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Accurate state of charge (SoC) estimation is crucial for the safe and reliable running of
lithium-ion batteries in electrified transportation equipment. To enhance the estimation
accuracy and robustness under different ambient temperatures, H∞ and the adaptive H∞
filterings were first combined to simultaneously forecast the parameters and SoC of the
battery model considering the hysteresis effect in this paper. To drop the computational
complexity to the most extent, the hysteresis unit was integrated into the first-order RC
battery model and the aforementioned combined algorithm was developed under a dual-
time frame. Then, the battery model with the hysteresis effect is evaluated against the
model without that in terms of the estimation accuracy. Subsequently, the proposed
algorithm is compared with the dual H∞ algorithm based on the employed battery model.
The results demonstrate the excellent performance of the utilized battery model and the
proposed algorithm in terms of both the estimation accuracy and the convergence speed.
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INTRODUCTION

Nowadays, energy crisis and environmental pollution issue force the fast application of sustainable
energy on electrical equipment. Owing to natural advantages, lithium-ion batteries (LIBs) have been
widely adopted in energy storage areas (Saha et al., 2019; Wei et al., 2019; Zhang et al., 2019; Feng
et al., 2020). With the continuous improvement of lithium-ion batteries in energy density, enhancing
their safety is becoming increasingly urgent for electric vehicle development (Divakaran et al., 2021).
As a core function of the system, the accurate predicted SoC is a vital guarantee for LIBs’ safety and
reliability (Zhang et al., 2017; Zhou et al., 2019).

In the past, numerous efforts have been made to improve the estimation performance. Firstly,
simple and direct methods are the ampere-hour integral method and the open circuit voltage
(OCV)–SoC lookup table (Zhang et al., 2016; Hu et al., 2020). Due to the error induced by the sensor
failure and the imprecise initial value, studies about the former method are relatively rare. Otherwise,
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Abbreviations: SoC, State of charge; LIBs, Lithium-ion batteries; OCV, Open circuit voltage; EMC, Equivalent circuit model;
AH∞, Adaptive H∞; CCCV, Constant current constant voltage; MAXE, Maximum absolute error; MAE, Mean absolute error;
RMSE, Root mean square error; DTF H∞–AH∞, Dual-time frame H∞–AH∞; DTFD, H∞ dual-time frame dual H∞; R0,
Ohmic resistance; Rp, Polarization resistance; Cp, Polarization capacitance; Ut, Terminal voltage; Up, Polarization voltage;
ck−1, δk , Hysteresis coefficients; ζa , Coefficient for the performance boundary of SoC estimation; N, Constant for Ra,k de-
termination; L, Time interval for updation of parameters.
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the latter always requires electric equipment to rest for hours. This
method is also limited in practice. Secondly, the data-driven method
is another alternative for the estimation, which mainly includes
support vector machine, neural network (Ephrem et al., 2018), and
fuzzy logic (Hametner and Jakubek, 2013). These approaches have
the advantage of modeling systems with strong nonlinear
characteristics. However, their prediction accuracies highly
depend on the quantity and quality of the datasets used to train
the LIBs’ model (Bian et al., 2019). Thirdly, the electrochemical
model (Feng et al., 2020) and the equivalent circuit model (ECM)
can be classified as model-based methods for the estimation. The
former can reflect LIBs’ intrinsic parameters including conductivity
and diffusivity but is limited by the heavy computational burden
caused by tremendous partial differential equations (Hannan et al.,
2017). Besides, ECMs such as the first-order RCmodel (Zhang et al.,
2015; Yang et al., 2018; Lai et al., 2020), the second-order RC model
(Hu et al., 2012), and the third-order RCmodel (Hu et al., 2018) have
been used in the past to simulate the electrical behavior of the
batteries. Otherwise, there exist nonlinear characteristics inside the
batteries due to the hysteresis effect of the OCV. Therefore, some
researchers build the ECMwith the hysteresis unit aiming to further
improve the estimation accuracy. For instance, based on the first-
order battery RCmodel with the hysteresis unit, Verbrugge and Tate
(2004) iteratively computed the SoC using the least-squares
regression algorithm. Dong et al. (2016) embedded the
hysteresis voltage into the second-order RC battery model
and used dual invariant-imbedding algorithm for battery
model and SoC estimations. However, these research studies
did not compare the ECM considering the hysteresis effect
with the ECM without considering that in terms of the
estimation accuracy. On the other hand, the robust
estimation algorithms for different ambient temperatures
based on the ECM considering the hysteresis effect have
rarely been reported in the literature.

Obtaining ECM’s parameters is the basis of computing the SoC. For
this purpose, many algorithms have been employed to estimate these
parameters, such as the least square, the particle swarm optimization,
the genetic algorithm, the recursive least square, the extended Kalman
filter, the H∞ filter, and the particle filter. A set of constant parameters
can be obtained by the former three methods. Xiong et al., 2018,
illustrated that parameters jitter largelywhen LIBswork at low ambient
temperatures. Zhang et al., 2017, showed that both environmental
temperature and battery aging can result in apparent changes in LIBs’
parameters. Therefore, the latter four methods are designed to identify
these parameters in real-time and thus can reflect their variations.

After capturing the battery’s parameters, the space-state
equation of the battery model should be solved. To this end,
various algorithms such as the extended Kalman filter (Zhang
et al., 2012), the unscented Kalman filter (He et al., 2016), and the
particle filter (Chen et al., 2019) have been employed. However,
for the aforementioned estimation algorithms, the process and
the measurement of noise covariance matrices are set to be
constant, which may not adapt various current loading
conditions. Therefore, the adaptive technique was applied to
the above filterings (Li et al., 2019; Li et al., 2020).

In this paper, the robust H∞ and the adaptive H∞ (AH∞)
filterings were combined for the battery model and SoC estimations.

To minimize the computational complexity of the SoC estimation
approach, the hysteresis unit was integrated into the first-order RC
battery model. Also, the H∞– AH∞ algorithm was developed
under a dual-time frame to further drop the computational burden.
Then, the batterymodel considering the hysteresis effect is compared
with the model without considering that in terms of the estimation
performance. Finally, the proposed estimation algorithm is evaluated
against the dual H∞ filterings.

The rest of this paper is organized as follows. Section “Battery
Experiment” details the battery experiments involved in this
paper. The dual-time frame H∞–AH∞-based battery model
parameters and SoC simultaneous estimation algorithm are
deduced in the “Battery Model and Estimation Algorithms”
section. Then, the employed battery model and the proposed
approach are evaluated in the “Experimental Verification and
Discussion” section. Finally, conclusions are drawn in the
“Conclusion” section.

BATTERY EXPERIMENT

To evaluate the proposed approach in this work, corresponding
battery testings were designed in this section. The battery test
platform is introduced first. Then, relevant battery testings
around this research are detailed.

A battery test platform as shown in our previous research
(Feng et al., 2021) was utilized, including a YKYTEC battery test
machine with 16 independent charging and discharging channels,
a thermal chamber to regulate the operation temperature, and a
computer with YKYTEC software.

The polymer battery cell in which the cathode material and
anode material are LiNiMnCoO2 and graphite, respectively, was
tested on the platform. The basic parameters of the cell are given
in Table 1.

The battery cell was tested by the characteristic test procedure at
20°C, 10°C, and 0°C. For the characteristic test, the available capacity
testing was loaded on the cell to calibrate the actual capacity,
followed by the incremental OCV testing (Yang et al., 2019) to
acquire the OCV–SoC dataset. Then, a hybrid pulse current profile
was loaded on the cell to test the responding terminal voltage.
Referring to the research in the study by Ye et al., 2017, we defined
the pulse current profile. As shown in Figure 1, the pulse current
profile consisted of many cycles. In each cycle, the cell was first
discharged using a current with 1C for 5min, followed by a rest
period for 5 min, followed by a charging process by the current with
0.1C for 5min.

As a commonly used OCV calibrating method, the
incremental OCV testing was carried out to obtain the OCV
models in this work. Firstly, the cell was charged to 100% SoC
with a current of 0.5C under the constant current and constant
voltage (CCCV) mode (the charge cutoff current was 0.05C),
and the cell was rested for 2 h when the charging process was
finished. Secondly, the cell was discharged in every 10% SoC
interval until the terminal voltage drops to the discharge cutoff
voltage, and the cell was also rested for 2 h after every
discharge interval was completed. During the discharge
process, the current was set to 0.5C, and the corresponding
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SoC and terminal voltage were recorded at the end of every
rest period. Thirdly, the cell was charged by the same routine
as the discharge process. The CCCV mode is applied to the last
charging SoC interval to fully charge the cell. Then, an

averaging process of the charging and discharging OCV-
SoC datasets (see Figures 2A–C) and a fitting process
according to the six-order polynomial function were
successively conducted to establish the traditional OCVmodel.

TABLE 1 | Basic parameters of the tested battery cell.

Nominal capacity Actual capacity Nominal
voltage

Charge/discharge cutoff
voltage

Maximum charge/discharge
current

Charge/discharge
temperature

Power density

1.0Ah 0.885Ah (25°C) 3.7 V 4.25V/2.75 V 1A/1 A 0–45°C/−10–60°C 37 W h/kg

FIGURE 1 | The dynamic pulse current profile.
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BATTERY MODEL AND THE ESTIMATION
ALGORITHMS

Battery Model
The first-order RC model with the hysteresis voltage as shown
in Figure 3 is employed to simulate the nonlinear
characteristics of the battery here. It consists of a voltage
source OCV, an ohmic resistance R0, a polarization resistance
Rp, a polarization capacitance Cp, and a hysteresis voltage Uh.
Ut is the terminal voltage, and Up represents the polarization
voltage. I represents the battery charging/discharging
current.

The electric characteristic of the battery model can be
expressed as shown in Eq. 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Upk � λUpk−1 + (1 − λ)RpkIk

λ � exp( −Δt
RpkCpk

) ,

⎧⎨⎩ Vh,k � λ1Vh,k−1 + (1 − λ1)sgn(Ik)
λ1 � exp[ − ∣∣∣∣ck−1ik−1Δt∣∣∣∣]

Utk � OCVk − δkVh,k − IkRk − Upk,

, (1)

where Δt denotes the sampling time and equals one second; k is the
microdiscrete-time index; and ck−1and δkare hysteresis coefficients.

Battery Parameters Estimation Based
on H‘
We assume that the space-state equation for parameters
estimation is as shown in Eq. 2.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Xl � f(Xl−1, ul−1) +Wl−1 ≈

zXl

zXl−1
Xl−1 +Wl−1′ � Fl−1Xl−1 +Wl−1′

yl � h(Xl, ul) + vl ≈
zyl

zXl
Xl + vl′ � HkXl + vl′

,

(2)

whereXl represents the system state variable; uland yl are input
and output of the system, respectively;Wl′ and vl′ are process and
measurement noise of the system with covariance matrices Q and
R, respectively; Fl−1 � zXl/zXl−1 andHl � zyl/zXl are coefficient
matrices; l � k/L is the macrodiscrete-time index; and the L is the
time scale defined by users.

As described in Eq. 3, our objective is to obtain the target
matrixOl,

Ol � ΦlXl, (3)

where Ol is a linear combination of the state Xl and Φl is a user-
defined matrix according to the target matrixOl.

According to the game theory, we should minimize the value of
(ol − ôl) to make the cost function, as shown in Eq. 4, as small as
possible.

C � ∑N−1
l�0 ‖ ol − ôl‖2Sl

‖ X0 − X̂l‖2P−1
0
+ ∑N−1

l�0 ( ‖ Wl′‖2Q−1
l
+ ‖ vl′‖2R−1

l
) , (4)

where Sl,P0,Ql, and Rl are all user-defined symmetric positive
matrices according to the specific problem.

To minimize the cost function, we should define a value of the
performance boundary to makeC< 1/ζ , and ζ is defined by users.

For the first-order RC model, we define the state vectorXlas
shown in Eq. 5.

FIGURE 3 | The first-order RC model with the hysteresis voltage.

FIGURE 2 | OCV–SoC dataset tested at three ambient temperatures.
(A) 0°C; (B) 10°C; (C) 20°C.
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⎧⎪⎨⎪⎩
Xl � (R0l, Rpl, Cpl, OCVl, δl, cl, Upl)T
R0l � R0l−1, Rpl � Rpl−1, Cpl � Cpl−1
δl � δl−1, cl � cl−1, OCVl � OCVl−1

. (5)

Suppose that, IRn →IRm is a function from n-dimensional
Euclidean space to m-dimensional Euclidean space. And, the
function consists of a series of children functions as shown in Eq. 6.

⎛⎜⎝y1(x1, · · ·, xn)
«

ym(x1, · · ·, xn)
⎞⎟⎠. (6)

We can get the Jacobian matrix as shown in Eq. 7.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

zy1

zx1
/

zy1

zxn

« 1 «

zym

zx1
/

zym

zxn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (7)

Substituting Eqs. 1, 5, and 7 into Eq. 2, we get Eqs. 8 and 9.

Fl−1 �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1, 0, 0, 0, 0, 0, 0

0, 1, 0, 0, 0, 0, 0

0, 0, 1, 0, 0, 0, 0

0, 0, 0, 1, 0, 0, 0

0, 0, 0, 0, 1, 0, 0

0, 0, 0, 0, 0, 1, 0

0,
(Upl−1 − Rpl−1Il−1)λΔt
Cpl−1Rpl−1 2 − Il−1

,
(Upl−1 − Rpl−1Il−1)λΔt

Rpl−1Cpl−1 2 , 0, 0, 0, λ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(8)

Hl � zyl

zXl
� ( − Il, 0, 0, 1,−Vh,k, 0,−1). (9)

In addition, to identify R0l,Cpl,Rpl,δl, and cl, we define Φl as
shown in Eq. 10.

Φl �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1, 0, 0, 0, 0, 0, 0
0, 1, 0, 0, 0, 0, 0
0, 0, 1, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 1, 0
0, 0, 0, 0, 0, 0, 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (10)

Battery SoC Estimation Based on AH‘
We assume that the space-state equation for SoC estimation is as
shown in Eq. 11.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xa,k � f(Xa,k−1, ua,k−1) +Wa,k−1 ≈
zXa,k

zXa,k−1
Xa,k−1 +Wa,k−1′

� Aa,k−1Xa,k−1 + Ca,k−1ua,k−1 +Wa,k−1′

ya,k � h(Xa,k, ua,k) + va,k ≈
zya,k

zXa,k
Xa,k + va,k′ � Ba,kXa,k + va,k′

Oa,k � Φa,kXa,k

,

(11)

where Xa,k represents the system state variable; ua,k−1and ya,k are
input and output of the system, respectively; Wa,k−1′ and va,k′ are
process and measurement noise of the system with covariance
matrices QaandRa, respectively; Aa,k−1, Ca,k−1, and Ba,k are
coefficient matrices；Oa,kis a linear combination of the stateXa,k;
Φa,k is a user-defined matrix according to the target matrix Oa,k.

SoC can be defined as shown in Eq. 12.

SoCk � SoCk−1 − ηCIk−1Δt
Ca

, (12)

where Ca denotes the current maximum available capacity of the
battery and ηCrepresents the Ah efficiency.

Take dynamic electrical characteristics in Eq. 1 into
consideration and define Eq. 13.

Xa,k � (Upk, Vh,k, SoCk)T. (13)

Parameters in Eq. 11 can be expressed as shown in Eq. 14.

Aa,k−1 � ⎛⎜⎜⎜⎜⎜⎜⎝ λ, 0, 0

0, λ1, 0

0, 0, 1

⎞⎟⎟⎟⎟⎟⎟⎠, Ca,k−1 �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1 − λ)RpkIk

(1 − λ1)sgn(Ik−1)
−ηCIk−1Δt

Ca

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

Ba,k � ( − 1,−δk, z(OCVk)
z(SoCk) ),

(14)

H‘–AH‘-Based Dual-Time Frame
Parameters and SoC Coprediction
Procedure
We have derivedXl, Fl−1, Hl, Φl, Xa,k,Aa,k−1, Ca,k−1, and Ba,k.
Then, we substitute these parameters into the multitime frame
parameter and SoC coprediction procedure as follows, and thus,
the battery parameter and SoC can be solved.

For k � 0,
Step 1: parameter and state initialization

(1) Set the state initial value

x̂+
a,0 � E(xa,0), P+

a,0 � E[(xa,0 − x̂+
a,0)(xa,0 − x̂+

a,0)T], Qa,0,Ra,0,Sa,0,ζa,N,

where ζais defined by users to determine the performance boundary
for SoC computation andNmeans the time interval used to compute
the measurement noise covariance Ra,k as shown in Eq. 20.

(2) Set the parameter initial value

x̂+
0 � E(x0), P+

0 � E[(x0 − x̂+
0 )(x0 − x̂+

0 )T], Q0,R0,S0,ζ , L,

where L is the constant defined by users to determine the time
interval for parameters updation.

End
For k � 1, 2,. . ..,∞,
Step 2: state estimate

1) Update the state prior estimate value x̂−
a,k
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x̂−
a,k � Aa,k−1x̂+

a,k−1 + Ca,k−1ua,k−1. (15)

2) Update the error covariance prior estimate value P−
a,k

P−
a,k � Aa,k−1P+

a,k−1Aa,k−1T + Qa,k−1. (16)

3) Update the symmetric positive matrix Sa,k

Sa,k � Φa,k
TSa,kΦa,k. (17)

4) Update innovation matrix

ea,k � ya,k − [OCVa,k − Upa,k − δlVh,a,k − R0lIk]. (18)

5) Match adaptive measurement noise covariance Ra,k

Mk � 1
N

Σi�k
i�k−N+1ea,kea,k

T, (19)

Ra,k � Mk − Ba,kP
−1

a,k Ba,k
T. (20)

6) Update Kalman gain matrix Ka,k

Ka,k � P−
a,k(I − ζaSa,kP

−
a,k + BT

a,kR
−1
a,kBa,kP

−
a,k)−1BT

a,kR
−1
a,k. (21)

7) Update process noise covariance estimation Qa,k

Qa,k � Ka,kMkKa,k
T. (22)

8) Update the state posterior estimate value x̂+
a,k

x̂+
a,k � x̂−

a,k +Ka,kea,k. (23)

9) Update the error covariance posterior estimate value P+
a,k

P+
a,k � P−

a,k(I − ζaS
−
a,kP

−
a,k + BT

a,kR
−1
a,kBa,kP

−
a,k)−1

, (24)

FIGURE 4 | The flowchart of the H∞–adaptive H∞ Algorithm.
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k � k+1;
End

If rem (k,L) � � 1,
Step 3: parameter estimate, for l � l+1,
1) Time update

1) Update the state prior estimate value x̂−
l

x̂−
l � Fl−1x̂+

l−1. (25)

2) Update the error covariance prior estimate value P−
l

P−
l � Fl−1P+

l−1Fl−1T + Ql−1. (26)

FIGURE 5 | Results of parameter identification. (A) R0; (B) Rp; (C) Cp.

FIGURE 6 | Estimated terminal voltage and error. (A) Comparison of the estimated Ut and measured one; (B) Ut error.
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3) Update the symmetric positive matrix Sl

Sl � ΦT
l SlΦl. (27)

2) Measurement update
1) Update the gain matrix Kl

Kl � P−
l (I − ζSlP

−
l +HT

l R
−1
l HlP

−
l )−1HT

l R
−1
l . (28)

2) Update the state posterior estimate value x̂+
l

x̂+
l � x̂−

l +Kl(yl −Hlx̂
−
l ). (29)

3) Update the error covariance posterior estimate value P−
l

P−
l � Fl−1P+

l−1Fl−1T + Ql−1 . (30)

End
The flowchart of the combined H∞–adaptive H∞ algorithm

is shown in Figure 4.

EXPERIMENTAL VERIFICATION AND
DISCUSSION

Parameter Estimation Results
Figure 5 shows parameter estimation results based on the H∞
method for the cell tested at 0°C. Figures 5A–C show the

FIGURE7 |Comparison results at three temperatures. (A) Estimated SoCs at 20°C; (B) estimation errors at 20°C; (C) estimated SoCs at 10°C; (D) estimation errors
at 10°C; (E) estimated SoCs at 0°C; (F) estimation errors at 0°C.

TABLE 2 | Estimate errors and analysis.

Statistical indices Battery model Temperature (°C) Average indices value
of the two
models

Ratio
of error reduction20 10 0

MAXE 1 0.0460 0.0446 0.0212 0.0373 25.10%
2 0.0570 0.0453 0.0470 0.0498 -

MAE 1 0.0213 0.0158 0.0062 0.0144 34.25%
2 0.0276 0.0233 0.0147 0.0219 -

RMSE 1 0.0239 0.0188 0.0131 0.0186 27.34%
2 0.0302 0.0255 0.0212 0.0256 -
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estimated ohmic resistance R0, polarization resistance Rp, and
polarization capacitance Cp, respectively. Figure 5A compares the
measured Ut with the estimated one. We can observe that the
former is very close to the latter. Figure 6 plots the comparison of
the measured and the estimated terminal voltage. As shown in
Figure 6B, the maximum estimate error occurs at the ending phase
of the discharge process, and themaximum absolute error (MAXE)
is about 10mV, which illustrates the accuracy of adequate battery
parameter estimation.

Evaluation of the Employed Battery Model
In this section, the effectiveness of the employed battery model in
this paper is compared with the model without the hysteresis
voltage in terms of the SoC estimation accuracy at three
temperatures. For all the cases below, the initial SoCs are set
to 80% away from the true value. For the convenience of
statements in the later text, we define the employed battery
model in this paper and the first-order RC battery model as
model 1 and model 2, respectively.

FIGURE 8 | Comparison results for the cell tested at three temperatures. (A) Estimated SoCs at 20°C; (B) estimation errors at 20°C; (C) estimated SoCs at 10°C;
(D) estimation errors at 10°C; (E) estimated SoCs at 0°C; (F) estimation errors at 0°C.

TABLE 3 | Estimate errors and analysis.

Statistical indices Estimator Temperature (°C) Average indices value
of the two
estimators

Ratio
of error reduction20 10 0

MAXE DTF H∞–AH∞ 0.0460 0.0446 0.0212 0.0373 13.86%
DTFDH∞ 0.0497 0.0577 0.0225 0.0433 -

MAE DTF H∞–AH∞ 0.0213 0.0158 0.0062 0.0144 19.55%
DTFDH∞ 0.0233 0.0193 0.0112 0.0179 -

RMSE DTF H∞–AH∞ 0.0239 0.0188 0.0131 0.0186 26.77%
DTFDH∞ 0.0260 0.0240 0.0261 0.0254 -
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Since the ambient temperature has a direct impact on the
battery performance (Divakaran et al., 2020), the pulse current
profiles were tested at 20°C, 10°C, and 0°C to verify the
robustness of the battery model with the hysteresis unit
against different temperatures. Figure 7 shows the
estimation results of model 1 and model 2 at three
temperatures. Figures 7A,B describe the estimated SoCs
and estimation errors at 20°C, respectively. It can be
observed that model 1 can acquire more accurate SoC than
model 2. The MAXE of the SoC estimation by model 2 is
5.70%, while that by model 1 is only 4.60%. As a result, model 1
can further reduce the prediction error by 19.3% compared
with model 2. Besides, the SoC can converge to the true value
quickly within 30 s, which shows the fast convergence ability of
the derived copredict algorithm.

In addition to the MAXE, the mean absolute error (MAE)
and the root mean square error (RMSE) are also used to verify
the effectiveness of the employed battery model as shown in
Table 2. It can be found that model 1 outperforms model 2 for
all the two statistical indices at three battery testing
temperatures.

Similarly, Figures 7C,D compare the two models from the
aspect of the estimated SoC and the estimation error at 10°C,
respectively. We can see that the estimated SoC by model 1 is
closer to the true value than that by model 2 in the global SoC
interval. The MAXE of estimation by model 2 and model 1 are
4.53 and 4.46%, respectively. Although the improvement is not
notable as for the MAXE, both the MAE and the RMSE can be
further dropped by model 1 as shown in Table 2. Especially for
the MAE, the index can be reduced by about 32.2%. Besides,
the convergence time can be controlled within 60 s.

Figures 7E,F show the estimated SoC and the
corresponding estimation error of the two battery models
at 0°C, respectively. Like cases above, the advantage of model
1 can also be found. The MAXE of estimation based on
model 2 represents 4.70%, while model 1 can further drop
the index to 2.12%. As a result, the MAXE can be reduced
by about 55%. Compared with cases at 20°C and 10°C, it
can be found that the accuracy improvement is more
pronounced in this case. It illustrates the excellent
prediction performance of the improved model for the
cell tested at a low temperature of 0°C. Besides, the
estimated SoC by model 1 can exhibit a shorter
convergence time (i.e., 265 s), while the SoC based on
model 2 converges to the true value when the time reaches
about 300 s. Also, it can be found that model 1 can further
reduce the estimation error in terms of both the MAE and the
RMSE compared with model 2 for all the three battery testing
temperatures as shown in Table 2. It illustrates that the
battery model considering the hysteresis effect can not
only drop the estimation error but also shorten the
convergence period at the low-temperature environment.

On average, the MAXE, the MAE, and the RMSE can be
reduced by about 25, 34, and 27% by the employed battery model
in this paper, respectively, as shown in Table 2. Therefore, the
conclusion can be drawn that the first-order RC battery model
considering the hysteresis effect can further reduce the estimation

error and simultaneously drop the convergence period compared
with the model without considering that effect.

Evaluation of the Proposed Estimation
Method
To evaluate the proposed dual-time frame H∞–AH∞ (DTF
H∞–AH∞)-based SoC estimation algorithm, comparisons with
the dual-time frame dual H∞ (DTFDH∞) method are
conducted. The initial SoCs are all set to 80% away from the
true values.

Figure 8 shows the comparison results of the above two
estimation approaches. Overall, compared with the online
estimation algorithm based on the proposed DTF H∞–AH∞,
the estimation error curves based on the DTFDH∞ method
cause larger fluctuations at all three temperatures.

Figures 8A,B represent the estimated SoC and the estimation
error at 20°C, respectively. It can be found that the MAXE of the
DTF H∞–AH∞ method (i.e., 4.60%) is less than that of the
DTFDH∞ method (i.e., 4.97%). Also, we can see that the
convergence period of the latter (35 s) is enlarged compared
with the former (30 s).

Figures 8C,D describe the estimated SoC and the estimation
error at 0°C, respectively. The advantage of the DTF H∞–AH∞
method against the DTFDH∞ method can be clearly observed.
The MAXE of the former and the latter are 2.12 and 2.25%,
respectively. Besides, compared with the convergence period of
the latter (85 s), that of the former drops to 60 s.

Figures 8E,F plot the estimation result and the error at 0°C,
respectively. It can be noted that the DTF H∞–AH∞ method
performs better than the other method in terms of both the
estimation accuracy and the convergence speed. The MAXE of
the former and latter methods are 2.12 and 2.25%, respectively,
and the convergence time of the above two methods is 265 and
1600 s, respectively.

From Table 3, it can be found that the MAXE, the MAE, and
the RMSE of estimation can be reduced by about 13, 19, and 26%
on average by the DTF H∞–AH∞-based SoC estimation
method, respectively. Accordingly, it demonstrates the
effectiveness of the developed DTF H∞–AH∞ against the
DTFDH∞ method in all the three temperatures stated above.

CONCLUSION

Accurate SoC estimation is the guarantee for safe and reliable
running of the LIBs. The first-order RC battery model with
hysteresis voltage is employed to simulate the electric
characteristics of the lithium polymer battery, based on which
a dual-time frame estimation algorithm based on the H∞ and the
AH∞ filterings is used to simultaneously estimate the battery
model parameters and the SoC.

The effectiveness of the employed battery model is compared
with the traditional first-order RC battery model from the aspect
of estimation accuracy at both the room temperature (20°C)
and the low temperatures (10°C and 0°C). Finally, the proposed
DTF H∞–AH∞-based estimation approach is evaluated
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against the DTFDH∞method under the above battery testing
conditions.

The results reveal that the battery model with the hysteresis
voltage can outperform the model without that in terms of SoC
estimation, and simultaneously, the MAXE, the MAE, and the
RMSE of estimation can be reduced. Also, the employed
battery model can shorten the estimation convergence
period. In addition, the proposed DTF H∞–AH∞-based
estimation algorithm has proved to be superior to the
DTFDH∞-based method in terms of all the three statistical
indices stated above, and the proposed estimation method can
also further reduce the convergence time on the basis of the
DTFDH∞ method. Ultimately, the estimation performance
can be enhanced, thanks to the excellent performance of the
DTF H∞–AH∞ estimation method, based on the employed
battery model.
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