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Ionic liquids present an opportunity to design efficient electrolytes for supercapacitors, which
are among the most extensively studied electrochemical energy storage systems. Ionic liquids
are promising candidates for supercapacitor electrolytes because they can eliminate issues
associated with aqueous and organic solvent-based electrolytes, such as narrow operating
potential windows, safety, and performance. The full potential of ionic liquids as electrolytes in
supercapacitors need to be further explored due to promising previous efforts invested in ionic
liquid-based electrolyte systems for supercapacitor. This review aims to provide an outlook on
neat (pure) ionic liquids applied as supercapacitor electrolytes to isolate the prospects and
influences of ionic liquids in supercapacitor electrolyte systems. This work primarily focuses on
ionic liquid chemistry links to their performance in supercapacitor electrolytes. Deduced
features of importance to supercapacitor performance include the presence of functional
groups in the ionic liquids, the ionic liquids physicochemical and electrochemical properties.
With the different classes of ionic liquids evaluated, ion size-pore size matching of ionic liquid
electrolytes and electrode materials, respectively, affect resulting capacitances and energy
densities. Several design strategies to enhance supercapacitor performance by improving
ionic liquid transport and electrochemical properties are proposed. The proposed strategies
and obtained insights consequently informed further discussions on challenges associated
with the commercialization of ionic liquids electrolytes.
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INTRODUCTION

Supercapacitors (SC) are electrochemical energy storage systems that play a significant role in
addressing the global challenge of integrating renewable energy sources into the energy mix.
Electrolytes are major components of electrochemical energy storage systems like SC. The
functions of electrolytes include; transporting reactants or supporting species in bulk and
providing electronic insulation between the electrodes/terminals (Dühnen et al., 2020). Currently
applied electrolytes in electrochemical energy storage devices include aqueous (Susantyoko et al.,
2019; Huang et al., 2019; Sharma et al., 2020; Sundaram and Appadoo, 2020; Minakshi Sundaram
et al., 2016), organic solvents (Xia et al., 2017), deep eutectic solvents (Dinh et al., 2020; Jaumaux
et al., 2020), and ionic liquids (ILs) (Gunday et al., 2019; Gunday et al., 2020; Martins and Torresi,
2018; Chellappan et al., 2020). In SC, organic solvent-based electrolytes particularly suffer from
various drawbacks like; high cost, safety issues, cumbersome synthesis and purification procedures
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and, low ionic conductivity (Bamgbopa et al., 2017). Hence, there
is a need to develop electrolyte systems, which are free from these
drawbacks.

SC can be divided into three classes according to the charge storage
mechanism: 1) electric double-layer capacitors (EDLC), 2)
pseudocapacitor and 3) hybrid supercapacitors (Pal et al., 2019).
The EDLC stores charge by the formation of an electric double
layer on the electrode-electrolyte interface. The electric double layer
formation is due to the adsorption of ions (cations and anions) on the
respective electrodes. The fast diffusion of the ions in the electrolyte
contributes to the high-power density of EDLC. In pseudocapacitor,
the energy is stored by the reversible redox reactions with rapid
intercalation of electrolyte ions on the electrodes surface and the
electric double layer formation. Hybrid SC is a combination of EDLC
and pseudocapacitor, and it displayed superior performance because it
combines the charge storage mechanism of both EDLC and
pseudocapacitor (Muzaffar et al., 2019). A more detailed
description of the supercapacitor types and their charge storage
mechanism can be found elsewhere (Raza et al., 2018) (Pal et al., 2019).

Rapid storage and release of energy are peculiar characteristics
of SC because of their faster charge-discharge process, which is
limited by diffusion. Equivalent specific capacitance (Ceq, in
Fg−1), is the primary criteria used to evaluate the performance
of a SC electrode material. The specific capacitance of a SC can be
calculated from charge-discharge curves using Eq. 1, with energy
density defined by Eq. 2.

Ceq �
Δt∫ 

I dt

m∫

V dt

(1)

Energy Density � ∫ 
I Vdt

m
(2)

where I is the current during the discharging process, m is the mass
of the active electrode material, V is the recorded potential of the
device andΔt is the total discharge time. As can be seen from Eq 2, a
significant increase in the energy density can be achieved by
widening the operating potential window of the SC. ILs receive
much attention as SC electrolytes primarily due to the possibility of
wider electrochemical potential windows (Lei et al., 2013; DeVos
et al., 2014), which can significantly help SCs achieve higher energy
densities compared to applying aqueous electrolytes. In addition,
most neat IL electrolytes can be operated at elevated temperatures
(>100°C) because of their high thermal stability and non-flammable
nature (Torrecilla et al., 2008) compared to organic solvents. ILs are
also associated with remarkable properties such as; being liquids
state in a wide temperature range, negligible vapour pressure, high
thermal stability (Wasserscheid and Welton, 2008; Van Aken et al.,
2015; Lethesh et al., 2014b). The higher electrochemical stability and
thermal stability of ILs make them suitable for developing high
voltage and high-temperature SC (Zhang et al., 2018).

ILs are organic salts made up of cations and anions with a
melting point preferably below 100°C (Hallett and Welton, 2011;
Abbas et al., 2015; Lethesh et al., 2012). If they remain liquids at
ambient conditions, they are termed room temperature ionic
liquids (Tokuda et al., 2006; Welton, 2018; Venkatraman et al.,
2019). The most used anions and cations for the synthesis of ILs
are given in Figure 1. ILs are mainly classified into four groups:

aprotic (Esperança et al., 2010), protic (Greaves and Drummond,
2008), zwitterionic (Wu et al., 2018; Grøssereid et al., 2019), and
functionalized (task-specific) (Davis, 2004; Butt et al., 2020) ILs
(Figure 1).

In general, the cations are large and bulky, which prevents the
efficient packing of ions in the crystal lattice and results in a low
melting point. The anions can be organic or inorganic, and their
properties largely determine the overall characteristics of the ILs
(Marsh et al., 2004; Chellappan et al., 2011; Lethesh et al., 2014b).
Physicochemical and electrochemical properties of ILs can also be
tuned by a meticulous selection of cation/anion pairs and by
introducing desired functional groups (Davis, 2004) (Giernoth,
2010) on the ions according to requirements (Li et al., 2006; Tang
et al., 2012). This flexibility makes ILs be regarded as designer
solvents.

Given significant effort has been devoted to the development
of ILs electrolyte for SCs (Varzi et al., 2014; Aradilla et al., 2019;
Ma et al., 2018). Figure 2 summarizes the applications of SCs with
IL-based electrolytes, charge storage mechanism of the
pseudocapacitor and EDLC (Wang et al., 2016) and graphical
representation of cyclic voltammetry (CV) curves of
pseudocapacitor and EDLC (Lin Z. et al., 2011).
Notwithstanding, some challenges still need to be overcome
for increased/large-scale application of ILs as electrolytes for
SC. Although many exciting works have reviewed the
application of IL electrolyte in SC (Zhong et al., 2015; Van
Aken et al., 2015; Shahzad et al., 2019; Lian C. et al., 2019),
(Pan et al., 2020; Xu et al., 2021; Miao et al., 2021), a specialized
review explaining the relation between IL chemistry and
performance of ILs as electrolytes in SC has not received
much attention. In addition, there is also a lack of clear
explanations regarding the design strategies to improve
transport properties and electrochemical performance of the IL
electrolytes for SC. Herein, we attempt to bridge this gap with a
detailed evaluation of ILs physicochemical properties and their
contributions to SC performance, in addition to design
considerations and challenges of applying neat ILs as
electrolytes in SC. We specifically focus on neat ILs used as
SC electrolytes to exclude the influence of other solvents. In neat
ILs, the cation nature, the alkyl spacer length on the cation, and
the type of anions playing major roles in deciding their
electrochemical properties and electrolyte performance. Hence,
they provide the opportunity to tune the electrolyte properties by
the proper selection of cation-anion combinations. In addition,
the effect of solvation can be avoided using ILs because they are
made up of cations and anions. Previous studies on ILs
electrolytes published from 2010 were only considered to
establish a concise review. The abbreviations used in this
review are given in Table 1.

SUPERCAPACITOR PERFORMANCE WITH
NEAT IONIC LIQUIDS ELECTROLYTES

Imidazolium Based Ionic Liquids
Imidazolium-based ILs are among the most extensively studied
ILs and electrolytes in SC because of their low viscosity and high
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conductivity, especially when paired with a range of carbon
electrodes, as seen in a recent study (Ortega et al., 2020).
Where imidazolium ILs [(EMIM)(Tf2N)] and ([(EMIM)(BF4)]
were paired with different carbon electrode materials such as;
activated carbon (AC), mesoporous carbon (MES), multi-walled
carbon nanotubes (MWCNT), and reduced graphene oxide
(RGO) in SC.

The study aimed to obtain insights on; compatibility of the
ions with the electrodes, factors affecting the charge accumulation
and, its influences on the SC performance. Interestingly, although
the ILs investigated contain the same cation, their properties were
entirely different. For instance, (EMIM)(Tf2N) is hydrophobic,
while (EMIM)(BF4) is hydrophilic. In addition, (EMIM)(BF4)

showed higher ionic conductivity (14 mS cm−1) despite its higher
viscosity (42 cP). The observations reference the role of the paired
anion with imidazolium plays in the physical properties.
Figure 3A,B shows; the specific capacitance, energy density
and, power density constructed with (EMIM)(Tf2N) and
(EMIM)(BF4 ) with the selected electrode material.

We can conclude from Figure 3 that imidazolium-based ILs
make better SC with electrode materials containing a high volume
of mesopores. The increased power density was achieved with
open and accessible electrode material surfaces like mesoporous
carbon (Lian Y.-M. et al., 2019) and multi-walled carbon
nanotubes (Zhang et al., 2018). These observations are
generally valid for a wide range of SC with IL electrolytes. In

FIGURE 1 | Commonly used cations and anions in ILs and the classification of ILs (H- proton, R1-Alkyl chain, X- electronegative atom, FG-Functional group).

FIGURE 2 | (A) ILs application in SCs. Reprinted with permission from (Pan et al., 2020), Frontiers in chemistry, (B) Charge storage mechanism in electric double
layer capacitor (EDLC) and pseudocapacitor Reprinted from (Panda et al., 2020), Royal Society of Chemistry. (C) CV of electric double layer capacitor (EDLC) and
pseudocapacitor. Reprinted with the permission from (Lin Z. et al., 2011) American Chemical Society.
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carbon-based electrode materials with high pore volumes and
many micropores (like activated and mesoporous carbons), the
interactions between the imidazolium cations and the desorption
of co-ions present in the pores govern the specific capacitance and
resistance of the electrochemical double-layer capacitance. A
summary of the performance of different SC containing neat
imidazolium ILs electrolyte is showed in Table 2.

The performance (specific capacity and energy density) of the
SC in Table 2 emphasizes that matching the pore size of the
electrode with the ionic size of the ILs electrolyte is not the only
essential criteria in selecting carbon electrode materials for SC.
Other interactions of the ILs with electrode materials, including
ion-ion interaction within the ILs, functional groups on the
carbon electrode surface, are among other considerations, as

will be seen in subsequent sections of this work. A feature
observation that qualitatively defines a SC as an
electrochemical double layer supercapacitor is the near box-
like shape of the cyclic voltammetry response, which also
depicts the influence of ion diffusion limitation on limiting
current density. Ion diffusion limitations are often defined by
electrical conductivity and prevalent electrode mesopore (Hu
et al., 2019). The key is that the pore structure of the electrode
creates an easy path for the electrolyte ions to access the electrode
surface, as shown by Tamailarasan et al. (Tamailarasan and
Ramaprabhu, 2012).

Ion diffusion limitations can also be solely a result of the IL
property, the physicochemical properties of two imidazolium
containing tris(pentafluoroethyl)trifluorophosphate (FAP) and
tetracyanoborate {[B(CN)4]

−} anions were evaluated, and their
performance as the electrolyte in SC was studied (Seki et al., 2012)
(Table 2). Due to the larger size of the (FAP)− anion, the viscosity
of (FAP)- anion-based IL (43 mPa.s) was higher in comparison
with [B(CN)4]

− anion-based counterpart (15 mPa.s). At the same
time, the ionic conductivity of (EMIM)(FAP) was almost three
times lower (6.9 mS cm−1) than (EMIM) [B(CN)4] (19.0 mS
cm−1) at 30°C. In other words, the nature of the anions
playing a significant role in determining the properties of ILs
and the SC performance.

In addition to single/isolated charge-discharge response, an
important performance metric for SC is capacity retention and
cycling stability (Kurig et al., 2012). In investigations of the
chemical reversibility of IL SC systems with (EMIM)+ cation
and different anions such as (BF4)

−, (Tf2N)
−, (FSI)−, (FPA)−,

[B(CN)4]
− and (SCN)− (Kurig et al., 2011). The oxidation of the

(SCN)− to thiocyanogen caused deviation from the ideal
capacitive behaviour. Cycling stability in SC can also be linked
to the wettability of the electrolyte on the electrode pore walls due
to the presence of functional groups on the pore walls (Thangavel
et al., 2018).

Generally, we observed from these earlier studies that the
relatively good performance of imidazolium cation based ILs as
SC electrolytes might be related to small ionic size, appreciable
electrochemical stability (depending on the paired anion), low
viscosity, and high conductivity.

Redox-Active Ionic Liquids Electrolytes
To further boost the energy density of SC, research efforts have
been dedicated to redox-active ILs. An additional charge storage
mechanism (pseudocapacitance) is offered from the redox species
inherent in the ILs rather than applying pseudocapacitive solid
electrode materials. SC assembled with redox-active ILs further
blur the lines between batteries and SC, given the galvanostatic
charge-discharge response of these SC begins to look more
“battery-like”. Fic et al. (2019) took advantage of pseudo
halide anion property and excellent transport properties of
selenocyanate (SeCN) anion based ILs to develop a redox-
active IL for SC. These ILs proved promising candidates as
they were previously extensively studied in dye-sensitized solar
cells (Wang et al., 2004).

An (EMIM)(SeCN) was tested as a SC electrolyte adopting an
activated carbon electrode (Fic et al., 2019). Due to low viscosity

TABLE 1 | Abbreviations used in the manuscript.

Abbreviation Full name

AC Activated carbon
Al(hfip)4 Aluminum hexafluroisopropoxilate
AQ-PFS Anthraquinone- perfluorosulfonate
Azp 1,4 N-butyl-N-methylazepanium
Azp 1,6 N-methyl-N-hexylazepanium
B(CN)4 Tetracyanoborate
BF4 Tetrafluroborate
BMIM 1-Butyl-3-methylimidazolium
C Specific capacitance
cP Centipose
C(CN)3 Tricyanomethanide
DCA Dicyanamide
EDLC Electric double layer capacitor
EMIM 1-Ethyl-3-methylimidazolium
FAP Tris(pentafluoroethyl)trifluorophosphate
FSI Bis(flurosulfonyl)imide
FuA Furoate
I Current
ILs Ionic liquids
LUMO Lowest unoccupied molecular orbit
MES Mesoporous carbon
Me3S Trimethylsulphonium
MIM 1-Methylimidazolium
MMIM 202 1-(2-ethoxyethyl)-2,3-dimethylimidazolium
MWCNT Multi-walled carbon nanotubes
N1444 Tributylmethylammonium
N222H Triethylammonium
PILs Protic ionic liquids
Pip 1,3 N-propyl-N-methylpiperidinium
Pip 1,4 N-butyl-N-methylpiperidinium
Pyr Pyrrolidinium
Pyr 1,3 N-Methyl-N-propylpyrolidinium
Pyr 1,4 N-Methyl-N-butylpyrolidinium
Pyr 1, 201 N-(2-methoxyethyl)-N-methylpyrrolidinium
P 222,201 (2-methoxyethyl)trimethylphosphonium
P4444 Tetrrabutylphosphonium
RGO Reduced graphene
SC Supercapacitors
SCN Thiocyanate
SeCN Selenium thiocyanate
S221 Diethylmethylsulfonium
S222 Triethylsulfonium
S223 Diethylpropylsulfonium
TEMPO 2,2,6,6-tetramethylpiperidinyl-1-oxyl
Tf2N Bis(trifluromethylsulfonyl)imide
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(17 mPs) and relatively high conductivity (25 mScm−1),
(EMIM)(SeCN) showed promising capacitance (Table 3),
especially at higher current density (42 Fg−1 at 2.5 Ag−1). The
appreciable performance of the (SeCN)− anion based ILs might be
related to their reasonable electrochemical stability, low viscosity,
small ionic volumes, and, therefore, high ionic conductivity.
Other previous research efforts applied; Cu (II) metal-
containing ILs (Sun et al., 2010), bromide ion species (Br2/
Br3

−) (Yamazaki et al., 2012), and hydroquinone
(Sathyamoorthi et al., 2015).

The higher capacitance value of copper containing ILs is
associated with the pseudocapacitance contribution from Cu
(II)/Cu redox reaction (Table 3). Imidazolium cation can
coordinate with the metals through its acidic proton on the C2

carbon atom and form the Cu (II) complex of the ILs (Blue et al.,
2006). It is worth noting that thermal stability and the effect of
halide content on transport properties of ILs with the metal
complexes are often unreported. It is known that even a minimal
concentration of halide impurities can detrimentally affect the
viscosity of ILs (Seddon et al., 2000). Given these concerns and SC
performance targets, the optimal position and polarity of the
redox-active component/molecule in the IL also need to be
evaluated.

Bi-redox ILs with Anthraquinone, on anion [(AQ-PFS)−] and
2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO) on imidazolium
cation [(MIM-TEMPO)+] have also been demonstrated as
electrolyte for SC (Mourad et al., 2017). The bi-redox IL

introduced had to be dissolved in (BMIM)(Tf2N) (because of
high viscosity) to enable testing at room temperature. In contrast,
neat bi-redox ILs electrolytes were tested at elevated temperatures
(60°C) because of the significant decrease in viscosity with
increasing temperature.

Applying only (BMIM)(Tf2N) electrolyte, the double-layer
charge storage mechanism is seen without any Faradaic
reactions. In the case of bi-redox ILs dissolved in
(BMIM)(Tf2N), the redox-active ions, (AQ-PFS)− and (MIM-
TEMPO)+ are electro adsorbed on the surface of the carbon
electrode and also undergo Faradaic reactions. The introduction
of the reducible moiety on the anion and oxidizable species on the
cation helped generate bi-anions and bi-cations at the anode and
cathode. From the above discussion, we can conclude that the
introduction of the redox active materials can improve the
performance of the SC. However, it can detrimentally affect
the transport properties and electrochemical stability of the
ILs. The summary of the performance of the redox-active ILs
is summarized in Table 3.

Protic Ionic Liquids-Based Electrolytes
The unique feature of the protic ILs (PILs) is the presence of an
acidic and liable proton (hydrogen) on the cationic core, which
can involve coordinating with metals (Menne et al., 2014).
However, this exchangeable hydrogen on the cationic core
results in low thermal stability of PILs. Due to the relatively
easy synthesis procedure and non-requirement of purification

FIGURE 3 | Specific capacitance as a function of current density for the SCs with different porous carbon electrodes and with (A) (EMIM)(Tf2N) and (B) (EMIM)(BF4)
as electrolytes. Reprinted with permission from (Ortega et al., 2020), American Chemical Society.
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steps, protic ILs receive much attention in various applications
such as; electrolyte for lithium-ion rechargeable batteries (Menne
et al., 2013; Vogl et al., 2014), extraction processes (Wang et al.,
2020; Rodrigues et al., 2018; Janssen et al., 2016).

In a recent study (Mayrand-Provencher and Rochefort, 2009),
PILs were prepared from aromatic heterocyclic compounds
(base) containing two nitrogen atoms and trifluoroacetic acid.

The effect of multiple proton exchange sites and the impact of the
acid strength (pKa) on the physicochemical properties of these
PILs and the capacitance of SC containing RuO2 electrodes were
evaluated. At the same time, specific conductivities recorded
varied from 0.71 to 9.07 mScm−1 at 27°C. In all the PILs
studied, conductivity improved with the amount of acid used,
and the highest value was obtained in a base and acid ratio of 1:2.

TABLE 2 | Summary of SC performance with imidazolium-based IL.

Entry IL Electrode materials Specific
capacitance

(F g−1)

Specific capacitance
based on

Energy
density

(Wh kg−1)

Ref

1 (EMIM)(Tf2N) Activated carbon 5.57 Mass of active materials (both
electrodes)

— Ortega et al. (2020)

Mesoporous carbon 26.86 Mass of active materials (both
electrodes)

— Ortega et al. (2020)

Multi-walled carbon
nanotubes

6.35 Mass of active materials (both
electrodes)

— Ortega et al. (2020)

Reduced graphene oxide 8.18 Mass of active materials (both
electrodes)

— Ortega et al. (2020)

Graphene 332 — 156 Li et al. (2016a)
Carbon nanotube 201 Mass of active materials (one

electrode)
171 Tamailarasan and Ramaprabhu,

(2012)
2 (EMMIM)(Tf2N) Activated carbon 41.7 Mass of electrodes 42.3 Sillars et al. (2012)
3 (EMIM)(BF4) Activated carbon 9.15 Mass of active materials (both

electrodes)
— Ortega et al. (2020)

Mesoporous carbon 26.57 Mass of active materials (both
electrodes)

— Ortega et al. (2020)

Multi-walled carbon
nanotubes

6.96 Mass of active materials (both
electrodes)

— Ortega et al. (2020)

Reduced graphene oxide 10.02 Mass of active materials (both
electrodes)

— Ortega et al. (2020)

Graphene oxide 144.4 Mass of active materials (both
electrodes)

174 Lei et al. (2013)

Mesoporous graphene 250 Mass of electrode (both electrodes) 85.6 Liu et al. (2010)
Activated carbon fiber 204 Mass of active materials (one

electrode)
113 Hu et al. (2019)

Graphene nanofiber 192 Mass of active materials (one
electrode)

112 Hu et al. (2019)

Activated carbon 143 Mass of active materials (one
electrode)

110 Hu et al. (2019)

Carbon cloth 125 Mass of single electrode 44 Kurig et al. (2011)
Graphene aerogel 203 Mass of single electrode 100.7 Chen et al. (2018)
Graphene 174 — 81 Li et al. (2016a)
Activated carbon 56 Mass of electrodes (both

electrodes)
70 Sillars et al. (2012)

Porous carbon 180 Mass of electrodes (both
electrodes)

80 Tran et al. (2015)

Carbon nanotube 183.3 Mass of single electrode 80 Shao et al. (2015)
4 (EMIM)(FAP) Carbon 28.3 Mass of electrodes (both

electrodes)
— Seki et al. (2012)

5 (EMIM)(TCB) Carbon 29.6 Mass of electrodes (both
electrodes)

— Seki et al. (2012)

6 (EMIM)(BF4) Carbon 313 Mass of active materials (both
electrodes)

174 Thangavel et al. (2018)

7 (BMIM)(SCN) ZnFe2O4 781 Mass of active materials (one
electrode)

156 Vadiyar et al. (2015)

8 (EMIM)(SCN) ZnFe2O4 590 Mass of active materials (one
electrode)

78 Vadiyar et al. (2015)

9 (EMIM)[B(CN)4] Carbon cloth 140 Mass of single electrode 49 Kurig et al. (2011)
10 (MIM)(SCN) ZnFe2O4 250 Mass of active materials (one

electrode)
50 Vadiyar et al. (2015)

11 (EMIM)
[N(CN)2]

Activated carbon 10.7 Mass of electrode 18.2 Sillars et al. (2012)
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This increase in conductivity is related to the decrease in the
viscosity obtained at that ratio.

As expected with PILs, the pH (potential of hydrogen) of the
resulting SC electrolyte has a significant influence on the specific
capacitance value, as demonstrated by Demarconnay and co-
workers (Demarconnay et al., 2013). PILs such as pyrrolidinium
nitrate [(Pyr)(NO3)] and triethylammonium
bis(trifluoromethylsufonyl)imide [(N222H)(Tf2N)] with high
conductivity, varying pH, and water content were employed as
electrolytes with carbon-based electrodes. Varying pH of the
electrolyte from 7 to 11 increased the specific capacitance
from 121 to 208 Fg−1 for (Pyr)(NO3). The higher capacitance
value at pH11 was attributed to the pseudocapacitive contribution
arisen due to the increased mobility of PILs proton by the
presence of multiple amine sites on the electrode material. The
water content in the electrolyte detrimentally affected the
operating voltage and specific capacitance value. Considering
the difficulty in drying the PILs, care must be taken when
selecting the anions of the PILs. The PILs containing
hydrophobic anions tend to reduce the water content in the
PILs and can contribute to enhanced performance.

In summary, PILs demonstrated so far in the literature are
promising candidates for carbon electrode SCs because of the
pseudo-faradaic reaction between the oxygen-containing
functional groups on the activated carbon and the proton on
the PILs. The low operating temperature some PILs offer
(Montes-Morán et al., 2004) might be valuable in various
applications like aerospace.

Sulfonium Based Ionic Liquids Electrolyte
Like PILs, sulfonium-based ILs are also relatively easy to
synthesize for application as SC electrolytes, as shown by
Anouti et al. (2012). They synthesized trimethylsulphonium
bis(trifluoromethylsufonyl)imide (Me3S) (Tf2N) by the simple
alkylation of dimethylsulfide with corresponding alkyl halides,
followed by a metathesis reaction of the resulting halide salt with
Li (Tf2N). Although the (Me3S)(Tf2N) was obtained as solid at
room temperature (Tm � 45.5°C), the IL reported high
conductivity (20.42 mS cm−1) at 80°C, which is significantly
higher than the ammonium-based ILs used in SC applications.
(Me3S) (Tf2N) also showed very low viscosity (3 mPas) at similar
experimental conditions. The smaller ionic size and high fluidity

at 80°C promoted the high conductivity in (Me3S) (Tf2N) ILs,
typical for the ILs containing sulfonium cation. When neat
(Me3S) (Tf2N) was applied as SC electrolyte (Maton et al.,
2013), a potential window of 5.3V (vs. Ag/Ag+) was reported
at 50°C with a capacitance value of 130 Fg-1 and 140 Fg−1 at 50°C
and 80°C, respectively. These values are almost double that of (Pyr
1,4) (Tf2N) at similar conditions with the same activated carbon
electrodes.

The observed results with (Me3S) (Tf2N) reinforce the
influence of high conductivity, lower viscosity, and small size
of the (Me3S)

+(0.6 nm) cation compared with the
(Pyr1,4)

+(1.1 nm) cation. The higher energy and power
densities recorded for the sulfonium ILs make them a
promising electrolyte class for SCs. However, the thermal
stability of sulfonium-based ILs is still a concern at elevated
temperatures (Zhang et al., 2009; Coadou et al., 2016).

Sampaio and co-workers also (Sampaio et al., 2019) conducted
molecular dynamics studies to evaluate the electrical, dynamical
and structural properties of three sulfonium based ILs
diethylmethylsulfonium bis(trifluromethylsulfonyl)imide
[(S221)(Tf2N)], triethylsulfonium bis(trifluromethylsulfonyl)
imide [(S222)(Tf2N)] and diethylpropylsulfonium
bis(trifluromethylsulfonyl)imide[(S223)(Tf2N)] at atomic level.
It was observed that both viscosity and ionic conductivity of
these ILs varied according to cation size. However, the differences
in the properties had a negligible effect on the performance of the
SC, especially on the specific capacitance value, which is
contradictory to the earlier reports (Li S. et al., 2016) and our
previously highlighted relationships. We suspect the near
uniformity of their SC-specific capacitance is due to
microporous activated carbon as the electrode material, which
has a smaller pore size than the ionic size of the ions in the ILs.
Although the easy synthesis and favourable transport properties
of sulphonium-based ILs make them suitable candidates for SC
electrolytes, design protocols to improve their thermal stability
are necessary for their use in high-temperature supercapacitors.

Azepanium Based Ionic Liquids
Most ILs used as electrolytes for SCs are based on aromatic or
non-aromatic five/six -membered rings (imidazolium,
pyrrolidinium or piperidinium). ILs with seven-membered ring
(Azepanium) are also applicable and were synthesized, with their

TABLE 3 | Summary of SC performance of redox-active ILs.

Entry ILs Electrode Specific
capacitance

(F g−1)

Specific capacitance
based on

Energy
density

(Wh kg−1)

Ref

1 (EMIM)(SeCN) Activated Carbon 42 Mass of active materials (both
electrodes)

— Fic et al. (2019)

2 (EMIM)(BF4)/Cu(II) Porous Carbon 225 Mass of active material (one
electrode)

45 Sun et al. (2010)

3 (N222,H)(Tf2N) Activated Charcoal 72 Mass of active material 31.22 Sathyamoorthi et al.
(2015)

4 (MIM-TEMPO)
(AQ-PFS)

PICA 200 Mass of one electrode 50 Mourad et al. (2017)

5 [(EMIM)Br]/
(EMIM)(BF4)

Activated carbon fiber
clothes

59 Mass of electrodes (both electrodes) — Yamazaki et al. (2012)
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physicochemical and electrolyte performance in SC was
compared with the established (Pyr1,4)(Tf2N) electrolyte in a
previous study (Pohlmann et al., 2015). The presented
azepanium based ILs (N-butyl-N-methylazepanium
bis(trifluoromethanesulfonyl)imide [(Azp1,4)(Tf2N)] and
N-methyl-N-hexylazepanium bis(trifluoromethanesulfonyl)
imide [(Azp1,6)(Tf2N)] displayed higher viscosity and lower
conductivity compared to their pyrrolidinium analogues. This
observation is possibly due to the larger ring size of the
azepanium cation. However, the azepanium based ILs showed
comparable thermal stability (>350°C) as pyrrolidinium ILs. The
determination of themaximum operating voltage showed that the
positive potential limit was not affected by the ILs structure. On
the other hand, the negative potential limit was influenced by the
size of the cation. The inferior performance of the azepanium
based ILs as an electrolyte compared with the pyrrolidinium
analogue was related to their high viscosity and lower
conductivity. Nevertheless, considering the lower cost of
azepanium ILs, modifications to reduce their viscosity and
improve the ionic conductivity can transform them into
electrolytes of choice in SCs.

Functionalized Ionic Liquids
The performance of ILs based electrolytes in SC can be improved
by the cautious design of ILs, including introducing functional
groups to conventional ILs. Modifying the IL cations by grafting
the alkyl side chain with heteroatoms (Oxygen, Nitrogen,
Sulphur, etc.) can dramatically improve the ionic transport
properties. The heteroatom on the alkyl chain can alter the
electronic distribution of the cationic core, which will improve ionic
transport properties and enhance electrochemical performance. Rennie
et al. (2013), tethered oxygen atom on the alkyl side chain (ether
functionalization) of the imidazolium cation [1-(2-ethoxyethyl)-2,3-
dimethylimidazolium bis(trifluromethylsulfonyl)imide], (MMIM 202)
[(Tf2N) and phosphonium cation (2-methoxyethyl)
trimethylphosphonium bis(trifluromethylsulfonyl)imide,
[(P 222,201) (Tf2N))], which significantly improved the
specific capacitance and reduced the resistance of a SC
containing mesoporous carbon electrode. The presence of
the ether group reduced the viscosity of the IL. A similar
trend was observed for ILs containing other cationic cores
under investigation for viscosity and thermal stability.
Electrochemical impedance spectroscopy results of ILs
showed significant deviation from the ideal behaviour due
to the inhomogeneity on the electric double layer formed,
which is typically prominent in viscous ILs with low
conductivity. The improved performance of the ether
group-containing ILs might be related to the presence of an
electronegative oxygen atom, which might create a remote
electronegative region on the cationic core and facilitated the
creation of a denser double layer on the electrode surface and
resulted in the displacement of a large amount of charge on the
electrode.

A comparative study of electrochemical performance of ILs
based on two weakly coordinating anions aluminum
hexafluroisopropoxilate {[Al(hfip)4]

−} and (Tf2N)
− was also

performed in a SC (Roznyatovskaya et al., 2015). The

[Al(hfip)4]
– anion showed less electrode interaction and

improved transport properties compared to (Tf2N)
− anion,

when both were evaluated with carbon electrodes possessing
micro to macropores—to study the effect of pore size-ion size
matching (sieving effect) on capacitance behaviour. Both areal
and specific capacitance values with cells combining electrodes
with different pore sizes and ILs are shown in Figure 4. The
sieving effect is clear in the case of electrodes with micropores. ILs
with larger cation [(N1444)

+] and anions {[Al(hfip)4]
−} displayed

lower capacitance value. The larger size of the {[Al(hfip)4]
–} anion

(1.166 nm) is not able to pass through the microporous carbon
electrode with an average pore size of 0.86 nm - resulting in lower
capacitance than {Tf2N}

− anion. Conversely, there was no
significant difference in the capacitance for ILs with
mesoporous carbon electrodes with larger pores as expected.

Pyrrolidinium and Piperidinium Ionic Liquids
ILs with pyrrolidinium cations having simple alkyl group [(Pyr
1,3)

+, (Pyr 1,4)
+] and ether groups [(Pyr 1, 201)

+] paired with
dicyanamide (DCA) anion have been reported as electrolytes in
SCs with an activated carbon-based composite electrode (Wolff

FIGURE 4 | (A) Specific capacitances of various carbon electrodes in ILs
with [Al(hfip)4]

− and (Tf2N)
− anions. (B) Gravimetric capacitances of various

carbon electrodes in ILs with [Al(hfip)4]
− and (Tf2N)

− anions. Reprinted with
permission from (Roznyatovskaya et al., 2015), Wiley Online Library.
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et al., 2015). It was previously observed that dicyanamide anion
based ILs are typically electrochemically less stable than their
(Tf2N)

− analogues (Zarrougui et al., 2018). Nevertheless, their
high conductivity makes them a good candidate for SC
electrolytes. Table 4 shows the SC performance of some
reported Pyrrolidinium and Piperidinium ILs.

Both pyrrolidinium and piperidinium cationic cores have also
been investigated for SC electrolytes in combination with
tricyanomethanide {[C(CN)3]

–} and Tetracyanoborate
[B(CN)4]

– anions (Martins et al., 2017; Martins et al., 2018). It
was observed that the ILs with pyrrolidinium and
tricyanomethanide combinations showed similar viscosity at
25°C, while (Pip 1,4)[C(CN)3] and (Pip 1,4)[B(CN)4] had
significantly higher viscosities due to relatively larger cation
size. Consequently, pyrrolidinium-based ILs show better
performance as SC electrolytes than the piperidinium
counterpart (Table 3), which showed a significant iR drop
during discharge. The effect of pyrrolidinium ion size on
resulting higher viscosity electrolytes like (Pyr 1,4)(FAP) was
also demonstrated (Sillars et al., 2012) on the capacitance of
SC applying carbon electrodes. It was observed that the higher
viscosity leads to the weakening of the interaction between the
electrode and electrolyte ions. From the above discussion, it is
clear that the viscosity of ILs playing a significant role in
determining the supercapacitor performance, which must be
considered while designing new ILs electrolytes for SC.

Other Ionic Liquids Electrolytes Systems
More ILs have been recently developed and studied in
electrochemical energy storage applications like SC. An
example is ILs derived from dimethylformamide (DMF) type
cation, and tetrafluoroborate anion, (EDMF)(BF4) prepared and
studied as a potential high-capacitance electrolyte for SC by Chen
and co-workers (Chen et al., 2019). The moderate size and quasi-
linear nature of the (EDMF)+ cation increased ion mobility and
helped the formation of a compact electric double layer resulting
in better performance of the SC with (DMF)(BF4) electrolyte.

Most ILs applied as electrolytes in SC contain fluorine in the
anions. A recent study (Khan and Shah, 2020)s synthesized an IL
with a non-fluorinated Furoate anion, in combination with
tetrabutylphosphonium furoate [(P4444)(FuA)], and tested it as
an electrolyte for a SCs. The advantage with some of these
developed ‘non-conventional’ ILs is that high ionic
conductivities and operating potential windows in SC
applications can be reported, comparable to the most applied

high performing ILs like (EMIM)(BF4). In addition, their
synthesis can be simplified. However, there are still setbacks
with the newly developed ILs in thermal stability. For
example; the Furoate anion based ILs like previously
mentioned (P4444)(FuA), are thermally less stable (<250 °C) in
comparison to their fluorinated analogues, which is not
surprising because carboxyl groups can easily undergo
decarboxylation at elevated temperatures (Clough et al., 2013;
Cao and Mu, 2014). Nevertheless, this report opened the
possibility of developing high performing ILs electrolytes by
avoiding fluorinated anions.

The mixing of two neat ILs created a new electrolyte that
behaved differently than the constituent ILs as seen in the study
highlighted in Figure 5 (Van Aken et al., 2015). The use of such IL
mixtures can potentially result in electrolytes with balanced
charge storage, high potential window, and high energy
density (Van Aken et al., 2015).

Another study (Lin R. et al., 2011) explored IL mixtures by
mixing two ILs with the same anion bis(fluorosulfonyl)imide
[(FSI]−], with similar cations [(Pyr 1,3)

+ and (Pip 1,3)
+, which

prevented ordered arrangement of the ions in the crystal lattice to
avoid crystallization. The result was a new IL with a broader
liquid range compared to the constituent ILs. Mixing of the two
ILs extended the liquid range of the newly formed mixture to as
low as −50°C, resulting in the capability to operate a SC with
extended operating temperature from −50 to 100°C.

As suggested so far, the electrochemical performance of these non-
conventional ILs is defined by theirmolecular structure. Therefore, the
structure–performance influence is always worthy of investigation.
Mousavi et al. (2016) reported the effect of ILs structure on the
physical properties, electrochemical stability, capacitance, and specific
energy when applied as electrolytes in SC using carbon electrodes with
uniform and highly interconnected mesopores. ILs containing
different anions (tetrafluoroborate, trifluoromethanesulfonate,
trifluoromethanesulfonimide and most used cations (imidazolium,
ammonium, pyridinium, piperidinium, and pyrrolidinium) were
selected for the study seen in Figure 6.

The electrochemical stability measurements of the ILs showed
that anions have little effect on the cathodic stability of these ILs.
On the other hand, the cation has a significant influence on the
anodic limit of the ILs. Quaternary ammonium ILs showed the
highest anodic stability compared to their aromatic counterparts.
Given cation structure substantially impacts the cathodic stability
of the ILs, non-aromatic quaternary ammonium cationic cores
displayed better stability than their aromatic analogues. The

TABLE 4 | Summary of SC performance of pyrrolidinium and piperidinium ILs.

Entry ILs Electrode Specific capacitance
(F g−1)

Specific capacitance
based on

Energy density
(Wh kg−1)

Ref

1 (Pyr 1,4)[C(CN)3] Activated carbon 27.3 Active mass of electrodes (both electrodes) 4.5 Martins et al. (2017)
2 (Pip 1,4)[C(CN)3] Activated carbon 17.7 Active mass of electrodes (both electrodes 0.9 Martins et al. (2017)
3 (Pyr 1,4)[B(CN)4] Activated carbon 20 Active mass of electrodes (both electrodes 6 Martins et al. (2018)
4 (Pip 1,4)[B(CN)4] Activated carbon 14.8 Active mass of electrodes (both electrodes 1 Martins et al. (2018)
5 (Pyr 1,4)(FAP) Carbon 16.7 Mass of electrode 14.5 Sillars et al. (2012)
6 (N 2224)[N(CN)2] Graphene 42 Mass of active materials (one electrode) 55 Zarrougui et al. (2018)
7 (N 222,Propargyl) [N(CN)2] Graphene 55 Mass of active materials (one electrode) 49 Zarrougui et al. (2018)
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reason is that cations with lower LUMO (lowest unoccupied
molecular orbit) energy levels are prone to reduction. The
investigators observed that alkyl spacer lengths on the cations
had no significant influence on the electrochemical stability of the
ILs. Cation size also had a considerable effect on the viscosity and
conductivity of the electrolyte and the capacitance of assembled SC.
In the study (Mousavi et al., 2016), imidazolium and pyridinium-
based ILs provided the highest cell capacitance, and ammonium-
based ILs offer potential windows much larger than imidazolium
and pyridinium ILs. Although alkyl chain lengths on the
imidazolium cation did not influence their electrochemical
potential window, it significantly influenced the specific
capacitance of SCs with imidazolium ILs (Figure 6).

The increase in the alkyl chain length on the imidazolium cation
(larger cation) decreased the gravimetric specific capacitance due to
the decrease in the concentration of the counterions in the electrode
pores due to the sieving effect of the electrolyte. In addition, the
increased ionic size also reduces the accessible surface area.
(EMIM)(Tf2N) displayed the highest capacitance among the
imidazolium ILs studied (Mousavi et al., 2016). This study clearly
shows that the size of the ILs ions should be considered when
selecting electrode materials for ILs based supercapacitors.

DESIGN STRATEGIES FOR IONIC LIQUIDS
ELECTROLYTE FOR SUPERCAPACITORS

ILs have some advantages over conventional organic and aqueous
electrolytes for SC. However, ILs suffer some setbacks such as

high viscosity, low ionic conductivity, and low degree of ion
dissociation—resulting in SC with lower power than other
electrolytes. From our discussions on different IL structures,
resulting IL physicochemical properties, and their IL–electrode
interactions in SCs, we propose different design strategies applied
to IL development to improve their SC performance.

One of the methods to increase ionic conductivity by
decreasing viscosity of the ILs is through the introduction of
functional groups such as ether groups on the cationic core of the
ILs (Chen et al., 2012; Raj et al., 2018; Raj et al., 2017; Chen et al.,
2016; Jin et al., 2012). The introduction of these functional groups
on the cation can modify the electronic environment of the ILs
due to their highly flexible nature, which increases their free
volume and results in a lower viscosity (Chen et al., 2012).
Another strategy to reduce the viscosity of the ILs is creating
asymmetry in the cation by attaching alkyl substitution in the
relevant positions of the cationic core. For instance, the viscosity
of the pyridinium-based ILs, as previously discussed, can be
significantly improved by attaching alkyl groups on the meta
(3) position of the pyridine ring (Lethesh et al., 2019; Chellappan
et al., 2011).

Anions play a crucial role in determining the overall
electrochemical properties of ILs. Viscosity, conductivity,
thermal stability, and hydrophobicity of the ILs can be tuned
with the selection of relevant anions with delocalized charge or
weak coordination (Timofte and Mudring, 2006). It is worth
noting that although non-coordinating anions can reduce the
viscosity and increase the conductivity of ILs, these anions can
also detrimentally affect the operating potential of ILs (Pandey

FIGURE 5 | Cyclic voltammograms for cells assembled with (EMIM)(Tf2N) and (EMIM)(BF4) mixture with different volumetric percentages of (EMIM)(BF4), including
(A) 0%, (B) 10%, (C) 20%, (D) 50%, (E) 80%, and (F) 100%. Operating potential window in all cases is 2.5 V and rates are 5, 10, and 20 mVs−1. Reprinted with the
permission from (VanAken et al., 2015), Wiley Online Library.
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and Hashmi, 2013). Pairing cations with smaller size anions have
conflicting effects. Smaller ions can increase the conductivity of
ILs because of their higher intrinsic mobility (Tsuzuki et al., 2005;
Yoshida et al., 2007). Conversely, smaller ions can also result in
increased ion-ion Coulombic interactions resulting in high
viscosity. Hence, an optimum ion size pairing is sought to
maximize conductivity and minimize the viscosity of resulting IL.

Improving the electrochemical stability of ILs can be done by
introducing modifications to the cationic core of the ILs. It is
known that quaternary ammonium ILs undergo decomposition
primarily through Hoffman elimination by utilizing the hydrogen
atoms on their β-position (DeVos et al., 2014; Lethesh et al.,
2014a). The replacement of the β-hydrogens can limit the
Hoffman elimination reaction rate and significantly improve
the electrochemical potential window of ILs. However, it is
worth noting that the replacement of the β-hydrogens might
affect other physicochemical properties (depending on the nature
of the substituents) of the ILs. Hence, care must be taken while
selecting the substituents on the β position of the quaternary
ammonium ILs. As discussed earlier, phosphonium cations can
increase the electrochemical stability and operating potential

window of SC (Khan and Shah, 2020). The use of
tetralkylphosphonium cations can also increase the
electrochemical stability window of ILs because of their unique
electrochemical decomposition mechanism (Bradaric et al.,
2003). However, higher viscosity of the phosphonium based
ILs must be taken into account while employing them as an
electrolyte in SC (Del Sesto et al., 2005).

Organic solvent additives or mixtures with ILs can also
optimize the ILs electrolytes for SC applications. Although IL-
organic solvent mixture electrolytes improve capacitance
compared with the neat ILs system (Lian et al., 2016; Siinor
et al., 2013), energy density is sometimes compromised when the
mixture results in a narrower potential window. Therefore,
adding organic solvents with good conductivity and high
anodic stability is expected to improve both capacitance and
energy density in IL-organic solvent mixture electrolyte systems.
Furthermore, even when a high electrochemical potential window
ILs are applied in a SC, the IL may not be fully utilized in both
electrodes of the SC when there is an asymmetry in the
capacitance of the anode and cathode. This imbalance can
result in electrolyte decomposition and can be remedied to

FIGURE 6 | effect of; (A) alkyl chain length on the electrochemical stability window, (B) anion, (C) alkyl spacer length on the specific capacitance values at various
rates for mesoporous carbon electrodes using the IL electrolytes. Reprinted with permission from (Mousavi et al., 2016), American Chemical society.
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achieve high cell voltage by mixing two suitable ILs instead of an
IL-organic solvent mistune.

CONCLUSION AND FUTURE
PERSPECTIVE

This work sought to provide an outlook on the prospects of neat
ionic liquids (ILs) as supercapacitor (SC) electrolytes. We
specifically focus on IL—SC electrolyte design considerations
from our observations and reported conclusions in previous
works towards the performance of neat ILs in SCs.

The chemistry of charge storage reactions involved in different
classes of ILs electrolyte was explained in detail before we
provided design strategies for new IL electrolyte systems for
SCs. The role of ILs physicochemical properties such as
viscosity, ionic conductivity, ionic size, thermal stability,
electrochemical stability (potential window) on the
performance of the SC—in terms of specific capacitance,
energy density was discussed. In addition, we also highlighted
plausible mechanisms of IL cycling stability when paired with
typical carbon-based electrode materials in SC.

The effect of ILs structure and the impact of distinct functional
groups on their physicochemical properties were provided in
detail. Although notable accomplishments were made in ILs
electrolytes for SCs, many challenges are yet to be addressed
in the commercialization of SC with ILs electrolytes. A practical
method for widening the operating potential window and
operating temperature range of the IL-based electrolytes is yet
to be established. We found there is a lack of clear understanding
about the electrochemical degradation mechanism of the ILs
electrolyte in SC, which is a significant roadblock in designing
new ILs with a wide operating potential window.

We suggest more effort is required both experimentally and
theoretically to establish the relation between ILs transport and
thermal properties with respect to its molecular structure, which
will help to design promising ILs electrolytes for electrochemical
energy storage devices. More studies are also required towards the
standardization of the electrochemical characterization methods
for IL electrolytes.

Formulation of electrolytes with a wide electrochemical
stability window is essential for developing high-performance
SC, and ILs displayed massive potential in this regard. Although
ILs can widen the operating potential of the SC devices, the design
of ILs suitable for different operating conditions is essential to
utilize their full potential. For instance, ILs with promising
transport properties at sub-zero temperature and ILs with
long-term thermal stability of more than 200°C are not

available. Hence, it is necessary to focus on developing ILs to
operate in different experimental conditions. Another exciting
research direction will be creating a suitable method for
identifying the best electrode - ILs combination because the
literature data confirmed that the electrode structure could
influence the arrangement of ILs at the interface. The
technique will help to improve the capacitance of the SC
without sacrificing the power and energy density. The
commonly used ILs as an electrolyte in SC have moderate to
high toxicity, and they are not readily biodegradable. The use of
such toxic ILs in a commercial scale can cause environmental and
health issues. Hence, it is vital to develop non-toxic and readily
biodegradable ILs without compromising their electrochemical
and transport properties in large-scale electrochemical
applications.

Despite the unique advantages of ILs electrolytes, their cost
and purification issues are major concerns while using them in
commercial applications. The development of a simple post-
synthesis purification step (or no purification step) and the
use of low-cost raw materials need to be explored to make ILs
a cheaper alternative to organic-based electrolytes. The
purification of ILs is critical because even a trace amount of
impurities (water/halide) decreases the operating potential
window and increases self-discharge. Due to the enormous
increase in the demand for wearable devices, the “ionogel”
electrolyte (neat ILs with polymer skeleton) might be the
future of IL-based electrolytes, providing adequate mechanical
stability improvements. Ionogels can provide flexible SCs with
superior capability because of their high ion conductivity and fast
ion diffusion. There are emerging reports of polymerized ILs
based solid electrolytes for SC. We believe these electrolytes will
continue to be promising because their appreciable conductivity
often comes with notable electrochemical stability.
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