9. The mean values for decentralized
implementation vary in the case of EV, but in prosumers’ case, the
value is constant. The mean value of EV increases throughout
interactions. In the fifth iteration, the value is higher than the value
of the first iteration because they decrease the value of electricity
bought in the P2V market, which has a better price for EVs. As the
liquidity of electricity is not sufficient for the amount needed by the
EVs, they have to buy from the retailer and pay a higher price.
Buying at the retailer rates increases the average of electricity costs.

CONCLUSION AND FUTURE WORKS

This study presented a decentralized approach for a prosumer-to-
vehicle (P2V) market at a local energy community composed of 90

FIGURE 8 | Transactions on grid for decentralized (A) scenario A and (B) scenario B.

FIGURE 9 | Mean costs of Scenario B.
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players [50 prosumers and 40 electric vehicles (EVs)]. The results
using the P2Vmarketmechanism show a reduction in the total energy
costs and the average costs of each player’s type. Comparing the results
of centralized with decentralized implementations, the difference in
total costs is minimal, but the optimization time difference is
significantly higher. Other issues may arise regarding the
centralized implementation, such as data privacy. In the case of
decentralized implementation, players perform their optimization
and only share the values referring to the P2V market.
Cyberattacks can also be an important aspect of decentralized
implementation. In the centralized implementation, if a cyberattack
occurs, the operation of the system can be stopped, leaving users
without service. In the case of decentralized systems, as distributed by
the various users, an attack will only affect the targeted user, while
others remain safe.

The influence of the P2V market depends on the quantity of
energy available from the prosumers’ side. As can be seen, by
using rules created, the EV adapts the electricity bought in the
P2V market to the electricity sold to the prosumers in the same
market. Most of them have PV installations, and it is possible to
assume that enough amount will be available in future. The use of
small thermoelectric generation units can be a solution to
increase the supply capacity for the P2V market. Still, the
higher production costs of those units can be a barrier.

The P2V market allows prosumers to benefit the local
distribution grid and the energy community. As a future work,
the authors intend to compare this approach with other
decentralized methods available in the literature. The authors
are considering the possibility to implement the ADMM
technique, although the application of this technique involves
proof of concepts that sometimes are not possible to obtain and
fully prove the convergence of the implementation. Considering
dynamic pricing in the P2V market is another relevant aspect
worthy to be explored in the future. The inclusion of dynamic
pricing in the P2V market can encourage the users to participate
in local energy transaction. Participating in such markets could
lead to higher benefits for prosumers and the EV owners. In this
case, the idea would be to vary the price of electricity in the P2V
market with the amount of electricity offered and required. An
important aspect that serves as a subject for future work is the
study of the vulnerabilities that the system presents in terms of

cyber security and the effective mechanisms and measure to
protect the users.
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