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The control of flue gas emission in thermal power plants has been a topic of concern.
Selective catalytic reduction technology has been widely used as an effective flue gas
treatment technology. However, precisely controlling the amount of ammonia injected
remains a challenge. Too much ammonia not only causes secondary pollution but also
corrodes the reactor equipment, while too little ammonia does not effectively reduce the
NOx content. In recent years, deep reinforcement learning has achieved better results than
traditional methods in decisionmaking and control, which provides newmethods for better
control of selective catalytic reduction systems. The purpose of this research is to design
an intelligent controller using reinforcement learning technology, which can accurately
control ammonia injection, and achieve higher denitrification effect and less secondary
pollution. To train the deep reinforcement learning controller, a high-precision virtual
denitration environment is first constructed. In order to make the virtual environment
more realistic, this virtual environment was designed as a special structure with two
decoders and a unique approach was used in fitting the virtual environment. A deep
deterministic policy agent is used as an intelligent controller to control the amount of
injected ammonia. To make the intelligent controller more stable, the actor-critic
framework and the experience pool approach were adopted. The results show that
the intelligent controller can control the emissions of nitrogen oxides and ammonia at the
outlet of the reactor after training in virtual environment.

Keywords: selective catalytic reduction, deep reinforcement learning, deep deterministic policy, pollution control,
nitrogen oxides

INTRODUCTION AND BACKGROUND

In China, thermal power generation is still the main way of generating electricity (Tang et al., 2018).
In recent years, with the awakening of people’s awareness of environmental protection and
increasingly strict environmental protection policies and regulations, pollutant emission control
has become an urgent issue for thermal power plants. Among the many pollutants, nitrogen oxides
(NOx) have attracted the attention of many scholars because they are highly associated with many
serious environmental threats, such as acid rain and photochemical smog. Selective catalytic
reduction technology (SCR) is widely used as an efficient denitrification method. The basic
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principle of SCR technology is to reduce nitrogen oxides to
nitrogen and oxygen by spraying a reductant such as
ammonia in the flue gas denitrification reactor. The key to
SCR technology is to spray a proper amount of reductant.
Ammonia is used as a reducing agent in the SCR reaction,
which has some negative effects while eliminating nitrogen
oxides. These negative effects include ammonia escape,
corrosion of equipment and cost increase. Excess reductant,
on the one hand, will enter the atmosphere with the flue gas
to cause new pollution, and on the other hand, it will produce
corrosive (NH4)2SO4 and NH4HSO4 in the exhaust gas and
corrode the equipment (Strege et al., 2008; Du et al., 2017).
However, it is difficult to strike a delicate balance between
denitrification and side reactions. This is mainly due to
fluctuations in NOx concentrations caused by frequent load
adjustments in power plants, where the adjustment of the
ammonia quantity is significantly slower than the actual
demand due to the delayed characteristics of the measurement
control system.

In recent years, artificial intelligence technology is considered
to provide a new solution to the problems faced by the electricity
industry (Khargonekar and Dahleh, 2018; Mishra et al., 2020).
The promise of artificial intelligence technology in power systems
stems from the great results it has already achieved in other areas.
Deep Q-networks (DQN) has achieve results that exceeded
human levels in an Atari game environment (Mnih et al.,
2015). Deep reinforcement learning techniques have also
performed well in autonomous driving tasks. Direct perception
(Chen et al., 2015) and end-to-end (Mnih et al., 2016) control
were showcased in the open racing car simulator (TORCS) car
racing game using deep reinforcement learning. Further, by using
the more realistic virtual environment World Rally
Championship 6 (WRC6), the deep reinforcement agent was
able to learn to drift through the corners, an advanced
professional driving technique (Jaritz et al., 2018). Those
researches have revealed the superior decision control
capability of deep reinforcement learning. By using multi-
agents collaboration, deep reinforcement learning is able to
cope with more complex environments, where StarCraft is a
strategy game in which players need to maintain a clever balance
between competition and cooperation in order to achieve victory
(Vinyals et al., 2019). Deep reinforcement learning techniques
have not only achieved satisfactory results in computer games,
but also perform well in real physical systems. Hwangbo et al.
designed a deep reinforcement learning controller to control a
real quadcopter (Hwangbo et al., 2017). The controller can
control the quadcopter to fly stably along a set path, and can
also keep the quadcopter stable in response to disturbances. In
another research, a deep reinforcement learning controller can
make a legged robot move quickly and save battery power.
Further, the deep reinforcement learning controller was able to
enable the legged robot to recover from a fall, which is usually
difficult for traditional control methods (Hwangbo et al., 2019).
Because of the excellent performance of deep reinforcement
learning, this method is expected to be used in the control of
flue gas denitrification process in thermal power plants. The
superior performance of deep reinforcement learning in decision

making is expected to determine the optimal amount of ammonia
injection to balance the denitrification reaction and ammonia
escape.

Reinforcement learning outperforms supervised learning in
the control domain due to the “exploration-exploitation” style of
learning that differs from supervised learning (Sutton and Barto,
1998). The virtual environment directly affects the performance
of the intelligent controller, therefore building a compliant virtual
environment is a very important part of this research. An
inaccurate virtual environment can lead to bad results known
as reality gap. A suitable virtual environment needs to meet both
accuracy and responsiveness requirements. Some methods using
numerical simulation perform well in terms of accuracy but are
too time-consuming (Adamczyk et al., 2014; Stupar et al., 2015).
in recent years, data-driven modeling method has been widely
adopted by researchers. The main data-driven modeling
approaches used in these studies include support vector
machines and artificial neural networks (Zhou et al., 2012;
Wei et al., 2013; Najafi et al., 2016; Lv et al., 2018). In this
research, a model of the denitrification reaction needs to be
constructed as an environment for the training of the agent.
Since artificial neural networks have more advantages in
nonlinear modeling, deep neural networks are used to
construct NOx emission models. Details about the NOx model
are elaborated in Denitrification Environment Modeling
Reinforcement learning agent is used as intelligent controller,
which generates actions according to the state of the
environment. There are three main approaches to realize
reinforcement learning agents: value-based, policy-based and
actor-critic algorithms (Sutton and Barto, 1998). Value-based
reinforcement learning is not suitable for continuous action
space, and policy-based reinforcement learning is more
suitable for continuous action space tasks. Generally, the
policy can be gaussian distribution or SoftMax policy. Policy-
based reinforcement learning tends to be less stable during
training and has higher sampling variance. The actor-critic
algorithm is to introduce a value function on policy-based
reinforcement learning to improve the stability of convergence.
Since it combines the advantages of both value-based and policy-
based reinforcement learning, the actor-critic algorithm has been
intensively studied and several variants have been born. Details
about the reinforcement learning intelligent controller are
described in Reinforcement learning intelligent controller.

In order to reduce the emissions of nitrogen oxides and avoid
new pollution caused by excessive ammonia escape, this research
attempts to use intelligent controller based on deep reinforcement
learning to control the injection of reductant. In this research,
many analyses and improvements were used to improve the
accuracy of the virtual environment due to the importance of
a suitable virtual environment. A reinforcement learning agent
with the actor-critic framework was used as an intelligent
controller for the denitrification reactor. To make the training
process more stable, target networks and soft update methods of
parameter updating are used. The whole outline of the paper is
presented as follows. The purpose and method of constructing a
virtual environment is shown in Denitrification Environment
Modeling Reinforcement learning intelligent controller describes
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the theory and methods for constructing deep deterministic
policy reinforcement learning agent. Experiments and results
describes the details of training the virtual environment and
reinforcement learning intelligent controller, respectively.
Conclusions and necessary discussions are presented in
Discussion and Conclusion.

DENITRIFICATION ENVIRONMENT
MODELING

This section will focus on the necessity and challenge of building a
virtual environment. According to the characteristics of selective
catalytic reduction systems, a high precision virtual environment
is designed.

The “exploration-exploitation” learning approach is a distinct
marker that distinguishes reinforcement learning from other
machine learning methods. Deep learning relies on a lot of
labeled data, which are the correct results. There is no
correctly labeled data in reinforcement learning. The
information for reinforcement learning comes from
the feedback of an agent’s exploration of the environment. The
basic principle of reinforcement learning is shown in Figure 1.

Because there are some dangerous results in the process of
exploring the environment, and the low efficiency of acquiring
experience, agents usually do not train in the real environment.
The common research method is to train the agent to a
satisfactory state in a virtual environment and deploy the
agent in a real environment (Hwangbo et al., 2019). The
advantage of using a virtual environment is not only to avoid
some dangerous results, but also to improve learning efficiency.
Although virtual environments have great advantages, the reality
and responsiveness of virtual environments deserve special
attention. Related researches indicate the importance of
authenticity in virtual environments. The difference between
virtual and real can lead to undesirable results known as
reality gap (Zagal et al., 2004; Collins et al., 2019; Hwangbo
et al., 2019), and a more realistic virtual environment helps agents

learn more specialized skills (Chen et al., 2015; Jaritz et al., 2018).
These researches indicate that the virtual environment should
reflect the characteristics of the real system as much as possible,
and that reducing the reality gap is an effective way to improve the
control effectiveness of reinforcement learning controllers. On
the other hand, since the agent interacts with the virtual
environment several times during the learning process, it
requires a fast responsiveness of the virtual environment. This
requires that the virtual environment should be as simple as
possible, using fewer parameters and neural network units. In
general, a good virtual environment needs to have high model
accuracy and low computational resource consumption.

There are many challenges to building a good virtual
environment. These difficulties are mainly caused by the
characteristics of the denitrification reaction. SCR systems
are multivariate, nonlinear, large lag systems. Several
researches have analyzed the effect of different variables
on NOx emissions from various aspects such as secondary
air, excess air coefficient (Díez et al., 2008; Ti et al., 2017;
Stupar et al., 2019). The complex physical and chemical
reactions that occur in SCR reactors also contain many
nonlinear features. The complex physical and chemical
reactions that occur in SCR systems make modeling the
mechanism difficult and time-consuming. Some studies
modeled SCR systems by numerical calculations and
computational fluid dynamics methods (Díez et al., 2008;
Adamczyk et al., 2014; Belošević et al., 2016; Wang et al.,
2017; Mousavi et al., 2021). Although numerical calculations
are highly accurate, their unsatisfactory responsiveness
makes them unusable for building virtual environments.
The data-driven modeling approach has received a lot of
attention in recent years, and it usually has higher accuracy
and better responsiveness.

Since the data stored in the distributed control system
database of the power plant is time series data, Long Short-
Term Memory (LSTM) neural networks, which are more
suitable for processing time-series data, were chosen to
construct the virtual environment (Tan et al., 2019; Yang
et al., 2020). LSTM is a recurrent neural network. Different
from other neural networks, recurrent neural network cells have
connections with cells from previous time steps. Such a cell
structure allows recurrent neural networks to have memory
capabilities and to integrate information at different time steps.
LSTM adds a gating control mechanism to the traditional
recurrent neural network; the gating mechanism enables
more efficient transfer of information from previous time
steps. This improvement makes LSTM not suffer from “long-
term dependency” problem. Specifically, the gate control
mechanism consists of three gates, the forget gate input gate
and the output gate. The forget gate is responsible for avoiding
the over propagation of information from previous time steps.
The input gate integrates the information from the current time
step with the information from the previous time step and
passes it to the output gate. The output gate finally combines the
information from the previous and current time steps to
produce a new message output. LSTM cell structure can be
expressed in Eq. 1.

FIGURE 1 | Basic structure of reinforcement learning.
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forget gate: f (t) � σ(Wfxx(t) +Wfhh(t − 1) + bf )
input gate: i(t) � σ(Wixx(t) +Wihh(t − 1) + bi)
ĉ(t) � tanh(Wcxx(t) +Wchh(t − 1) + bc)
c(t) � f (t)c(t) + i(t)ĉ(t)
output gate: o(t) � σ(Woxx(t) +Wohh(t − 1) + bo)
h(t) � o(t)tanh(c(t))

(1)

Where, xt is the input at t moment. ct is the cell state at t moment.
ht is the hidden state at t moment. ft, it and ot are forget gate, input
gate and output gate, respectively. ĉt is new candidate cell state
that could be added to the cell state. w and b are the
corresponding weights and biases.

Similar to other neural networks, LSTM can improve
nonlinear fitting ability by stacking multiple layers. Some
scholars have used multilayer LSTM neural networks to study
NOx emission (Tan et al., 2019; Yang et al., 2020), but another
network structure with better performance is end-to-end network
structure. End-to-end model (Cho et al., 2014; Sutskever et al.,
2014) was developed by two Google teams. Although the details
of the two are slightly different, the main encoder-decoder
structure is the same. The encoder summarizes the
information of the input sequence data to generate context
information represented by a vector. The decoder generates an
output sequence based on the context information. Such
structures are widely used in areas such as natural language
processing and video analysis, and offer better performance
than traditional multilayer neural network structures. The
denitrification model needs to provide the data of both NOx
concentration and ammonia concentration at the SCR reactor
outlet for the agent. In order to calculate the two data more
accurately to avoid interfering with each other, two decoders are
set up for NOx concentration and ammonia concentration
respectively, based on using one decoder to extract the
information.

Further considering the effect of multiple variables on the
denitrification reaction, attention mechanism was introduced to
improve the accuracy of the virtual environment model. Li et al.
designed an ammonia injection control method for SCR systems
based on leading factor analysis (Gang et al., 2016). In particular,
the calculations of the dominant factor analysis indicated that the
influence coefficients of different factors with NOx
concentrations at different time intervals were dynamically
varying. The calculation method of influence coefficient is be
expressed in Eq. 2.

Em � 1
N
∑N
t�1
{|ut − u0|

u0
−
∣∣∣∣pt+m − p0

∣∣∣∣
p0

}2

(2)

Where, N is the number of historical samples; ut is the parameter
affecting the reactor inlet NOx concentration at time t; pt+m is the
reactor inlet NOx concentration at time t+m; u0 and p0 are the
average values of the parameters affecting the reactor inlet NOx
concentration and the average values of the denitrification reactor
inlet NOx concentration, respectively.

To be able to better cope with this dynamic change, the
attention mechanism was introduced. Attention mechanisms
appeared earlier in the field of computer vision, but have been

more widely used in the field of natural language processing.
There are two common attention mechanisms that have been
widely used in sequence data, Bahdanau attention and Luong
attention (Bahdanau et al., 2015; Luong et al., 2015). The core idea
of both is the same, calculating additional weights for data at
different time steps to highlight useful information. The two
attention mechanisms differ only in the method of calculating
attention weights. Similar to the reason for setting two decoders
for the SCR reactor outlet NOx and ammonia concentrations
separately, it is necessary to calculate the respective attention
weights for NOx and ammonia concentrations. Basic structure of
denitrification environment is shown in Figure 2.

In this section, the purpose and importance of the virtual
environment is presented. By analyzing the characteristics of the
SCR system, the requirements of the virtual environment are
clarified. For accuracy and responsiveness, a single encoder dual
decoder virtual environment with attention mechanism is
proposed.

REINFORCEMENT LEARNING
INTELLIGENT CONTROLLER

The objective of this research is to attempt to use artificial
intelligence controllers to control ammonia injection in
selective catalytic reduction systems to achieve a reduction in
NOx emissions while reducing ammonia escape. In this research,
the controller is the reinforcement learning agent. There are
usually three ways to realize the agent, which are value-based,
policy-based and actor-critic framework (Csáji and Monostori,
2008; Liu et al., 2020; Yu and Sun, 2020). As shown in Figure 1,
the agent acts on the environment through actions and receives
the immediate rewards (r) corresponding to the actions from the
environment. The agent decides the action according to the state,
and the mapping relationship between the state and the action is
called a policy denoted by π.

π: S→A (3)

The goal of the agent is to find an optimal policy that allows
the agent to obtain as many returns (R) from the environment as
possible. Rewards and returns have the following relationship as
shown in Eq. 4.

Rt � rt+1 + γrt+2 + γ2rt+3 + ... � ∑∞
k�0

γkrt+k+1 (4)

FIGURE 2 | Basic structure of denitrification environment.
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Where, Rt is the return at time step t. rt+1 is the immediate reward
at time step t+1.γ is the discount factor.

Value-Based Intelligent Controller
To evaluate a policy, a value function needs to be defined. Such an
evaluation is used to reflect how well the strategy is controlled.
There are two kinds of value functions which are state value
function and state-action value function. The state value function
represents the expected return starting from state and then
following policy, as shown in Eq. 5.

Vπ(s) � Eπ[Rt |st � s] � Eπ
⎡⎣∑∞

k�0
γkrt+k+1|st � s⎤⎦ (5)

The state-action value function represents the expected return
starting from state, taking action and then following policy, as
shown in Eq. 6.

Qπ(s, a) � Eπ[Rt |st � s, at � a] � Eπ
⎡⎣∑∞

k�0
γkrt+k+1|st � s, at � a⎤⎦

(6)

The state value function and the state-action value function
have the following relationship, as shown in Eq. 7.

Qπ(s, a) � E[rt+1 + γVπ(st+1)]
Vπ(s) � Ea ∼ π(a|s)[Qπ(s, a)] (7)

Solving the optimal policy is equivalent to solving the optimal
value function. Themethod for solving the optimal value function
is shown in Eq. 8 and Eq. 9.

Q(st , at)←Q(st , at) + α[r + Q(st+1, at+1) − Q(st , at)] (8)

Q(st , at)←Q(st , at) + α[r +max
a

Q(st+1, at+1) − Q(st , at)] (9)

Themethod of solving the optimal Q value using Eq. 8 is called
SARSA (Chen et al., 2007), and the method of solving the optimal
Q value using Eq. 9 is called Q-learning (Gomes and Kowalczyk,
2009). After the optimal Q value is obtained, this has two
common policies for selecting actions based on the Q value,
the greedy policy and the ε-greedy policy (Wang et al., 2019).
The greedy policy is a deterministic strategy that always picks the
largest value function. It is the use of known knowledge by the
agent. The ε-greedy policy will probabilistically choose the non-
maximal value function to represent the exploration of the
unknown environment by the agent. As mentioned above, the
reinforcement learning method that selects actions according to
the value function is called value-based method.

The value-based reinforcement learning method requires that
the state-action space is discrete and not too large. Usually, the
value function is represented in the form of a table, so it is also
called tabular reinforcement learning (Sutton and Barto, 1998). If
the state-action space is too large, the table is difficult to converge.
There are two main reasons. On the one hand, too large state-
action space leads to too many elements in the table, so it is
difficult to visit each element enough times to ensure
convergence. On the other hand, from a practical point of
view, it is very time-consuming to find an element in a very

large table. The method of value function approximation can
cope with such a shortcoming (Korda et al., 2016; Wang et al.,
2019). The state-action value function is fitted using a function
containing the parameter θ. The state-action value function is
made to approximate the optimal Q value function by updating
the parameter θ, as shown in Eq. 10.

Q’(s, a, θ) ≈ Qπ(s, a) (10)

Using a deep neural network as an agent to solve a
reinforcement learning problem is deep reinforcement
learning. DQN is representative of this approach, which uses
two layers of convolutional neural networks and two layers of
fully connected layer neural networks (Mnih et al., 2015). DQN
generates 18 discrete actions based on the input high-dimensional
data. DQN can calculate Q value more accurately because of the
good fitting ability of deep neural networks to nonlinear
functions. Meanwhile, because neural network has good
generalization ability, for unexplored states, neural network
can also give reasonable q values according to similar states.
The process of fitting the state-action value function by DQN is
supervised learning. Label data is indispensable for supervised
learning, and the method of making label data is shown in Eq. 11.

y � r +max
a

Q(s, a, θ) (11)

Neural network can fit the optimal value function as long as
the loss function is minimized. Although function
approximation methods using neural networks greatly
alleviate the limitations of value-based reinforcement
learning methods in high-dimensional state-action space,
they are still difficult to solve for continuous action space
problems. In this research, the amount of ammonia injection
controlled by the intelligent controller is a continuous variable
and the value-based method is not suitable for continuous
variables. However, the critic in the actor-critic method is
usually composed of value-based methods, so the value-based
intelligent controller is introduced.

Policy-Based Intelligent Controller
The policy-based reinforcement learning methods can better
solve the problem of continuous action space (Lillicrap et al.,
2016). Policy-based reinforcement learning and value-based
reinforcement learning have the same input, but the output is
the probability distribution of actions being selected in the action
space. The policy can be represented by the following Eq. 12,
where, θ is the parameter to be trained (Sutton et al., 2000).

πθ(s, a) � P(a|s, θ) ≈ π(s, a) (12)

The method of parameter updating is given by the policy
gradient theorem (Peters and Schaal, 2008), as shown in Eq. 13.

∇Rθ � ∑
τ

R(τ)πθ(τ)∇logπθ(τ)
� Eτ∼πθ(τ)[R(τ)∇logπθ(τ)] (13)

Where, τ is the trajectory of states and actions acquired by the
agent as it explores the environment,τ� {s1, a1, s2, a2...st , at}.
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Actor-Critic Intelligent Controller
The policy-based approach also has its own drawbacks, such as
the tendency to converge to a local optimum rather than a global
optimum. The actor-critic approach, a combination of value-
based and policy-based reinforcement learning methods
integrates the advantages of both. The Actor-Critic method is
obtained by replacing the return R in Eq. 13with the Q value. The
new policy gradient is shown in Eq. 14.

∇Rθ � ∑N
n�1

∑T
t�1

Qπθ(ant , snt )∇logπθ(ant |snt ) (14)

Since Q value is an expectation, using Q value instead of the
return R reduces the variance of the experience gained by the
agent when exploring the environment, avoiding falling into a
local optimum. When the Q value is larger, the gradient of the
trainable parameter update is larger, which accelerates the
convergence speed of the policy to the optimal direction. In
the actor-critic method, the policy network that generates the
actions is called the actor and the value function
approximation network used to generate the Q value is
called the critic. The framework of the actor-critic approach
is shown in Figure 3.

This section focuses on the theoretical approach to
constructing reinforcement learning intelligent controllers.
Other details such as the structure of the intelligent controller
will be elaborated in the next section.

EXPERIMENTS AND RESULTS

This section will elaborate on the experimental details of this
study. The experiment consists of two main parts: building a
virtual environment and training a reinforcement learning
intelligent controller. As mentioned earlier, a high precision
virtual environment is necessary and critical in order to train
reinforcement learning intelligent controllers. In order to obtain a
more accurate virtual environment, some effective measures are
employed. These measures include data correlation analysis,
hyperparameter optimization and unique step-by-step training.
In the experiments to train the intelligent controllers, they were
designed with different structures and a soft update approach in
order to avoid coupling between the actor network and the critic
network. Further, important details of the activation function and
the reward function are elaborated.

Training Denitrification Environment
The learning process of reinforcement learning agent completely
depends on the exploration of virtual environment, but there is
inevitably a slight error between virtual environment and real
environment. The error between the virtual environment and the
real environment can cause a deterioration in the control of the
agent, this phenomenon known as reality gap (Zagal et al., 2004;
Collins et al., 2019; Hwangbo et al., 2019). It is important to build
a high accuracy virtual environment for training intelligent
controllers. In order to have a high accuracy of denitrification
environment and reduce the reality gap, various measures
including variable screening and validation of neural network
models with various structures are taken.

Data-driven modeling approaches are usually data-sensitive, so it
is necessary to filter the data to avoid irrelevant variables that reduce
model accuracy. In this research, the maximum information
coefficient (MIC), a statistical analysis tool, is used to analyze the
correlation between variables and to select reasonable input variables
to reduce the error caused by irrelevant variables (Reshef et al., 2011).
The data used formodeling comes from the real historical data in the
distributed control system of power plant, and is analyzed by MIC
numerical value. Some variables with strong correlation were
selected and the results of their MIC analysis are shown in Table 1.

Another factor that affects the accuracy of the neural network
model is the structure and hyperparameters of the neural
network. Although the properties of different neural networks
are helpful to design models for the denitrification environment,
designing the structure of the neural network and determining
the hyperparameters need to be validated several times depending
on the task. At first, in order to save computing resources and use
more computing resources to train agents, a simple multilayer
LSTM neural network was adopted. Although such a model
consumes less computational resources, the accuracy is not
satisfactory. Then, the end-to-end structure is used to replace

FIGURE 3 | Actor-critic framework schematic diagram.

TABLE 1 | The results of MIC analysis.

Variables MIC

Reactor inlet NOx concentration 0.579951
Reactor inlet oxygen concentration 0.543274
Ammonia injection volume 0.469567
Temperature near ammonia sprayer 0.469331
Temperature near reactor entrance 0.532343
Temperature near boiler outlet 0.556201
Total air volume 0.612232
Active Power of Generator 0.595234
Oxygen Content in Boiler Flue Gas 0.584735
Total fuel consumption 0.549589
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the simple multilayer neural network structure, and attention
mechanism is introduced to improve the accuracy of the
denitrification environment. The end-to-end structure with an
attention mechanism improves the accuracy of the denitrification
environment, but considering the phenomenon of reality gap,
higher accuracy is still needed. Further, the new structure uses
two decoders with attention mechanisms to decode NOx and
ammonia separately, which avoids the coupling of ammonia and
NOx and improves the model accuracy. Finally, the output of the
decoder is improved by multi-layer fully connected layer neural
network to improve the nonlinear fitting ability. Suitable
hyperparameters can improve the accuracy of neural networks.
The common hyperparameters include the number of layers and
time steps of neural networks. There is no clear theoretical
method to determine the most suitable hyperparameters,
which needs to be set according to researchers’ experience and
confirmed by multiple verifications. In this research, multiple
validations were implemented to determine the structure and
hyperparameters of a high precision denitrification
environmental model. The training errors for different
structural and hyperparametric models are shown in the table 2.

According to the verification of denitrification environment
model structure and hyperparameters, considering the accuracy

of each model and the consumption of computing resources, the
dual decoder structure with attention mechanism was selected.
The time step is set to 20 and the number of neural network layers
is set to 4. In order to make the virtual environment more
realistic, a large amount of data was collected from the
historical database of the power plant for training the virtual
environment. These data include data under different load and
operating conditions in order to give a more comprehensive
description of the overall situation of the power plant.

To further improve the accuracy of the denitrification
environment, a special approach is also taken in the
training process of the model. In particular, the training of
dual decoder model needs to be carried out step by step.
Firstly, the whole model is trained to a relatively low error
level. Secondly, the parameters of the encoder and the
parameters of NOx concentration decoders are frozen and
only the parameters of ammonia concentration decoder are
trained. Finally, only the NOx concentration decoder
parameters that were frozen in the second step are trained.
The results of the denitrification environment model are
shown in Figure 4,Figure 5, Figure 6 and Figure 7. In
training the virtual environment, the first step is the most
time-consuming and usually lasts for several days, while

TABLE 2 | The raining errors for different models.

Network Structure 5 time steps (%) 10 time steps (%) 20 time steps (%)

Multi-layer LSTM network 2 layers 7.9420 7.2094 7.0238
4 layers 6.8226 6.5965 6.3765
6 layers 6.2329 6.0883 6.1947

Single decoder with attention mechanism 2 layers 33384 3.0631 3.8497
4 layers 2.9482 2.8395 2.6543
6 layers 2.7389 2.3173 2.2879

Dual decoders with attention mechanism 2 layers 2.8274 2.4098 2.1062
4 layers 1.9489 1.8159 1.7975
6 layers 1.8037 1.7963 1.7498

FIGURE 4 | Ammonia concentration prediction curve.
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training the two decoders separately takes relatively less time.
The reasons for this phenomenon will be discussed later.

Figure 4 and Figure 6 demonstrate the predicted values of
ammonia concentration and NOx concentration, respectively,
after the first step of training. Figure 5 and Figure 7 demonstrate
the predicted values of ammonia concentration and NOx
concentration after parameter freezing training respectively.
According to Figure 4 and Figure 5 Figure 6 and Figure 7, it
can be concluded that the accuracy of the model can be improved
by training the model step by step. This can be explained as
follows. Since the two decoders share a common encoder, the
parameters of the encoder are optimized by the gradients
returned by both decoders in the first training step. In this
case, the information extracted by the encoder will bring more
errors to the two decoders. When the encoder and one decoder
are frozen, optimizing the other decoder can prevent the error

from propagating to the final predicted value. Obviously, separate
models could be constructed for NOx and ammonia to improve
accuracy, but this would increase the consumption of
computational resources. The structure of single encoder and
double decoder can balance the consumption of computing
resources and the accuracy of the model, and devote more
computational resources to training the agent.

Training Reinforcement Learning Intelligent
Controller
In this research, the reinforcement learning agent is the controller
that controls the spraying of ammonia into the SCR reactor. Since
the amount of ammonia sprayed is a continuous action space, the
deep deterministic policy gradient (DDPG) method is used as the
reinforcement learning agent instead of other value-based

FIGURE 5 | Ammonia concentration prediction curve after parameter freezing training.

FIGURE 6 | NOx concentration prediction curve.
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reinforcement learning methods. The DDPG algorithm is based
on the actor-critic framework, which contains a policy network as
the actor and a Q network as the critic. The policy network
generates action outputs and the Q network optimizes the
parameters of the policy network by evaluating the actions
generated by the policy network through Q values.

In order to improve the stability of the agent training, soft
updating and buffering methods are adopted. DDPG creates two
copies of the policy network and the Q network, called the target
policy network and the target Q network, respectively. The target
network parameters are updated using the soft update method as
shown in Eq. 15.

θQ’←αθQ + (1 − α)θQ’
θμ’←αθμ + (1 − α)θμ’ (15)

Where, θ is the network parameter. Q′ is the target Q network. μ′
is the target policy network. αis update step. Different from other
policy gradient methods that use random policies, deterministic

policies will only produce one action in one state, which is more
suitable for industrial control requirement. Since a deterministic
policy is used, the gradient of the policy network is shown in Eq.
16 (Silver et al., 2014).

∇Rθμ � 1
N

∑N
n�1

∇aQ(a, s|θQ)|s�si ,a�μ(si)∇θμμ(s|θμ)|s�si (16)

The experience produced by agents in exploring the
environment has sequence correlation. In order to avoid the
agent falling into local optimum caused by sequence correlation,
the delay buffering method is adopted in the research. The
experience data obtained by the agent exploring the
environment are not trained directly by the agent, but are
stored in a buffer. The data of training agent is generated by
random sampling in buffer. The structure of DDPG is shown in
the Figure 8.

As shown in Figure 8, the agent and the environment contain
five neural networks, which require a lot of computational

FIGURE 7 | NOx concentration prediction curve after parameter freezing training.

FIGURE 8 | DDPG algorithm flow chart.
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resources to support. This is the reason that the structure of the
denitrification environment model is designed as two decoders
sharing one encoder. Compared with separately designingmodels
for NOx concentration and ammonia concentration at the outlet
of denitrification reactor, this structure can save more computing
resources. The computational resources need to be conserved for
training the agent during the training agent phase.

After completing the overall architecture design of the
reinforcement learning agent, there are still many details to be
refined in the design of the actor network and the critic network
inside the agent. The first concern is the network structure of the
policy network and the value network. LSTM neural network is
used as the policy network because the data processed are time
series data. In particular, the policy network is designed as a
three-layer LSTM neural network. To avoid the coupling caused
by the same as the strategy network, the value network is designed
as a three-layer one-dimensional convolutional neural network.

Convolution is a classical digital signal processing method.
Usually, two-dimensional convolution neural network is used
to process image data, and one-dimensional convolution is used
to process time series data (Abdeljaber et al., 2017; Antoshchuk
et al., 2020).

Another detail worth noting is the activation function of the
neural network. Depending on the range of the activation
function, the activation function can be divided into saturated
and unsaturated activation functions (He et al., 2015; Krizhevsky
et al., 2017). The action of the actor network output is the flow of
ammonia injected into the denitrification reactor, which reaches a
maximum value when the valve is fully open and reaches zero
when the valve is fully closed. Such an action range is more
suitable using the sigmoid activation function, which can avoid
the actor network to produce some unreasonable actions, such as
negative or too large flow values. The sigmoid function is a
common saturation activation function, whose upper limit is one

FIGURE 9 | Ammonia injection amount given by agent controller.

FIGURE 10 | NOx concentration at the outlet of reactor controlled by agent controller.
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and lower limit is zero. However, the sigmoid activation function
also has the drawback of causing the vanishing gradient.
Therefore, the sigmoid function is only used as the activation
function in the output layer of the actor network. The critic
network outputs Q values and does not have upper and lower
limits, thus using a non-saturating activation function.

In reinforcement learning, the goal of an agent is formally
characterized as a special signal, called reward, which is usually a
function of state. At each time step, the reward is a single scalar
value. The role of reward is to guide the agent’s policy toward the
desired outcome. The goal of the controller in this research was to
reduce both the NOx and ammonia concentrations at the outlet
of the denitrification reactor. Therefore, the reward function is
designed as in the Eq. 17.

r � −αCNOx − (1 − α)CNH3 (17)

Where α is a number between 0 and 1 to tune the style of the
reinforcement learning agent’s policy. With the increase ofα, the
agent tends to inject more ammonia to reduce the nitrogen oxide
content at the outlet of the reactor. After interactive training with
virtual environment, the agent has learned to control ammonia
injection to reduce the concentration of nitrogen oxides at the
outlet of denitrification reactor. The ammonia injection quality of
the agent controller and the concentration of nitrogen oxides and
ammonia at the outlet of the reactor are shown in the Figure 9,
Figure 10 and Figure 11, respectively. In this experiment, the
parameterαin Eq. 17 is set to 0.5, which means that the agent
regards the control of nitrogen oxide concentration and ammonia
concentration as equally important. The results show a noticeable
increase in ammonia injection after 120 steps, which corresponds
to a slight overall decrease in NOx concentration at the outlet of
the SCR system. The ammonia escape from the system also tends
to increase slightly after 120 steps. Such results are consistent with
the empirical common sense that increasing ammonia injection
would contribute to the reduction of NOx emissions but would
increase the extent of ammonia escape. On the other hand, such

results indicate that the virtual environment accurately reflects
the dynamic characteristics of the system, and that the model
structure of the virtual environment and the training methods to
improve accuracy are successful and effective.

DISCUSSION AND CONCLUSION

The experiments of this study can be divided into two parts:
training the virtual environment and training the intelligent
controller. The method of freezing some parameters and
setting up a double decoder during the training of the virtual
environment significantly improves the accuracy of the virtual
environment. In training the virtual environment, the first step is
the most time-consuming and usually lasts for several days, while
training the two decoders separately takes relatively less time.
This is mainly due to the large number of model parameters that
need to be optimized in the first training step, which contain the
parameters of one encoder and two decoders, respectively. While
in the stage of partial parameter freezing, the parameters of one
encoder and one decoder are frozen and only the parameters of
one decoder need to be optimized.

According to the experimental results, the intelligent
controller was able to control the SCR system ammonia
injection to reduce the nitrogen oxidation emissions while
avoiding excessive ammonia escape. The experimental results
validate the feasibility of reinforcement learning in the field of
process control. In particular, as shown in Figure 9, the intelligent
controller increases the ammonia injection after 120 time-steps.
In response to this change, the NOx concentration at the outlet
decreased slightly from around 28 mg/Nm3 to around 26 mg/
Nm3 as shown in Figure 10. Such a change also verifies that the
intelligent controller is interacting correctly with the virtual
environment.

The main contribution of this research consists of two
aspects, which are the virtual environment and the intelligent

FIGURE 11 | Ammonia concentration at the outlet of reactor controlled by agent controller.
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controller. As mentioned before, the accuracy of the virtual
environment has a critical impact on the control
effectiveness. The selective catalytic reduction system as
the object of research has characteristics such as large
latency and multiple inputs and outputs. The model
structure designed in this research is well adapted to these
characteristics, especially the parameter freezing and step-by-
step training methods improve the accuracy of the virtual
environment. Since other systems in thermal power plants
have similar characteristics to SCR systems, the model
structure and training methods in this study can be
extended to other systems in thermal power plants. The
methods used to construct and train the virtual
environment in this research can support more in-depth
studies. Another contribution of this research is its
validation of the feasibility and effectiveness of using deep
reinforcement learning intelligent controllers to control
thermal power plant systems. The potential of artificial
intelligence techniques in power systems has been noticed
by many scholars, but little research has been reported in this
area. This research takes a hot artificial intelligence
technique, deep reinforcement learning, as an intelligent
controller in the field of pollutant emission control, which
is currently of wide interest. The experimental results
demonstrate that the intelligent controller is able to keep
both NOx emissions and ammonia escaping at low levels. On

the one hand, such results validate the effectiveness of the
reinforcement learning intelligent controller for selective
catalytic reduction systems, and on the other hand, this
study reveals the feasibility of applying deep reinforcement
learning techniques to other systems in power plants.
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