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Carbon capture and storage (CCS) is one approach being studied by the U.S. Department
of Energy to help mitigate global warming. The process involves capturing CO2 emissions
from industrial sources and permanently storing them in deep geologic formations (storage
reservoirs). However, CCS projects generally target “green field sites,”where there is often
little characterization data and therefore large uncertainty about the petrophysical
properties and other geologic attributes of the storage reservoir. Consequently,
ensemble-based approaches are often used to forecast multiple realizations prior to
CO2 injection to visualize a range of potential outcomes. In addition, monitoring data during
injection operations are used to update the pre-injection forecasts and thereby improve
agreement between forecasted and observed behavior. Thus, a system for generating
accurate, timely forecasts of pressure buildup and CO2 movement and distribution within
the storage reservoir and for updating those forecasts via monitoring measurements
becomes crucial. This study proposes a learning-based prediction method that can
accurately and rapidly forecast spatial distribution of CO2 concentration and pressure
with uncertainty quantification without relying on traditional inverse modeling. The machine
learning techniques include dimension reduction, multivariate data analysis, and Bayesian
learning. The outcome is expected to provide CO2 storage site operators with an effective
tool for timely and informative decision making based on limited simulation and
monitoring data.
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1 INTRODUCTION

Carbon capture and storage (CCS) has been proposed as a
strategy to reduce greenhouse gas emissions entering the
atmosphere from stationary sources and thereby help to
mitigate the global climate crisis (Pacala and Socolow, 2004;
Alcalde et al., 2018). For example, the Intergovernmental
Panel on Climate Change (IPCC) estimated that capturing
CO2 at a modern conventional power plant could reduce CO2

emissions to the atmosphere by approximately 80–90% compared
to a plant that does not have the technology to capture carbon
(IPCC report, Metz et al. (2005)). Once the CO2 has been
captured, it must be permanently stored and isolated from the
atmosphere, and carbon storage in geological formations is a
proven method to store CO2 at significant (commercial) scales,
e.g., one million metric tons per year or greater. The U.S.
Department of Energy’s (DOE) National Energy Technology
Laboratory (NETL) has been working with Regional Carbon
Sequestration Partnerships through the Carbon Storage
Program to identify prospective sites within the United States
for the geologic storage of CO2 (DOE-NETL about the carbon
storage program, 2021). Since 2007, NETL has published several
assessments of CO2 storage resource potential in geologic
formations and terrestrial sinks in the United States,
considering the following geologic formations as viable targets
for CO2 storage: saline formations, coal seams, conventional
hydrocarbon reservoirs, basalt formations, and unconventional
oil and gas formations including shales and tight sands (DOE-
NETL carbon storage Atlas, 2015).

The present work focuses on storage in saline reservoirs, which
provide significantly larger storage capacity, are globally more
ubiquitous (Ji and Zhu, 2015) and have few competing uses than
hydrocarbon reservoirs. Although depleted oil and gas reservoirs
may provide important intermediate-scale storage, any CCS-
activity, at a scale sufficient to impact the carbon problem
(e.g., billions of metric tons), will necessarily involve large-
scale CO2 injections into deep saline aquifers (e.g., multiple
projects inject one million metric tons per year or greater).
However, CCS projects generally target “green field sites,”
where there is often little characterization data and therefore
large uncertainty about the petrophysical properties and other
geologic attributes of the storage reservoir (Brandt et al., 2014;
Celia et al., 2015). Uncertainty associated with predicting
subsurface response to CO2 injection is a key challenge to
project developers seeking to secure financing, permits, and
social license to inject CO2 into the storage reservoir
(Namhata et al., 2016; Chen et al., 2020). Due to the inherent
uncertainty about the storage reservoir, ensemble-based
approaches are often used to forecast multiple realizations
prior to CO2 injection to visualize a range of potential
outcomes. In addition, monitoring data during injection
operations are used to update the pre-injection forecasts and
thereby improve agreement between forecasted and observed
behavior. Today, forecasting the subsurface response to CO2

injection requires detailed three-dimensional (3D) geologic
models coupled with numerical reservoir simulation, which are
labor- and time-intensive and require specialists with

backgrounds in petrophysics, geology, and reservoir
engineering. Providing CO2 storage site operators and
regulators with rapid forecasting tools for timely decision
making is essential to addressing these challenges to CCS
project development and management. Delivering on this need
requires transformational changes in how we predict subsurface
responses to CO2 injection and update those predictions using
monitoring measurements.

Different methods have been employed to forecast geological
carbon storage scenarios including analytical solutions and
numerical simulations. Analytical methods are useful in
providing quick evaluations with minimum input data and
they are free from numerical artifacts (Celia et al., 2005; Guo
et al., 2014; Qiao et al., 2021). Numerical simulations, on the other
hand, have been widely used in large-scale projects (Pawar et al.,
2009; Humez et al., 2011). However, numerical approaches (e.g.,
compositional reservoir simulation) usually require significant
computational time and detailed geological data and
measurements that may not always be available. In this study,
we use machine learning techniques to address some of the
challenges of numerical methods.

The conventional numerical method for predicting CO2

distribution in a reservoir relies heavily on inverse modeling
(history matching, calibration) to constrain uncertain parameters
in complex reservoir simulation models (Bianco et al., 2007;
Oliver and Chen, 2011; Doughty and Oldenburg, 2020). This
inversion-based prediction approach has limitations for rapid
integration of observation data and providing timely decision
support due to the following reasons: 1) Model inversion is
computationally expensive and can require tens of thousands
of expensive reservoir model simulations. Not all these
simulations can be conducted concurrently and thus cannot
take full advantage of contemporary parallel computing
resources (each forward simulation may be parallelizable and a
set of forward simulations may be conducted concurrently, but
most inverse methods are essentially iterative and cannot achieve
full parallelism). 2) Model inversion can be numerically ill-posed
resulting in poor predictions when the number of parameters is
greater than the number of independent observations, which is
usually the case in geological carbon storage simulation. 3) Model
inversion needs to be repeated when incorporating new
observations. 4) Reservoir simulation models are based on
geologic models, which may artificially constrain simulations
and are slow and expensive to update with new field (as
opposed to operational) data.

To address these challenges, our research aims to develop
machine learning (ML) techniques with a potential to provide
significant improvements to the conventional history matching-
based forecasts, thus enhancing the timeliness and accuracy of
information provided to the operator. This paper describes our
methods and analyzes their performance in predicting the CO2

plume and pressure distribution in the storage reservoir at a
commercial-scale storage project. Our project is part of a large
initiative called SMART (Science-informedMachine Learning for
Accelerating Real Time Decisions in Subsurface Applications)
funded by U.S. Department of Energy with the goal to enable
better decisions in CO2 storage operations.
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2 MATERIALS AND METHODS

We propose a Learning-based Inversion-free Prediction (LIP)
framework that produces fast prediction with uncertainty
quantification via integrating observations, based on parallel
forward simulations. The observations can be streaming
measurements that are obtained from point locations
continuously or near-continuously in time such as pressure
and CO2 saturation data from a well, and they can also be a
saturation distribution data from a time-lapse 3D seismic survey
(4D seismic survey). In this study, we consider the former, the
point data discrete in locations but continuous in time. The key
idea of the LIP framework is to circumvent the challenge of
inverse modeling by precomputing an ensemble of unconstrained
forward simulations and then using ML methods to learn the
relationship between simulated observation and prediction
variables. Once the ML model has learned the relationship, it
can be used to update the prediction of future system behavior
from its prior distribution to the posterior distribution by
integrating actual observed data. When additional observations
are available, we retrain the ML model to update the observation-
prediction relationship by extracting the corresponding
simulated observation and prediction variable samples from
the prior sample set. Because the ML model training is very
fast (a few seconds by using LIP) and the incorporation of new
observations does not require extra reservoir simulations (by
extracting the simulated samples from the prior sample set), the
LIP method enables rapid data assimilation and timely decision
support. The new observations can be the transient data from the
same location/well or can be the data from different locations or
even different types of data. As long as these observation variables
have been simulated in the forward model runs, there is no need
in the LIP framework to perform additional forward simulations
when incorporating the new observations.

The key of LIP is to establish an observation-prediction
relationship from prior samples in a reduced dimension to be
able to estimate posterior prediction distributions for given
observations. Specifically, LIP consists of four steps:

1 Generating prior samples of observation and prediction
variables by running forward models based on the prior
distribution of model parameters;

2 Dimension reduction of the simulated observations and
predictions;

3 Establishing a statistical relationship between observation and
prediction in the reduced dimension;

4 Using Bayesian inference to calculate the posterior distribution
of the prediction based on the statistical model and by
integrating the observed data.

Steps 1-3 correspond to the training stage, where the
observation-prediction relationship in the reduced dimension
is learned from unconstrained forward simulations. Step 4
corresponds to the prediction stage, where the posterior
distribution of the prediction is deduced from the observed
data after back transformation to its original high-dimensional
space. The LIP method can be generally applied to geological

carbon storage problems. In this study, a clastic shelf model was
considered as the geological model for a demonstration because
the clastic shelf environment exhibits the greatest CO2 storage
rate in the model comparison study of Bosshart et al. (2018).

2.1 Model Description and Generation of
Prior Samples
To meet the goal of producing results relevant to commercial-
scale CCS operations and meanwhile being able to perform the
model simulations in a reasonable time, a 3D model domain was
designed at a resolution of 211 by 211 with 30 layers,
i.e., 1,335,630 grid cells in total, where each cell has a size of
500 feet long, 500 feet wide, and 10 feet thick. The model has a flat
structure and the storage formation is 4,000 feet deep. The model
contains three facies: high-quality reservoir, low-quality reservoir,
and cap rock. The top two layers of the model were assigned cap
rock (shale) facies and they were given shale porosity and
permeability values based upon previous work by Cavanagh
and Wildgust (2011). In this study, we considered the
uncertainty of porosity and permeability in the reservoir and
generated their realizations in the following way.

All the realizations have the same rock facies geometry, but the
porosity-permeability distributions differ. We sampled the
porosity-permeability parameter space to generate the
realizations. The Energy & Environmental Research Center at
the University of North Dakota maintains an Average Global
database (AGD) of paired porosity and permeability
measurements for a host of lithologies, facies, and depositional
environments (currently 26,700 + measurements) (Gorecki et al.,
2009). The current work used a clastic shelf depositional
environment and porosity-permeability paired samples specific
to that environment. We first generated porosity realizations
using Gaussian random function simulation with a variogram
of 5,000 feet in the major and minor directions and 20 feet in
the vertical direction. Permeability realizations were generated
from the porosity-permeability cross-plots based on the derived
relationship between these two variables from the AGD. We
created 100 geological realizations (i.e., geomodels) using
Schlumberger’s Petrel software suite that reflect the variation in
porosity and permeability. The ensemble can be envisioned as a
stratified sample, where the number of realizations is proportional
to the probability distribution for porosity. For example, we
sampled seven percentiles of p05, p10, p25, p50, p75, p90, and
p95 to represent the low to high porosity/permeability and for each
percentile we have the following number of realizations, 10, 15, 22,
23, 16, 9, and 5, respectively. Figure 1 shows the porosity and
permeability fields of layer three for one realization from the p25,
p50, and p75 geomodels. We can see that these geomodels have a
large variation in porosity and permeability.

For each geomodel, we performed a full equation-of-state
compositional simulation (physics including convective and
dispersive flow, residual gas trapping, CO2 dissolution in
aqueous phase, thermal capability) for 10 years using CMG-
GEM (v2019), which is a reservoir simulator for
compositional, chemical and unconventional reservoir
modelling. The model was simulated using closed lateral and
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vertical boundaries. The temperature and pressure regimes for
the simulation at 4000-foot depth were 120.778 4°F and
1,800.93 psi, respectively. The temperature and pressure were
defined for each layer. They followed a linear pressure gradient of
0.43 psi/ft and a linear temperature gradient of 0.019 67°F/ft. Four
injection wells—located regularly at the grid cells (71, 71, 3–30)
(71, 141, 3–30), (141, 141, 3–30), and (141, 71, 3–30),
respectively—inject CO2 into the reservoir with a target mass
injection rate of two million metric tons per year across all four
wells. We simulated 10 years of injection with a 20 million metric
tons CO2 injection target (2 million metric tons per year ×
10 years), to represent the earliest years of a commercial-scale
storage project, during which CO2 plumes are expected be the
least predictable (i.e., the greatest rates of change per unit time).
Maximum bottom hole pressure (BHP) constraint for each
injector was Pf � 0.7 psi/ft. If BHP ≤ Pf, then CO2 will
continue to flow into the formation. However, if BHP > Pf,
then the injection rate for that well will slow down. We saved the
simulation outputs of CO2 plume and pressure distribution of the
entire 3D domain at 32 time steps, i.e., monthly for years 1 and 2
and then annually for years 3–10. Each simulation takes about
7–10 h on average using 4–10 cores on an Intel Xeon Scalable
(Cascade Lakes) CPU. The lengthy simulation time makes it
really difficult, if not impossible, to enable conventional
inversion-based history matching for timely forecasting.

In this study, we use the LIP method to predict the CO2 plume
and pressure distribution in layer 3 (the top model layer of the
storage reservoir immediately below the cap rock layer) after
10 years of injection based on the saturation and pressure
observations from the four injection wells in layer 3. For
example, the prediction variables for pressure is the CO2

pressure distribution at each of the 211 by 211 grid cells in
layer 3 (44 ,521 variables in total) at year 10, and the observation
variables are the four time-series of pressure-transients at the four
wells in layer 3. We performed five case studies, depending on the
duration of the observation period and thus the look-ahead
period. We summarized the five cases in Table 1. Specifically,
we forecasted pressure distribution in year 10 from the
perspective of year 1, 2, 5, 7 and 9. In each case, we used only
the data (both the simulated and observed data of observation
variables) available up to that time, which corresponds to varying
the look-ahead period from 9 years (i.e., the perspective of year 1
looking ahead to year 10) to 1 year (i.e., the perspective of year 9
looking ahead to year 10). For example, in Case I, we used 1 year
of pressure-transient observations (12 time steps×4 wells � 48
observation variables) in layer three to predict the pressure
distribution at each of the 211 by 211 grid cells in layer three
at year 10; and in Case V, we used 9 years of observations (31 time
steps×4 wells � 124 observation variables) to predict the pressure
distribution in year 10. These five case studies were designed to

FIGURE 1 | One realization of porosity (top) and permeability (bottom) fields of layer three for geomodels p25, p50, and p75. These three models have the same
rock type geometry; the models p25, p50, and p75 correspond to low, mid, high porosity, respectively. The porosity color scale is a fraction from 0 to 0.4 (0–40%
porosity) and the permeability color scale is the logarithm (base 10) of the permeability in millidarcys
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evaluate LIP’s accuracy, efficiency, and capacity to incorporate
streaming observations to improve prediction.

These are challenging applications because of the large
uncertain domain and the limited 100 geomodels and
simulation samples. To evaluate LIP performance, we took one
geomodel as a synthetic “truth” and used the other 99 geomodels
to learn the observation-prediction relationship in above Steps
2–3. The corresponding pressure plume of the synthetic
geomodel served as the reference against which we assessed
our prediction results. To investigate the robustness of the LIP
method for predicting the CO2 plume and pressure field with
different patterns, we made three choices of the synthetic
geomodels corresponding to low, mid, and high porosity,
i.e., picking one realization from the p25, p50, and p75
geomodels, respectively. For each synthetic case, we used the
selected geomodel as reference and the other 99 geomodels for
learning. In the similar manner to predict the pressure, we used
the CO2 saturation data in the four wells to predict the CO2 plume
in layer 3 after 10 years of injection. Figure 2 shows the 100
samples of the CO2 pressure and saturation profile in the four
wells over 10 years at the 32 time steps where we highlighted the
three samples chosen as the synthetic observed data in the three
synthetic cases (each dot in the highlighted line represents one

time step). The figure indicates that the difference of the pressure
and saturation among the samples is fairly large and our selected
synthetic “truth” has a good representation of the low, mid, and
high pressure/saturation. The small number of training data (99
geomodels) and the limited and non-smooth observation-
transient data (monthly in first 2 years and annually in last
8 years) make the prediction problem rather challenging. In
the following subsections of Section 2, we explain the key
Steps 2-4 of the LIP method to solve this problem. In Section
3, we demonstrate how this problem was addressed using LIP.

2.2 Dimension Reduction
The prediction variable (denote as h) here is a spatial distribution
and the observation variables (denote as d) are four time series,
which have spatial and temporal correlations, respectively. When
the variable dimensions are highly correlated with each other,
multicollinearity occurs (Daoud, 2017). Multicollinearity results
in numerical issues during model fitting and degrades predictive
performance of the statistical model. One solution for addressing
multicollinearity is dimension reduction. Dimension reduction
identifies degrees of freedom that capture most of the variance in
the data. Therefore, performing statistical analysis in the reduced
dimension removes the multicollinearity and facilitates the model

TABLE 1 | Definition of the five case studies and the corresponding LIP method’s prediction performance. In the five cases, the prediction variables are the same which are
the target we want to predict and the observation variables are different depending on the duration of the observation period. We investigate LIP’s predictive capability
(measured by mean absolute error (MAE)) in incorporating different number of observation data.

Prediction variable: CO2 pressure distribution at each grid cell in layer three at year 10

Observation variable: CO2 pressure observations from the 4
injection wells in layer 3 with different duration of observation period

Case I Case II Case III Case IV Case V
1 year of

observations
2 years of

observations
5 years of

observations
7 years of

observations
9 years of

observations

MAE of LIP predicted pressure (synthetic “truth” p50) 14.85 psi 11.59 psi 10.77 psi 8.05 psi 7.77 psi

FIGURE 2 | The 100 simulation outputs of CO2 pressure and saturation profile in the four wells over 10 years at 32 time steps (identified by dots in the colored lines)
where the first 24 time steps are monthly data and the last eight time steps are annual data. The highlighted three colored lines, which correspond to one realization of
geomodels p25, p50, and p75 shown in Figure 1, were used as “synthetic” observed data.
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fitting. Additionally, dimension reduction reduces the number of
variables and thus reduces the required number of samples, which
improves the computational efficiency and enhances the model
reliability.

We use principal component analysis (PCA) for dimension
reduction. PCA is a multivariate analysis technique that applies
an orthogonal transformation to convert a set of samples of
possibly correlated variables into a set of values of uncorrelated
variables, called principal components. Typically, the first a few
components of the PCA decomposition explain most of the
variance of the data. PCA is commonly used for
dimensionality reduction by projecting each data point onto
only the first few principal components to obtain lower-
dimensional data while preserving as much of the data’s
variation as possible. The first principal component can
equivalently be defined as a direction that maximizes the
variance of the projected data. The ith principal component
can be taken as a direction orthogonal to the first i − 1
principal component that maximizes the variance of the
projected data.

Since our observation variables are from multiple sources
(i.e., four injection wells), we use a mixed PCA to pool data
together and generate a reduced dimensional projection of the
combined data. First, a standard PCA is performed on each of the
data source (i.e., the pressure transient from each injection well)
to obtain the largest singular values. Next, each data source is
normalized according to its first singular value; this accounts for
any difference in scales amongst the data sources. Last, the
normalized data inputs are concatenated and the standard
PCA is applied to this final matrix. After dimension reduction,
we obtain observation variables df and prediction variables hf,
respectively, in the reduced dimension. PCA is a bijective
operation, so the original high-dimensional variable can be
recovered uniquely by undoing the projection.

2.3 Establishing the Statistical Relationship
The relationship between df and hf in the reduced dimension can
be nonlinear which challenges the statistical model learning. We
first use canonical correlation analysis (CCA) (Yang et al., 2021)
to linearize the relationship and simplify the model fitting. CCA is
a multivariate analysis method that can be applied to transform
the relationships between pairs of vector variables into a set of
independent linearized relationships between pairs of scalar
variables. The resulting linear combinations are denoted as dc

and hc, and called the canonical variates of df and hf. The
canonical transformation is found through the eigen-
decomposition of the sample covariance matrix and this CCA
transformation is reversible. If dc and hc in the canonical space are
nearly linearly correlated, a linear model can be used to simulate
their relationship. If after CCA, the relationship of dc and hc is still
not quite linear, we can use advanced ML models such as neural
networks for regression.

2.4 Bayesian Inference of the Prediction
We use Bayesian inference to estimate predictions. But unlike the
traditional workflow which uses Bayesian methods to quantify
uncertainties of model parameters first and then infer prediction

uncertainties (Lu et al., 2017), we use Bayesian methods to
calculate the posterior distribution of the predictions directly.
Based on Bayes’ rule, the posterior distribution of a prediction
variable h for some observed data dobs is

p h|dobs( )∝ L h|dobs( )p h( ), (1)

where p(h) is the prior distribution and L (h|dobs) is the likelihood
function. PCA and CCA enable reducing a set of high-
dimensional variables (d, h) to a set of low-dimensional and
linearly correlated variables (dc, hc). We first estimate the
posterior distribution p(hc|dcobs) and then transform hc back
to its original space h. In the canonical space, p(hc|dcobs) can
be estimated by

p hc|dc
obs( )∝ L hc|dc

obs( )p hc( ). (2)

We use a linear model G to simulate the relationship between
dc and hc, i.e., dc � Ghc. By assuming a Gaussian likelihood as
commonly done in the CCS community (Oliver and Chen, 2011),
L(hc|dcobs) can be formulated as

L hc|dc
obs( ) � exp −1

2
Ghc − dc

obs( )TC−1
dc Ghc − dc

obs( )( ). (3)

where Cdc is the covariance matrix of the observation error. In
this work, we are considering a synthetic case where the observed
data is from one geomodel, so Cdc here is calculated as the
covariance of the residuals from the linear model fitting.

Through normal score transformation based on the sample
mean �h

c
prior and the sample covariance Chc calculated from the

prior samples of hc, we obtain a Gaussian prior of hc in the
transformed space. Since the prior and the likelihood of hc are
both Gaussian, its posterior is also Gaussian and the posterior
mean ~h

c
and posterior covariance ~Chc can be analytically

estimated by

~h
c � �h

c

prior + ChcG
T GChcG

T + Cdc( )−1 dc
obs − G�h

c

prior( ), (4)

~Chc � GTC−1
dc G + C−1

hc( )−1. (5)

An advantage of the Gaussian process regression is that a
Gaussian distribution is uniquely defined by its mean and
covariance and sampling a Gaussian distribution is
straightforward. Then, based on Eqs 4, 5, we generate
posterior samples of hc directly. By undoing the normal score
transformation followed by the back transformation of CCA, we
obtain posterior samples of hf. Next, after back transformation of
PCA, we obtain the posterior samples of prediction quantity h in
its original space. Based on these h samples, we then estimate
posterior prediction distribution.

3 RESULTS

In this section, we present the results of applying the LIP
framework to the synthetic simulation cases to illustrate the
LIP method and evaluate its prediction performance. We start
with the most data-constrained case (Case V in Table 1) using
9 years of pressure transient data from the wells to predict the
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pressure distribution in year 10. Then, we discuss the results of
additional cases (Case I – Case IV in Table 1) by incorporating 1,
2, 5, and 7 years of observations to assess the sensitivity of the LIP
prediction performance to the available monitoring data and to
evaluate the capability of LIP to incorporate additional
observations for improving the prediction. Lastly, we show the
results of applying the LIP framework to the CO2 plume
prediction.

In the following, we discuss the results using 9 years of
pressure observations. We first use the synthetic case of p50 to
demonstrate the LIP method, and then we analyze the prediction
performance in detail for the three synthetic cases. In the LIP
framework, after we generate the model simulation data from the
geomodels, we perform the dimension reduction of the
observation and prediction variables based on the simulation
samples. Figure 3 shows the scree plots of the PCA (a line plot of
cumulative variance versus number of principal components used
to determine the number of principal components to keep in the

PCA). We can see that the dimensions of both observation and
prediction variables can be greatly reduced by keeping the first
few components with a little information loss. Here, the
observation variables are 9 years of pressure data from the
four wells (i.e., 31 × 4 � 124 variables), and the prediction
variables are the pressure distribution in each grid cell of layer
three at year 10 (i.e., 211 × 211 � 44 ,521 variables). Figures 3A,B
indicate that the first ten principal components capture 99% of
variation in the observation variables d and that the first ten
principal components capture 98% of variation in the prediction
variables h. Based on these results from the dimension reduction
step, for both variables we keep their first ten principal
components and then establish the statistical relationship of d
and h in their reduced ten dimensional space. Figures 3C, D,
using one realization as a demonstration, indicate that keeping
the first ten principal components we are able to recover the target
pressure field with minor difference from its original pressure
distribution where the mean absolute error is about 1.6 psi.

FIGURE 3 | Scree plots of (A) observation variables d and (B) prediction variables h in PCA. (A) indicates that 10 principal components (PCs) can capture over 99%
variation of the observation variable d; (B) shows that 10 PCs can capture about 98% variation of the prediction variable h. (C) CO2 pressure field from the original data
and (D) the recovered pressure field from inverse PCA using the preserved 10 PCs. The x- and y-axes for the pressure fields are the model x- and y-coordinates and the
color map is pressure in psi from 1800 to 2000 psi.

FIGURE 4 | Scatter plots of the canonical variates for the observation variables (dc) and the prediction variables (hc) for the first principal component (left) and the
second principal component (right), together with the observation data (dobs) in the canonical space after CCA.
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Next, in the reduced observation-prediction dimensions, we
perform the CCA for linear transformation. The scatter plot of
Figure 4 indicates that after applying CCA, the canonical variates
dc and hc have a strong linear correlation with coefficients of 0.99
and 0.92 for the first two principal components, respectively. The
coefficients for the remaining eight principal components are also
high, above 0.8 (results are not shown here). This suggests that a
linear regression model can be established to simulate the
relationship of dc and hc. In this study, both observation and
prediction variables are the same type of quantity (i.e., CO2

pressure) with smooth variation, so it is not very surprising
that they show strong linear correlation here.

Lastly, we use Bayesian inference to calculate the mean and
variance of the Gaussian posterior distribution of the prediction
variables in the transformed space, p(hc|dcobs), according to Eqs 4,
5. With the calculated mean and variance, we draw posterior
samples from this Gaussian distribution, and then do a series of
back transformations to transform those posterior samples in the
space hc back into their original space h. We start by undoing the
normal score transformation, then the canonical back
transformation, and lastly the PCA back transformation into
the original space.

The final prediction results of h are summarized in Figure 5.
Although in this p50-case the prior mean is already similar to the
synthetic “truth” in capturing the pressure field patterns (due to
the way we generated the porosity and permeability realizations
where the p50-geomodel corresponds to 50% percentile of the
porosity probability distribution), the LIP method, by
incorporating the observations from the four wells, still greatly
improves the prediction accuracy. The resulted posterior mean
pressure field is more like the synthetic “truth” compared to the
prior mean, with a coefficient of determination (R2) of 0.99, and

the mean absolute error (MAE) of the posterior mean is 7.77 psi
which is about one fourth of the MAE of the prior mean of
26.58 psi. Especially in the region of pressure buildup around the
four wells, the posterior estimation accurately captures the high
buildup pressure in the two wells on the right hand side and it also
delineates the pressure movement and front more precisely
compared to the prior estimate, which results in a uniformly
small posterior error in the entire domain.

Following the similar steps, we applied the LIP method to the
other two synthetic cases. Figure 6 shows the results for the p25
case. The figure indicates that the prior mean pressure map is
dramatically deviated from the synthetic “truth” in this case.
Because of the low porosity and permeability of the p25
geomodel, the pressure is relatively large, up to 2,800 psi
around the injection wells. The prior mean significantly
underestimates the pressure with a MAE of 108 psi and the
prior estimate does not capture the pressure movement. On
the other hand, the posterior mean produced by LIP not only
accurately delineates the pressure front, but also identifies that the
two wells at the bottom have larger pressure buildup, resulting in
a smaller MAE of 42.27 psi. Compared to the prior, the posterior
mean pressure field is much more like the synthetic “truth” with a
R2 of 0.96 and the posterior error field is also much smaller.
Figure 7 summarizes the results of the p75 case. Due to the high
porosity and permeability of the p75 geomodel, the pressure is
relatively small in this case, below 2,100 psi. As the prior mean is
an average of the other 99 geomodels, it significantly
overestimates the pressure with a MAE of 75.4 psi. The LIP
method, after effectively incorporating the observations from
the four wells, dramatically reduces the MAE to 4.76 psi which
is only 6.3% of the prior MAE. Furthermore, the posterior mean
pressure field is very similar to the synthetic “truth” with a R2 of

FIGURE 5 | Evaluation of LIP-predicted CO2 pressure after 10-years of injection based on 9 years of pressure observations in four wells. Top, left-right: synthetic
“truth” of CO2 pressure distribution (psi) in year 10 for model p50; cross-plot of the synthetic “truth” and LIP-predicted pressure distribution; mean pressure distribution
(psi) from the prior samples; and LIP-estimated posterior mean after incorporating 9 years of observations; Bottom: absolute prediction error and the standard deviation
(std) from the prior samples and LIP-generated posterior samples.
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0.98 resulting in uniformly small posterior errors in the entire
domain.

Although these three synthetic cases show dramatically
different pressure distributions and patterns, e.g., within the
region of pressure buildup caused by CO2 injection, the
difference between the cases of p25 and p75 is approximately
100–800 psi, all the cases indicate that the LIP method greatly

improves estimation accuracy compared to the prior mean.
Additionally, LIP significantly reduces the predictive
uncertainty by producing a smaller posterior standard
deviation field than the prior standard deviation field, which
gives not only an accurate but also a confident forecasting. As
shown in the last plots of Figures 5, 6, 7, the posterior standard
deviation of the pressure field is close to zero in the entire domain.

FIGURE 6 | Evaluation of LIP-predicted CO2 pressure after 10-years of injection based on 9 years of pressure observations in four wells. Top, left-right: synthetic
“truth” of CO2 pressure distribution (psi) in year 10 for model p25; cross-plot of the synthetic “truth” and LIP-predicted pressure distribution; mean pressure distribution
(psi) from the prior samples; and LIP-estimated posterior mean after incorporating 9 years of observations; Bottom: absolute prediction error and the standard deviation
(std) from the prior samples and LIP-generated posterior samples.

FIGURE 7 | Evaluation of LIP-predicted CO2 pressure after 10-years of injection based on 9 years of pressure observations in four wells. Top, left-right: synthetic
“truth” of CO2 pressure distribution (psi) in year 10 for model p75; cross-plot of the synthetic “truth” and LIP-predicted pressure distribution; mean pressure distribution
(psi) from the prior samples; and LIP-estimated posterior mean after incorporating 9 years of observations; Bottom: absolute prediction error and the standard deviation
(std) from the prior samples and LIP-generated posterior samples.
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The resulted accurate and credible prediction of the CO2 pressure
distribution in the reservoir is critical for risk assessment and to
inform decisions made by site operators.

To evaluate the LIP’s ability to incorporate additional
observations for prediction improvement and to investigate the
sensitivity of prediction performance to the number of observations,
we designed a series of numerical experiments (Case I – Case V in
Table 1) where we incorporate differing numbers of years of
pressure data from the wells. The results of incorporating 1, 2, 5,
and 7 years of observed data to predict pressure distribution in year
10 are presented in Figure 8. As shown in the figure, incorporating
more years of observations produces a posterior mean pressure field
that gets asymptotically closer to the synthetic “truth” in Figure 5.
The MAE, as summarized in Table 1, gradually decreases from
14.85 psi (incorporating 1 year of data), to 11.59 psi (incorporating
2 years of data), to 10.77 psi (incorporating 5 years of data), to
8.05 psi (incorporating 7 years of data), and finally to 7.77 when
incorporating 9 years of observations for forecasting. In
incorporation of only 1 year of data, the posterior mean is
already able to capture the major patterns and movement of the
pressure field; additional years of data gradually refine the detail of
the predicted pressure map. This indicates that the LIP method can
effectively extract the information from the limited simulation data
for learning the observation-prediction relationship and
incorporates the observed data for updating the prediction from
the unconstraint prior estimation to more accurate posterior
estimation.

Note that the incorporation of these additional observations in LIP
does not require extra reservoir simulations. LIP incorporates new
observation data by performing the analysis in Steps 2-4 of Section 2
based on the corresponding observation variable simulations from
the prior sample set. The statistical analysis in Steps 2-4 is very fast
which takes a few seconds in this study. The ability of LIP to rapidly
generate new forecasts promises fast integration of streaming
observations for timely forecasts in field operation. Furthermore,
the additional data are not necessarily the transient data from the
same well with a longer period of observations, they can also come
from other wells and can be different types of measurements. As long
as these additional observation variables have been simulated in the
forward runs, there is no need to perform extra simulations when
incorporating the new data.

In addition to predicting the pressure distribution, we also
applied the LIP method to predict the CO2 plume in the storage

reservoir. Figure 9 shows the prediction results of CO2

distribution in year 10 after incorporating 9 years of
observations from the four wells for the three synthetic
cases. The three cases show dramatically different CO2

distributions, e.g., within the footprint of the CO2 plume,
the difference in gas saturation between the cases of p25 and
p75 is approximately ±0.35. Despite the significantly diverse
CO2 distributions, the posterior mean produced by LIP can still
capture their major patterns. The prior mean shows that the
footprints of CO2 around the four wells are similar to each
other, however, the posterior mean from LIP depicts that the
CO2 plume is actually different around different wells and the
resulting patterns are much closer to the synthetic “truth”.
Additionally, the prior samples display a large standard
deviation around the wells. After effectively incorporating
the observations, the posterior standard deviation is greatly
reduced, showing more confident prediction. Although LIP
improved the prediction accuracy and credibility by producing
a better posterior mean and a smaller standard deviation than
the prior estimation, its prediction of CO2 plume is relatively
poor compared to the prediction of pressure distributions,
where the posterior pressure field is more like the synthetic
“truth”. One reason is that CO2 field is less continuous than the
pressure field, i.e., the pressure field extends outwards from
each of the four wells and forms a continuous extent that covers
most of the model domain, whereas the CO2 plumes around
each of the four wells are smaller in extent and more irregularly
shaped. So after dimensional reduction, the CO2 plume may
lose more information for statistical learning. Moreover, the
observation-prediction relationship of CO2 gas saturation is
more complicated than the relationship of the pressure, and the
current study is limited to 99 training samples for learning the
relationship which may not be enough. Additionally, we only
have observations from the four wells at 31 time steps; these
limited simulation data and point observed data are far less
than enough to accurately delineate the CO2 footprint in such a
large and heterogeneous domain.

4 DISCUSSION

In this paper, we provide an efficient and effective prediction
method (LIP)—using a set of machine learning techniques—to

FIGURE 8 | LIP estimated posterior mean of the CO2 pressure distribution in year 1after considering 1, 2, 5, and 7 years of pressure observations (obs) in four wells.
The synthetic “truth” is in Figure 5.
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perform accurate, timely forecasts for geological carbon storage
based on a limited number of measurements and a few model
simulations. We use three different synthetic cases demonstrate
that the LIPmethod can greatly improve CO2 plume and pressure
prediction accuracy and reduce predictive uncertainty by
effectively incorporating observations. The proposed LIP
method runs very fast; after obtaining prior samples, it takes a
few seconds to perform the entire process—from dimension
reduction, to canonical correlation analysis, to Bayesian
inference for prediction. The prior samples are independent
and can be performed completely concurrently on parallel
computing platforms; with enough processors available, the
generation of the hundred prior samples would only require
the same wallclock time as one forward reservoir simulation. LIP
is also data efficient; based on 99 prior samples, it can effectively
learn the observation-prediction relationship and accurately infer
the posterior prediction distributions by incorporating the
observed data. LIP uses estimated observation-prediction
relationship to infer predictions. In this study, we used PCA
followed by CCA to build a linear relationship in the reduced
canonical space and then use the Gaussian linear regression for
predictions. In situations when the relationship is nonlinear and
multimodal, we can use Bayesian neural networks for regression.
To avoid extrapolation, LIP requires the observation data to lie
inside of the prior samples. We can adjust the prior distribution
and increase the prior sample size to satisfy this requirement.

LIP has a considerable potential to fundamentally change how
timely decisions are made about CO2 storage operations.
Bypassing the conventional workflow of history matching and
then forward simulations, LIP provides fast updating forecasts of
CO2 plume and pressure distributions from streaming
observations, thus providing operators with early warning of
off-normal behavior and more time to implement mitigation
measures. In our future work, we will apply LIP to real
measurement data from the field, and deploy it to CO2 storage
operators for fast decision making.
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