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Monitoring the charging behavior of electric vehicle clusters will contribute to developing
more effective energy management strategies for grid operators. A low implementation
cost leads to a wide application prospect in nonintrusive monitoring for EVs. Aiming at the
problem that traditional nonintrusive monitoring methods cannot identify unknown devices
accurately due to the lack of classes, a nonintrusive monitoring method based on zero-
shot learning (ZSL) is proposed in this article, one which can monitor the unknown types of
EVs connected to charging piles. First, the charging characteristics of known EVs and
unknown EVs are extracted by dictionary learning. Then EVs are classified by ZSL based
on sparse coding. Furthermore, EVs are decomposed based on the proposed multimode
factorial hidden Markov model (FHMM). Finally, the EV dataset of Pecan Street is used to
verify the effectiveness and accuracy of the proposed method.

Keywords: nonintrusive monitoring, electric vehicles, zero-shot learning, factorial hidden markov model, long
short-term memory

1 INTRODUCTION

With the continuous improvement of the penetration of renewable energy, the gradual decline in the
electricity price has been making EVs more appealing to consumers (Liu et al., 2013). The promotion
of EVs is regarded as one of the effective means to achieve energy conservation and emission
reduction. When a large number of EVs are connected to the grid for charging and discharging, EVs
are no longer just transport agents but also controllable loads and distributed energy sources in the
energy system (Sun et al., 2019; Wang et al., 2021b). In this sense, EVs are distributed and mobile
energy storage units.

However, the random and uncertain behavior generated by the EVs’ charging demand will have
many negative effects on the grid (Ahmadian et al., 2015; Mehta et al., 2018). These effects include
increased peak power demand and overloads on feeders and transformers, especially in the
distribution network (Li et al., 2019; Wang et al., 2020a). Therefore, it is necessary to monitor
the charging and discharging behavior of EVs.

According to the EV charging environment, EV monitoring can be divided into household EV
monitoring and parking lot EV monitoring (Rastogi et al., 2019). At present, the minimum charging
and discharging power of EVs sold on the market is 3 KW, which is 5–10 times that of most
household appliances. When the household charging pile is connected with EVs, the power
fluctuation is obvious. For parking lots equipped with charging piles, most of them are planned
in buildings, such as apartments, office buildings, and shopping malls. Due to the high power
demand of EVs, it is significant to monitor such EV clusters:

1) For the parking lot with a large number of charging piles, its charging behavior has a certain
regularity and synchronization, and such cluster charging behavior will generate a surge in
the electricity demand (Li et al., 2021). In order to ensure intelligent charging of EVs, the
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power grid/third-party assistance can monitor EV charging
in a more intelligent way (Dickerman and Harrison, 2010;
Rastogi et al., 2019);

2) Charging an EV takes longer than filling up an internal
combustion engine vehicle. The real-time queuing
information for EVs can be provided by monitoring the
parking lot equipped with charging piles, including the
number of EVs being charged and the estimated waiting
time (de Weerdt et al., 2016; Goel et al., 2020);

3) In the long-term vision, one of the goals of the smart grid is to
optimize the power service economy by establishing a two-
way relationship between the power grid and EVs (Zeff, 2016).
EVs can be regarded as energy storage. In the future, the
advantages of short-term storage of EVs can be used to charge
in the trough power demand and feed energy back to the grid
in the peak power demand (Ahmadian et al., 2020; Wang
et al., 2021a).

EV monitoring can be divided into intrusive monitoring and
nonintrusive monitoring (NIM). Measurement data of each
charging pile are required to be collected in intrusive EV
monitoring, so as to realize real-time charging and discharging
power monitoring of EVs. This intrusive monitoring method has
a high cost of installation and maintenance due to the need to
install a data acquisition device on each charging pile. The
nonintrusive monitoring method was proposed by Hart in
1992. This method only needs the aggregated data measured
at a single metering point to effectively realize the monitoring and
identification of EVs.

In recent years, in the field of nonintrusive monitoring, many
scholars have devoted themselves to improving the accuracy and
applicability of NIM technology. Various methods have been
used for NIM. An energy decomposition algorithm based on the
adversarial network and the joint adaptation network is applied
to NIM, which reduces the distribution gap of the feature space
and the label space between the source domain and the target
domain (Liu et al., 2021). A multitask NIM model based on the
deep neural network is proposed, which can simultaneously
analyze energy estimation and load state detection (Cimen et al.,
2021). A hybrid event detection method is used for NIM for
devices with long transients, high fluctuations, and/or near
simultaneous action (Lu and Li, 2020). A multi-label
classification method based on sparse representation
classification is proposed, which can realize a fuzzy clustering
algorithm inspired by NIM competitive-aggregation
constrained by the entropy index through less training data
(Singh and Majumdar, 2020). A low-complexity unsupervised
NIM algorithm is proposed for the use of devices in families (Liu
et al., 2019). In view of device feature representation in event-
based NIM, Faustine et al. combined the adaptive weighted
recursive graph block with the deep neural network architecture
for device identification (Faustine et al., 2021). A convolutional
neural network based on multi-scale features and context
information is used to improve the accuracy of load
decomposition (Chen et al., 2020). In order to improve the
accuracy of new data decomposition, Hasan Rafiq trained the
deep convolutional neural network model through data

expansion (Rafiq et al., 2021). Taking advantage of the fact
that the HMM can model multimode devices separately, a
layered hidden Markov model (HHMM) is used for load
decomposition of household appliances, one which can
conduct nonintrusive monitoring of appliances with multiple
modes and different power consumptions (Kong et al., 2018).

Recently, with the popularity of EVs, nonintrusive EV
monitoring has gradually attracted the attention of scholars.
On the basis of NIM, a training-free, nonintrusive load
extraction algorithm was proposed based on boundary box
fitting and load characteristics (Zhao et al., 2019), which can
automatically identify the start time, end time, and power
amplitude of charging events. Based on the low-frequency
characteristics of the charging load mode, a charging load
extraction method based on residential smart meter data was
proposed to realize the nonintrusive extraction of the residential
EV charging load mode (Xiang et al., 2021). Based on
independent component analysis, an unsupervised EV
charging load extraction method is proposed in the study by
Munshi and Mohamed (2019). The proposed algorithm only
requires the low-frequency active power measurement data. A
nonintrusive identification method for EV charging curve
extraction driven by a depth generation model is proposed in
the study by Wang et al. (2020b). The proposed Markov model
embedded in the presentation layer can solve the likelihood
distribution overlap of learning.

However, there are many types of EVs and various battery
types in EVs, and NIM needs to know the types and
characteristics of monitored objects in advance, which greatly
limits the accuracy of monitoring EVs.

Zero-shot learning (ZSL) provides an effective solution to the
problem of class absence in nonintrusive EV monitoring. ZSL
refers to the technology of using some known category data and
the auxiliary information corresponding to the known category
to train a certain model, so as to realize the classification and
recognition of the data of the unknown category. A ZSL
approach is proposed to simulate knowledge transfer between
classes by learning visually consistent word vectors and tag
embedding models (Demirel et al., 2019). The main idea is to
project the vector space word vectors of attributes and classes
into the visual space, so as to make the word representation of
semantically related classes more close and, furthermore, use the
proposed projection vector embedded in the model to identify
the invisible classes. A transfer-sensing embedded projection
method to solve multi-label ZSL learning was proposed in the
study by Ye and Guo (2019). In this method, the label
embedding vector is projected into a low-dimensional space
to induce a better inter-label relationship, and the multi-label
classifier with the largest boundary is learned via the projection
label embedding. A ZSL classification method is proposed,
which can automatically learn label embedding from input
data in a semi-supervised large-profit learning framework, in
the study by Li et al. (2015). A generation model is proposed,
which simplifies the ZSL problem to a supervised classification
task, in the study by Sariyildiz and Cinbis (2019). A ZSL method
based on unsupervised domain adaptation was proposed in the
study by Kodirov et al. (2015). In order to overcome the problem
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of the domain shift in the process of ZSL projection, the method
regularized sparse coding to regularize the target domain
projection.

In view of this, this study proposes a nonintrusive EV
monitoring method based on the ZSL factor hidden Markov
model. Firstly, the charge–discharge characteristics of known EVs
and unknown EVs connected to the charging pile were extracted
by dictionary learning. Furthermore, ZSL based on sparse coding
is used to classify EVs. Finally, EVs are decomposed based on the
proposed FHMM based on the bilateral long-term and short-
term memory network (Bi-LSTM).

The rest of this article is organized as follows: Section 2
describes the nonintrusive EV monitoring and extracts and
classifies the charging and discharging status of EVs, Section 3
proposes an FHMM-based EV decomposition method, Section 4
discusses the proposed method of performing simulation and
verification, and conclusions are drawn in section 5.

2 EVS’ CHARGE–DISCHARGE STATUS
EXTRACTION AND CLASSIFICATION

A framework of nonintrusive monitoring for EV clusters is
given in Figure 1. The data monitored using the meter include
the building load and the EV charging load. In the study by

Munshi and Mohamed (2019), the existing EV charging loads
are summarized into seven types, as shown in Table 1.
However, as the market for EVs gradually expands, the
charging power of EVs will also be varied. During
nonintrusive monitoring of EVs’ charge–discharge power,
EVs of an unknown charge–discharge model are identified.
In the parking lot of Figure 1, there are seven known-model
EVs and one unknown-model EV.

2.1 Definitions
The total power time series monitored using the meter is
x � {x1, x2, . . . , xT }, where the EVs’ charge–discharge power
time series is P � {P1, P2, . . . , PT}. The parking lot has M
charging piles, one charging pile supports only one EV access,

FIGURE 1 | Framework of nonintrusive monitoring for the electric vehicle cluster.

TABLE 1 | Battery parameters of typical EVs.

Type Power (kW) Capacity (kWh)

Porsche Panamera 3 17.9
Nissan LEAF 3.3 24
e-Golf 3.6 35.8
BYD7009BEV2 7 76.9
ID. 3 Pure 7.2 45/58/75/77
Fiat 500e X 7.4 23.8/42
Tesla Model X 10 100
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and the charge–discharge power time series of the m − th
charging pile is pm � {pm,1, pm,2, . . . , pm,T}. pm,t represents the
magnitude of the charging power at time period t for the m − th
charging pile. In other words, the total power curves ofM charging
piles represent the charge–discharge power time series of EVs in this
region. In addition, a maximum of M EVs are charged and
discharged at time period t.

Furthermore, in the time period t, sm,t represents the
charge–discharge state of the charging pile, that is, if the
charging pile is in the charging state, then sm,t � 1; if the
charging pile is in the stopping state, then sm,t � 0; and if the
EV is in the discharging state, then sm,t � −1. It is worth
noting that one charging pile may successively access
multiple different types of EVs in the time series T.
Although the charge–discharge state of the charging pile is
a time series of (0, 1,−1), the charge–discharge power may
vary in size.

2.2 Description of the Problem
Suppose the time series of the EV charge–discharge power
of the group NEV is known, and the known dataset constituted
by it is DEV � {(pEV ,i, yEV ,i)}NEV

i�1 , where pEV ,i represents the
charge–discharge power time series of the EV of the group
i and yEV ,i represents the corresponding EV label. Each known
class EV label comes from a collection YEV of known class
labels, that is, yEV ,i ∈ YEV � {yi}QEV

i�1 , where QEV is the number
of known-type EVs. In addition, the time series of the
charge–discharge power of the group NX of EVs to be
identified constitutes the unknown dataset DX � {(pX,i, yX,i)}NX

i�1.
For each unknown power time series pX,i, its label yX,i
comes from the unknown class label set YX , that is,
yX,i ∈ YX � {yi}QX

i�1, where QX is the number of unknown-type
EVs. The set YEV of known category labels and the set YX of
unknown category labels constitute the complete set Y of
categories, and the set of known category labels and the set
of unknown category labels do not intersect with each other,
that is, YEV∪YX � Y , YEV∩YX � ∅.

In most studies at home and abroad, the nonintrusive
monitoring problem for low-frequency data is mostly
regarded as a load decomposition problem, and the related
technologies mainly have two subtasks: 1) classification and 2)
reconstruction. First, the operation state of the device can be
divided into known classes by classification, and second, the
time series monitored using the meter can be reconstructed
based on the classification results. Based on the purpose of
nonintrusive monitoring, a nonintrusive EV recognition
method based on zero-sample migration learning is
proposed in this study. The classification model is trained
by using the known dataset DEV � {(pEV ,i, yEV ,i)}NEV

i�1 of EVs and
its auxiliary information, and the knowledge learned by the
known dataset is effectively migrated to the unknown dataset,
so as to realize the classification of the unknown EV dataset.

Considering the case of the unknown type of EVs accessing
charging piles for charge–discharge, there is a mapping offset
problem due to the poor generalization ability of the mapping
model when classifying the operating state of EVs. It is shown
that in the training process, the model maps the time series of

known EVs’ charge–discharge power into the known class
label space in the semantic space, and due to the lack of the
unknown dataset composed of the time series of EVs’
charge–discharge power to be identified, the classification
model will not map the unknown dataset into the unknown
class label space at the time of testing, that is, there is a
mapping offset, and the unknown EV category cannot be
accurately identified.

2.3. Zero-Shot Classification Based on
Sparse Coding
To solve the mapping offset problem of unknown-type EVs in
the recognition process, this study converts the projection
function learning problem into a sparse coding problem
using the unsupervised domain adaptive model proposed
in the study by Kodirov et al. (2015) as follows: each
dimension of the semantic embedding space corresponds
to the dictionary base vector, and the sparse code of each
feature vector is its projection in the semantic embedding
space. Regularity terms are introduced separately for the
dictionary learning problem of the charge–discharge power
time series of known-type EVs and unknown-type EVs. The
known-type EVs’ semantic dictionary learning problem can
be expressed as follows:

LEV � min
LEV

‖PEV − LEVHEV‖2F + λ ‖LEV‖22, s.t. ‖ li‖22 ≤ 1, (1)

where LEV is the semantic dictionary of known-type EVs, HEV is
the semantic representation of known-type EVs, ‖ · ‖F is the
Frobenius norm, and λ controls the strength of the regular term.

Unlike known-type EVs’ semantic dictionary learning, in
unknown-type EVs’ semantic dictionary learning, both the
unknown-type EV semantic dictionary LX and the unknown-
type EV semantic representation SX are unknown. To overcome
the domain offset problem during learning, that is, mapping
offset, LEV and HX time is used to optimize LX . Therefore, the
unknown-type EVs’ semantic dictionary learning problem can be
expressed as follows:

{LX ,HX} � min
LX ,SX

‖PX − LXHX‖2F + λ1‖LX − LEV‖2F
+ λ2∑

i,j
ωij

�����si − qj
�����22 + λ3‖LX‖1,

s.t. ‖li‖22 ≤ 1,

(2)

where ‖LX‖1 � ∑NX
i�1‖li‖1, qj is the representation of yX,j in the

semantic embedding space, and ωij is the probability that the
input time series belongs to the label yX,j, whose size can be
estimated using the IAP model (Lampert et al., 2009). The first
regular term ‖LX − LEV‖ is used to limit the fitness of LX vs. LEV ,
and the second regular term ‖hi − qj‖ is used to limit the
similarity of the representation of unknown-type EVs’
power time series in the semantic embedding space to the
representation of unknown-type EV labels in the semantic
embedding space. Based on Eq. 3, the method of alternating
iteration is used to solve one, and HX and LX are fixed to solve
another, as follows:
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L*X � argmin
LX

‖PX − LXHX‖2F + λ1‖LX − LEV‖2F
H*

X � argmin
HX

‖PX − LXHX‖2F + λ2∑
i,j

ωij

�����hi − qj
�����22 + λ3‖LX‖1 . (3)

3 NONINTRUSIVE HIDDEN MARKOV LOAD
DECOMPOSITION

3.1 FHMM Model
The HMM can well describe the influence of the system
equipment state change on the system output. The traditional
HMM structure is given by, and its model θ can be expressed as
follows:

θ � (A,B, π), (4)

where A is the state transition matrix, B is the observation matrix,
and π is the initial state probability distribution, which is
expressed as follows:

π � φ(s1 � i),
A � [aij] � φ(st � j

∣∣∣∣st−1 � i),
B � φ(xt |st � i) ∼ N(μi, εi),

(5)

where φ(xt |st � i) denotes the output probability of the state st � i
to the observation matrix xt , which obeys a normal distribution,
μi is the mean vector, and εi is the covariance matrix of the
observation matrix.

In the HMM-based nonintrusive monitoring problem of
EVs, π and A determine the EVs’ charge–discharge state
sequence, and B determines the EVs’ charge–discharge
power time series P1:T � {p1, p2, . . . , pT}. The nonintrusive
monitoring of EVs based on the HMM can be divided into
two stages: model parameter estimation and observation

matrix decoding. In the model estimation stage, the model
parameters are estimated by unsupervised learning or
supervised learning, so that the probability of observed EVs’
charge–discharge power time series under this model
parameter reaches the largest, that is, θ* � argmaxφ(x|θ); in
the observation matrix decoding stage, the charge–discharge
status and charging power of each charging pile are
decomposed according to the optimal parameter θ* estimated
in the previous stage and the input EV charge–discharge power time
series xt .

The charge–discharge states of EVs can be represented by
Figure 2. EVs’ charge–discharge state can be divided into the
OFF state and the ON state. The OFF state represents that EVs
are in the standby state due to system scheduling or full battery
power, which is equivalent to ending the charge–discharge
behavior, that is, changing from OFF to End; the ON state
represents that EVs are in the charge–discharge state, and there
is a certain probability of ending the charge–discharge state.
According to the EV charge–discharge state transfer rule, the
charge–discharge state of the charging pile during the time
series T can be expressed as S1:T � {s1, s2, . . . , sT }, where st �
{−1, 0, 1}.

According to the EV cluster monitoring framework
depicted in Figure 1, the nonintrusive monitoring
structure based on the FHMM is shown in Figure 3.
Since the observable time series in this FHMM framework
is the total power output containing the building and
parking lot charging stakes, and not the EV
charge–discharge power time series, P1:T needs to be
extracted from X1:T � {x1, x2, . . . , xT}.

3.2. Bi-LSTM Model
In the process of extracting P � {p1, p2, . . . , pT }, upon
considering the state of charge (SOC) of the battery in EVs,
it is not only determined by the current moment t and the
future period t+ charge–discharge power but also by the
charge–discharge power of the past period t−. Conventional
LSTM performs forward transfer updating of the hidden layer
state via one-way time series input when training, while full
epoch data of X1:T are required when extracting EVs’
charge–discharge time series. Based on this, in this study,
P1:T is extracted using Bi-LSTM, and its structure is shown
in Figure 4. The output expression of the bidirectional LSTM
is as follows:

pjoinϑ,t � [pforwϑ,t , pbackϑ,t ], ϑ ∈ [1, υ], (6)

where pforwϑ,t , pbackϑ,t , and pjoinϑ,t are the outputs of the forward
LSTM neural network, the reverse LSTM neural network, and
the Bi-LSTM in the hidden layer of layer ϑ at time t,
respectively; υ is the number of hidden layers. The LSTM
network used in this study contains six layers, in which the
length of the input layer is the length of the time window t, the
second layer is the convolution layer, which is used to extract
features from the signal, the third and fourth layers are Bi-
LSTM, the fifth layer is the convolution layer, and the sixth
layer is the full connection layer. The whole network is

FIGURE 2 | Schematic diagram of EV charging–discharge state transfer.
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trained using the time forward and reverse bidirectional
propagation method.

3.3 Nonintrusive EV Decomposition
In the framework shown in Figure 3, we note that although the
charge–discharge time series of each charging pile are
independent of each other, that is, M parallel Markov chains.
Compared with the 3M state combinations of HMM charging
piles at time t, the decomposition of EVs based on the FHMM
effectively reduces the complexity of the decomposition
algorithm.

Considering that the known types of EVs are limited and
the charge–discharge time series of the same type of EVs are
similar, there may be multiple EVs of the same type for

charge–discharge at time t. Based on the EVs’
charge–discharge characteristics, this study further reduces
the computational complexity of the EV decomposition
model and classifies the same type of EV charge–discharge
state at time t into a Markov chain. The improved HMM
structure in Figure 5 shows that there areQ + 1 types of EVs, of
which Q types of EVs are known, and (Q + 1)th is an unknown
type of EV accessed by the charging pile. Here, the number of
each type of EV accessed by the charging pile is assumed to be
{d1, d2, . . . , dQ}. Therefore, the charge–discharge state of EVs of
type q − th at moment t can be expressed as follows:

s(q)t � {1, 1 − 1
dq
, 1 − 2

dq
, . . . , 0,− 1

dq
,− 2

dq
, . . . ,−1} (7)

FIGURE 3 | Framework of nonintrusive monitoring for the EV cluster.

Frontiers in Energy Research | www.frontiersin.org August 2021 | Volume 9 | Article 7203916

Hu et al. Nonintrusive Monitoring for Electric Vehicles

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


In the process of EV decomposition, considering that there are many
unknown types of EVs connected to the charging pile and the
charge–discharge power of unknown types of EVs is different,
because the specific model of unknown types of EVs cannot be
given, all unknown types of EVs’ charge–discharge behavior is
equivalent to a storage battery with unknown charge–discharge
behavior in this study. When one unknown type of EV is
connected to the charging pile, the hidden state is {1, 0,−1}, and
when two unknown types of EVs are connected to the charging pile,
the hidden state is {1, 1 − 1

l1
, 1 − 1

l2
, 1 − l1+l2

l1 l2
, 0,−1

l1
,−1

l2
,−l1+l2

l1 l2
,−1}.

The nonintrusive FHMMmodel parameters based on clusters
of EVs can be expressed as follows:

π � φ(s(1)1 , s(2)1 , . . . , s(Q+1)1 ),
A � φ(s(1)t , s(2)t , . . . , s(Q+1)t

∣∣∣∣s(1)t−1, s
(2)
t−1, . . . , s

(Q+1)
t−1 ),

B � φ(pt ∣∣∣∣s(1)t , s(2)t , . . . , s(Q+1)t ) ∼ N(μi, εi).
(8)

The FHMM model is composed of clusters of the same type of
EV, each HMM chain represents the same type of EV, and the
charge–discharge power and charge–discharge status are
independent of each other between each type of EV.
Therefore, the HMM model parameters constituted by each
type of EV cluster are solved one by one, and thus obtain the
total FHMM model parameters, such that the following occurs:

θ* � argmax
θ

∏|P1:T |
j�1

∑
st∈S

φ(P � pt , S � st; θ). (9)

In this study, the EM (expectation maximization) algorithm is
used to estimate the model parameters of Eq. 9. Two auxiliary
variables, one forward variable α(q)t (i) and one backward variable
β(q)t (i), need to be used in the calculation. The forward variable
α(q)t (i) represents the joint probability of an EV charge–discharge
time series p(n)1 , . . . , p(n)t of type q − th at time t and the
charge–discharge state i. Given the initial parameter θ0, α

(q)
t (i)

can be expressed as follows:

α(q)t (i) � φ(s(q)t � i, p(n)1 , . . . , p(n)t , θ0). (10)

Under the initial conditions, α(q)t (i) is expressed as follows:

α(q)1 (i) � φ(s(q)1 � i)φ(p(n)1

∣∣∣∣∣∣s(q)1 � i). (11)

Based on the α(q)1 (i) forward recursion, the following occurs:

α(q)t+1 (j) � ∑
i

α(q)t (i)a(q)ij φ(p(n)t+1
∣∣∣∣∣∣s(q)t+1 � j). (12)

The backward variable β(q)t (i) represents the probability of
observing an EV charge–discharge time series of type q − th
as p(n)t+1, . . . , p

(n)
T at time t and the charge–discharge state i.

Given an initial parameter θ0, β
(q)
t (i) can be expressed as

follows:

β(q)t (i) � φ(p(n)t+1, . . . , p
(n)
T

∣∣∣∣∣∣s(q)t � i, θ0). (13)

Similarly, the backward variable β(q)t (i) can also be calculated
using the recursive formula as follows:

β(q)t (i) � ∑
j

a(q)ij φ(p(n)t+1
∣∣∣∣∣∣s(q)t+1 � j)β(q)t+1 (j), (14)

where the initial value β(q)T (i) � 1.
Based on the two variables above, the FHMM decomposition

process for a given initial parameter θ0 and the observation sequence
P(q) � [p(q)1 , p(q)2 , . . . , p(q)T ] can be divided into the following two
steps:

1) E-Step: Compute the probability ξ(q)t (i, j) of EVs of type q − th
shifting from state s(q)t � i to state s(q)t+1 � j and the
probability c

(q)
t (i) of presenting state s(q)t � i at time t as

follows:

ξ(q)t (i, j) � φ(s(q)t � i, s(q)t+1 � j
∣∣∣∣∣∣P(q), θ0)

�
α(q)t (i)a(q)ij φ(p(n)t+1

∣∣∣∣∣∣s(q)t+1 � j)β(q)t+1 (j)
∑
i�1
∑
j�1
α(q)t (i)a(q)ij φ(p(n)t+1

∣∣∣∣∣∣s(q)t+1 � j)β(q)t+1 (j)
, (15)

FIGURE 4 | Operating characteristics of the MT.
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c
(q)
t (i) � φ(s(q)t � i

∣∣∣∣∣∣P(q), θ0) � α(q)t (i)β(q)t (i)
∑jα

(q)
t (j)β(q)t (j). (16)

2) M-Step: Recalculate model parameters for q − thHMMchains
as follows:

π̂(q)i � c
(q)
1 (i), (17)

â(q)ij � ∑T
t�1ξ

(q)
t (i, j)

∑T
t�1c

(q)
t (i, j), (18)

μ̂(q)i � ∑T
t�1c

(q)
t (i)p(q)t

∑T
t�1c

(q)
t (i)

, (19)

ε̂(q)i �
∑T

t�1c
(q)
t (i)(p(q)t − μ̂(q)i )(p(q)t − μ̂(q)i )T∑T

t�1

∑T
t�1c

(q)
t (i)

. (20)

3) Forward variables α(q)1 (i) and backward variables β(q)t (i),
ξ(q)t (i, j), and c

(q)
t (i) are iteratively calculated according to

the new parameter cycle until convergence.

After all the parameters of the FHMM model are obtained,
the hidden state can be decoded by applying the Viterbi
algorithm to the summarized power consumption sequence.
In the Viterbi algorithm, the variable δt(i) is introduced. We
define δt(i) as the probability maximum of all states

FIGURE 5 | Framework of nonintrusive monitoring for the EV cluster.

Frontiers in Energy Research | www.frontiersin.org August 2021 | Volume 9 | Article 7203918

Hu et al. Nonintrusive Monitoring for Electric Vehicles

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


{s1, s1, . . . , st} to the observation sequence {p1, p2, . . . , pT} at the
moment t as follows:

δt+1(i) � max
1≤j≤N

{δt(j)aji}φ(pt+1∣∣∣∣st+1 � i), (21)

where N is the number of hidden layer states of EVs, t � 1, 2, . . . ,T.
The nonintrusive monitoring step of EVs based on the Viterbi

algorithm is as follows:

1) input θ0 � (π̂i, âij, μ̂i, ε̂i) and EV charge–discharge time
series P1:T � {p1, p2, . . . , pT};

2) initialize δ1(i) � πiφ(p1
∣∣∣∣s1 � i);

3) recurrent δt(i) � max
1≤ j≤N

{δt−1(j)aji}φ(pt
∣∣∣∣st � i); and

4) optimal path backtracking for t � T − 1,T − 2, . . . , 1, st(i) �
argmax

1≤j≤N
{δt(j)}.

4 EXPERIMENT AND RESULT

4.1 Dataset Description
In order to verify that the method proposed in this study can
classify unknown types of EVs effectively and, furthermore,
monitor the charging behavior of EVs accurately, the
processed EV dataset of Pecan Street is used for training
and testing. Specifically, the dataset consists of 16,000 sets of
EV charging data belonging to eight types. In the ZSL process,
seven types of known EV data are used for training and one
type of unknown EV data is used for testing, among which
power levels of EVs are used as EV labels, that is,
YEV � {3, 3.3, . . . , 10}. The data sampling interval is 1 min.
Charging services for EVs are provided by 120 primary/
secondary charging piles.

FIGURE 7 | Confusion matrices on different appliances.

FIGURE 6 | Confusion matrices on different types of EVs.
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4.2 Zero-Shot Classification
In order to ensure that the method proposed in this study
can accurately identify the access of unknown types of EVs
in the EV cluster, this study selects seven kinds of EV
charging data commonly available in the market for
training and uses 6-kW EVs for testing. The test results
are shown in Figure 6. It can be seen that zero-sample
classification based on sparse coding can well identify the

access of different types of EVs and has certain classification
functions for unknown types of EVs. It is worth noting that
the EV classification effect with a small power level
difference is weaker than the EV classification effect with
a large power level difference. Therefore, the classification effect
of the {3kW, 3.3kW, 3.6kW} and {7kW, 7.2kW, 7.4kW} sets in
Figure 6 is not very obvious.

Considering the classification problem between EVs and other
devices, this study took REDD centralized electric appliance
equipment and 3.3-kW type EVs as the training set to test the
EVs of {6kW}. The classification effect is shown in Figure 7.

In order to verify the recognition effect of different EV
type combination training sets on unknown EV test sets, this
study selects typical types of EV combinations for testing.
The test sets include from one type of EV to four types of EV
combinations. The recognition effect is shown in Table 2. It
can be seen from Table 2 that the more EV types there are,
the better the recognition effect will be. In the case of a
certain number of EV types, the more dispersed the EV
power level is, the better the recognition effect will be.

To further verify the correctness of the conclusions above, this
article studies the influence of the sample size of each EV type

TABLE 2 | Classification effects of different combinations of EV types.

Combination of EV types (kW) Performance

3/7/10 −11.32/−12.30/−11.51
{3, 7}/{3, 10}/{7, 10} −5.41/−6.37/−6.83
{3, 3.3, 3.6} −3.44
{7, 7.2, 7.4} −3.98
{3, 7, 10} 0.6
{3, 3.3, 3.6, 7} 1.21
{3, 7, 7.2, 7.4} 1.28
{3, 3.3, 3.6, 10} 1.37
{3, 7, 7.2, 7.4} 1.42
{3, 3.3, 7, 7.2} 1.48
{3, 3.6, 7, 10} 1.55

FIGURE 8 | Influence of the EV sample size on the recognition effect.

FIGURE 9 | Charging load decomposition effect of the traditional FHMM. (A) Charging state of 120 charging piles. (B) Charging power of charging piles. (C) Total
charging power of EVs decomposed based on the FHMM.
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training set on the recognition effect. The results are shown in
Figure 8. It can be seen that the greater the number of samples in
the training set, the more obvious the effect. At the same time, the
performance tends to be stable when the sample size of the
training set reaches 300.

4.3 EVs’ Nonintrusive Decomposition
In order to verify the nonintrusive monitoring method of EVs
proposed in this study, the decomposition effects of the
traditional FHMM and the proposed method were
compared. Figure 9 shows the nonintrusive identification
effect of the traditional FHMM, in which Figure 9A shows
the charging state of 120 charging piles, Figure 9B shows the
charging power of charging piles obtained based on LSTM, and
Figure 9C shows the total charging power of EVs decomposed
based on the FHMM.

The nonintrusive decomposition effect of EVs based on the
method proposed in this study is shown in Figure 10. The charging
states of EVs connected by charging piles is shown in Figure 10A,
where the first 7 EVs are the charging status of known EVs, and the
eighth is the charging status of unknown EVs.

Based on the decomposed EV charging state, the charging
power of each type of EV can be obtained using Bi-LSTM. As
shown in Figure 10B, the total power curve is synthesized

according to the decomposed EV charging power. By
comparing with Figure 9C, it can be seen that the
nonintrusive decomposition of EVs proposed in this study has
a higher precision.

5 CONCLUSION

In this study, the FHMM framework is used to develop a
nonintrusive monitoring method based on ZSL. The
charge–discharge characteristics of known EVs and unknown
EVs connected to the charging pile were extracted by dictionary
learning, and furthermore, the ZSL based on sparse coding was used
to classify EVs, which could effectively identify the unknown EVs. In
the validation process, the processed Pecan Street EV dataset was
used for training and testing. Compared with the traditional FHMM,
the nonintrusive decomposition of EVs proposed in this study has a
higher accuracy.
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FIGURE 11 | Structure of LSTM.
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