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Insulator is an important equipment of power transmission line. Insulator icing can seriously
affect the stable operation of power transmission line. So insulator icing condition
monitoring has great significance of the safety and stability of power system.
Therefore, this paper proposes a lightweight intelligent recognition method of insulator
icing thickness for front-end ice monitoring device. In this method, the residual network
(ResNet) and feature pyramid network (FPN) are fused to construct a multi-scale feature
extraction network framework, so that the shallow features and deep features are fused to
reduce the information loss and improve the target detection accuracy. Then, the full
convolution neural network (FCN) is used to classify and regress the iced insulator, so as to
realize the high-precision identification of icing thickness. Finally, the proposed method is
compressed by model quantization to reduce the size and parameters of the model for
adapting the icing monitoring terminal with limited computing resources, and the
performance of the method is verified and compared with other classical method on
the edge intelligent chip.

Keywords: intelligent perception, transmission line, icing monitoring, power depth vision, edge computing, model
quantification, power grid safety

INTRODUCTION

The importance of safe and stable operation of power grid to the development of the national
economy is self-evident. With the deepening of power grid interconnection and the gradual
implementation of power market, the operation environment of power grid is more complex,
which puts forward higher requirements for the stability and reliability of power grid (Ruszczak and
Tomaszewski, 2015; Liu et al., 2020; Wang et al., 2020). Due to the vast territory, diverse climate,
complex terrain and other factors, power grids in China are often damaged by various natural
disasters, resulting in large-scale power outages. As an important equipment of transmission lines
and substations, insulators have the functions of electrical insulation and mechanical fixation (Liu
et al., 2017; Yang et al., 2019). Due to ice and snow condition, the external insulation performance of
insulators will be significantly reduced. Severe icing may lead to the distortion of insulator potential
distribution, flashover of insulator, line trip and outage, which brings great challenges to the safe and
stable operation of power grid. In 2008, the south of China suffered extremely serious ice disaster,
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which led to a large area of ice flashover of insulators in many
transmission lines and substations, resulting in a series of serious
accidents such as tripping and equipment damage (Tiannan and
Dongxiao, 2016; Wang et al., 2021). Since then, although the
degree of icing disaster is less than that in 2008, the destructive
impact of ice disaster weather on insulators and even power grid
has always existed. Therefore, it is urgent to carry out insulator
icing perception research to guide the production, operation and
maintenance, find and eliminate hidden dangers in time, so as to
improve the safety and stability of the power grid operation (Wei
and Caifei, 2019; Li et al., 2021).

At present, monitoring and restraining methods are mainly
used for insulator icing control and management (Jiang et al.,
2014; Li et al., 2019). The monitoring method can realize online
monitoring of insulator icing state by installing sensors and
cameras on electrical equipment, or find hidden dangers in
key line inspection by manual inspection. Based on the
monitoring results, various ice melting technologies have been
adopted to eliminate the icing of insulators, mainly including
mechanical de icing, laser de icing and manual de icing (Zhang
et al., 2020a). The research on insulator icing monitoring and
recognition mainly focuses on cloud centric computing mode,
including environmental parameter monitoring (Junhua et al.,
2018; Xingliang et al., 2018; Zhu et al., 2020) and image
monitoring (Yan et al., 2013; Jingjing et al., 2017; Shen and
Raksincharoensak, 2021a). The method based on environmental
parameters is mainly fonded on experimental analysis, and the
change of insulator icing thickness is often obtained through
the change of environmental parameters and physical analysis.
The limitation of insulator icing thickness calculate method based
on environmental parameter monitoring is that all kinds of
sensors installed on transmission lines will be affected by bad
weather and complex electromagnetic interference, which may
lead to large errors in icing monitoring results. In the image
monitoring method, the video monitoring terminal installed on
the transmission line tower to collect the insulator icing image
regularly, and transmit the icing image to the monitoring center.
Then use the rich computing resources and advanced images
processing methods of the monitoring center to calculate the
insulator icing thickness (Dongxiao et al., 2017; Yongsai et al.,
2017). For the collected insulator icing image, the traditional
image processing methods are mainly used for icing perception,
such as image segmentation or edge detection to realize icing
thickness level recognition (Yanpeng et al., 2017; Qiangliang
et al., 2018). The processing mode and effect of traditional
image methods are seriously affected by the quality and
location of icing images. Different types of icing images
usually need to be determined manually to select the best
processing method, which shows the problems of insufficient
generalization ability and low efficiency.

With the development of Graphics Processing Unit (GPU)
and artificial intelligence (AI) technology, image processing
method based on deep learning (Shen et al., 2020a; Shen et al.,
2021a) is gradually applied to insulator icing monitoring
(Zhuangli et al., 2018; Shen and Raksincharoensak, 2021b;
Nan et al., 2018). Wang et al. (Gang et al., 2018) proposed a
method of insulator icing thickness identification based on

convolution neural network. Using the abundant computing
resources of cloud computing center, a complex convolution
neural network recognition model is established to identify the
ice thickness level, which has strong generalization ability. Yang
et al. (2021a); Yang et al. (2021b) first study SCUC problems and
proposed an expanded sequence-to-sequence (E-Seq2Seq) based
data-driven SCUC expert system for dynamic multiple-sequence
mapping samples, it can accommodate the mapping samples of
SCUC, and consider the various input factors that affect SCUC
decision-making, possessing strong generality, high solution
accuracy, and efficiency over traditional methods. However,
the cloud computing model can not guarantee the reliable
transmission, real-time analysis and recognition of insulator
icing monitoring image in bad weather. But with the
development of power Internet of things and the
transformation of energy digitization (Shen et al., 2017;
Haoyong et al., 2019), millions of power edge intelligent
devices such as power sensors, state sensors and intelligent
video monitoring system are connected to the power Internet
of things, resulting in massive heterogeneous data (Zhang and
Luo, 2018; Shen et al., 2020b; Nie et al., 2020; Ying et al., 2020).
The traditional centralized data processing mode centered on
cloud computing shows the problem of insufficient real-time,
especially for the ice monitoring system with poor transmission
conditions, the edge intelligent technology with edge computing
as the core has been widely concerned. Therefore, the research on
the intelligent identification method of front-end edge intelligent
icing monitoring equipment has become the inevitable
development trend of online icing monitoring (Chen et al.,
2019; Zhou et al., 2019).

Ma et al. (2021) utilized the edge computing mode to identify
icing thickness of transmission line in front-end monitoring
equipment. Considering that the established ice thickness
identification model is too complex to be suitable for the
front-end ice monitoring device with limited computational
resources, they use network channel pruning method for model
lightweight compression. However, network channel pruning
method requires a lot of manpower and computing power. In
order to improve the engineering applicability of the edge
intelligent icing thickness identification, this paper proposes a
model quantization method for lightweight compression of
icing thickness identification model, so as to realize the
front-end localized identification of icing thickness in the
icing monitoring device. And the ResNet network and FPN
network are used to constructs a multi-scale feature extraction
and fusion network framework to improve the detection
accuracy of insulators. The main contributions of this paper
are summarized as follows.

1) A edge intelligent perception method for power grid icing
condition based on multi-scale feature fusion target detection
and model quantization is proposed, so as to implement the
front-end localization intelligent identification of insulator
icing thickness.

2) The residual network ResNet and feature pyramid network
(FPN) are fused to construct a multi-scale feature extraction
network framework, so that the shallow features and deep
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features are fused to reduce the information loss and improve
the target detection accuracy.

3) The proposed method is compressed by model quantization,
so as to reduce the size and parameters of the model to adapt
to the icing monitoring terminal with limited computing
resources.

The rest of the paper is organized as follows: Section II
introduces the lightweight intelligent recognition method of
icing thickness proposed in this paper for icing monitoring
terminal, which is based on residual network ResNet, feature
pyramid network (FPN), full convolutional network (FCN) and
model quantification. In Section IV, the experiment results are
presented to verify the proposed method, followed by
conclusions.

PROPOSED METHOD

Considering that the actual transmission line icing usually faces
various bad weather conditions, and different transmission line
terrain and environment will lead to a variety of scene changes,
such as strong wind, heavy rain and other scenes, the icing images
collected by the actual icing monitoring system show the
characteristics of complex background, low resolution and
polymorphism. So the icing thickness identification model
established in this paper is a combination of ResNet (Zhang
et al., 2020b), FPN (Feature pyramid networks) (Zhao et al., 2019)
and FCN (Full convolutional network) (Long et al., 2015). The
residual network ResNet and feature pyramid network (FPN) are
fused to construct a multi-scale feature extraction network
framework to extract more icing image information. And full
convolution network is used for insulator icing grading and
position regression. The proposed method solves the multi-
scale problem in target detection to a certain extent, and
improves the detection accuracy of targets with different sizes.
Especially, the shallow image features are introduced into the
FPN network, which improves the detection sensitivity of small
targets such as a small proportion of insulators. FCN network
adopts the anchor frame generation mechanism to generate
candidate regions with fixed size ratio and quantity, which is

similar to YOLOv3model. In this way, the speed of insulator icing
detection is improved.

System Architecture
The network structure of ice thickness identification method
proposed in this paper is mainly composed of feature
extraction network, feature pyramid network (FPN network)
and classification regression network (FCN sub network). In
order to improve the recognition speed of insulator icing, its
feature extraction network uses the ResNet-34 network with
fewer layers than Faster RCNN to extract feature maps with
different resolutions from the input image. Its target classification
regression network uses the same candidate box generation
mechanism as YOLOv3, the system architecture of our
method is shown in Figure 1.

For the input insulator icing image, the high-level and low-
level feature maps of the image are obtained under different
resolutions by using the resnet-34 feature extraction network
firstly. Then, the FPN network is used to connect the high-level
and low-level features horizontally for feature fusion, and
candidate boxes are generated on feature maps with different
scales. Finally, the position information and icing thickness level
information of the predicted insulator target frame are output by
the classification regression sub network of FCN. The detailed
process of intelligent recognition of insulator icing thickness as
shown in Figure 2.

Multi-Scale Feature Extraction of Icing
Image
The structure of multi-scale feature extraction network based on
residual network ResNet-34 in this paper is shown in Table 1.
When he sliding step of convolution kernel is set to 2, the feature
map will shrink gradually in the form of two times. With the
deepening of feature extraction network, the semantic
information of insulator icing image is gradually enhanced
(Shen et al., 2021b), but the location information is gradually
blurred.

The feedforward calculation of ResNet-34 network is the
bottom-up feature extraction process corresponding to the
feature pyramid, which uses the feature activation of the last

FIGURE 1 | Framework of insulator icing thickness identification method.
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residual structure in each stage as the output. In this paper, the
output of these residual modules is expressed as follows:
{C2,C3,C4,C5}. Corresponding to the activation value of the
last module of conv2, conv3, conv4 and conv5 in Table 2, the size
dimensions of feature map are 56×56×64, 2,828,××128,
1,414,××256 and 7×7×512 respectively.

Multi Scale Feature Fusion
The semantic information of high-level feature map obtained by
residual feature extraction network ResNet-34 is generally strong,

FIGURE 2 | Specific process of intelligent recognition of insulator icing thickness.

TABLE 1 | Feature extraction network architecture of ResNet-34.

Layer Feature map size Network structure

conv1 112 × 112 7 × 7, 64, Stride size: 2
conv2 56 × 56 3 × 3 max pool, Stride Size: 2

[ 3 × 3, 64
3 × 3, 64]×3

conv3 28 × 28 [ 3 × 3, 128
3 × 3, 128]×4

conv4 14 × 14 [ 3 × 3, 256
3 × 3, 256]×6

conv5 7 × 7 [ 3 × 3, 512
3 × 3, 512

]×3

TABLE 2 | The size and dimension of each feature in feature pyramid network.

Feature Network Size Dimension

C2 ResNet-34 56 × 56 64
C3 ResNet-34 28 × 28 128
C4 ResNet-34 14 × 14 256
C5 ResNet-34 7 × 7 512
M2 FPN 56 × 56 256
M3 FPN 28 × 28 256
M4 FPN 14 × 14 256
M5 FPN 7 × 7 256
P2 FPN 56 × 56 256
P3 FPN 28 × 28 256
P4 FPN 14 × 14 256
P5 FPN 7 × 7 256

FIGURE 3 | Detailed structure of multiscale feature fusion network.
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but the location information is fuzzy. The location information of
low-level feature map is generally clear, but the semantic
information is weak. Moreover, the top-down hierarchical
structure of FPN network with horizontal connection helps to
fuse the high-level strong semantic features of ResNet-34 network
output with the low-level clear location features, so that the
features of different scales have strong semantic information.
The detailed structure of multi-scale feature fusion network is
shown in Figure 3.

As shown in Figure 3, the output C5 of ResNet-34 changes to
feature map M5 with 7×7×256 dimension size after a convolution
1×1×256. Then, a convolution operation with dimension 3×3×256
will be added to each feature map M to eliminate the aliasing effect
between feature layers of different scales. For the construction of P4
in FPN network, the feature map of M5 is up sampled twice by
nearest neighbor upsampling method, so as to double the size of the
feature map. In this way, the feature mapM5 becomes the same size
dimension as M4 namedM5’. And the feature map C4 becomes the
same size dimension asM4 namedC4′ after a convolution 1×1×256.
Finally, the feature mapM4 can be obtained by addingM5′ and C4’.
Similarly, we can get the feature map M3, M2, M1, P3 and P2. The
size and dimension of each feature map are shown in Table 2.

Classification of Icing Thickness and
Location Regression
The target classification network of ice thickness recognition
model is divided into two sub networks: target classification
sub network and prediction box position regression sub
network. The network structure of class sub network and box
sub network used in feature map at different stages is related to
the size of feature map, as shown in Figure 4.

In Figure 4, the sizes ofW and H are the same as those feature
maps (P2, P3, P4, P5) output by FPN. K represents the total
number of categories to be predicted, and A represents the number
of candidate boxes or anchors. In this paper, the idea of object
classification regression of YOLOv3 is used to divide each feature
map output by FPN into grids corresponding to the length and
width of the feature map. For example, the feature map P5 with 7 ×

7 size is divided into 7 × 7 grids. Then, three groups candidate
frames are established from each grid center, the length width ratio
of each group of candidate boxes is 1:1, 1:2 and 2:1 respectively. The
ratio of the three groups of candidate boxes is 20:21/3:22/3. So the
feature map P5 will be divided into 7 × 7×9 � 441 candidate boxes,
as shown in Figure 5 (in the figure, only one group candidate boxes
are drawn in the center of the grid, and two groups with different
proportions are not presented).

Class sub network uses 4-time 256 channel convolution and 1-
time num_priors×num_classes convolution for feature extraction,
num_priors refers to the number of candidate boxes owned by the
feature layer. num_classes refers to how many kinds of targets are
detected by the network. 4-times of 256 channel convolution and 1-
time num_priors×4 convolution are used in box sub network.
Where, four refers to the adjustment of the coordinates of the
upper left corner and the lower right corner of the candidate box.
Class sub network and box sub network can be used to modify the
target category and location information of the initial candidate
box. Finally, the confidence scores of candidate frames are sorted
and the Non-maximum value is suppressed. The candidate frames
with low scores are removed, and the candidate frames with more
overlaps are combined to realize the classification of insulator icing
level and position coordinate regression.

Model Compression Method Based on
Quantization
The implementation of Quantization Compression for the model
needs to convert the common operations (such as convolution,
matrix multiplication, activation function, pooling, splicing, etc.)
into the equivalent operation of the faster 8-bit integer (int8)
version, and then add quantization and inverse quantization
operations before and after the convolution operation.
Quantization operation is convert input from high-precision
floating-point operation (generally 32-bit floating-point or 16
bit floating-point) to low precision integer operation (generally 8-

FIGURE 4 | FCN network structure diagram.

FIGURE 5 | Schematic diagramof grid and candidate box of featuremapP5.
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bit integer), while the inverse quantization operation is to transfer
output from low-precision operation to high-precision operation.
Taking the Relu activation function as an example, the relu
operation before quantization is shown in Figure 6, and the
relu operation after network quantization is shown in Figure 7.

For the quantization operation of converting floating numbers
into 8-bit integers (0–255) in Figure 7, the core to find out the
minimum value (Min) and maximum value (Max) of input data,
and then the quantization value q of each input data can be
obtained by using the following formula.

q � x −min
max −min

· 255 (1)

On the contrary, the inverse quantization value x can also be
obtained by using the following formula.

x � q · (max −min )
255

+min (2)

The quantization error after quantization is R.

R � max −min
255

(3)

Using the quantitative operation technology of neural network
can reduce the memory occupation, the amount of calculation and
the power consumption of the ice thickness identification model,
which is not only conducive to the deployment of the established ice
thickness identification model to the intelligent embedded system,
but also can improve the operation efficiency of proposed model.

Structure Composition of Edge Intelligent
Icing Monitoring Device
In order to realize the front-end localization identification of icing
thickness, this paper designs an edge intelligent icing monitoring
device based on edge artificial intelligent (AI) chip. The device

FIGURE 6 | Relu operation before quantization.

FIGURE 7 | Relu operation after quantization.

FIGURE 8 | Structure of the icing monitoring device.

FIGURE 9 | Physical structure diagram of icing monitoring device.
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mainly includes six parts: data acquisition module, calculation
control module, wireless communication module, storage
module, power management module and I/O communication
interface. The specific structural diagram of the device is shown in
Figure 8, and the physical structure diagram of icing monitoring
is shown in Figure 9. The icing monitoring with AI chip can be
deployed to the transmission line tower for online monitoring of
insulator icing thickness.

1) Data acquisition module. It is used to connect camera and
other monitoring equipment or video monitoring system for
data acquisition and coding processing of insulator icing
image. Due to the slow change of insulator icing thickness,
the device collects an icing image every 15 min.

2) Calculation control module. Huawei atlas 200 chip is used as
the intelligent processing chip in the edge ice monitoring
device, which can analyze and calculate the collected
structured data such as insulator icing image and video,
identify the icing thickness level of insulator, and control
and coordinate the operation of each module.

3) Wireless communication module. Communication modes
include 4G and WiFi, which can upload the identification
results of insulator icing thickness to the cloud or server, so as
to assist in transmission line maintenance and management.

4) Storagemodule. This module is used to store the operation system
of the device, lightweight model of insulator thickness grade
identification and other supporting software and algorithms.

5) Power management module. The icing monitoring device is
powered by external photovoltaic panel and battery. Dual
charging solar controller is used in icing monitoring device for
power charging management and control.

6) I/O communication interface. Provide communication
interface between modules.

EXPERIMENT RESULTS

This section introduces the experimental details and compares
the performance of the proposed method for icing thickness

recognition with other methods. In order to verify the
performance of the lightweight icing intelligent recognition
method proposed in this paper, under the same experimental
conditions, classical single-stage method YOLOv3 and classical
two stage method Faster RCNN are selected and quantized as the
control group, and the detection accuracy and recognition speed
are compared on the same experiment set. For the three methods,
compare the performance of the methods on the server side
firstly, and then compare the performance on the edge side
through the model compression method. The model with
suffix -FP32 indicates that the model uses 32-bit floating-point
full precision, It is experitmented on the server side. The model
with suffix -int8 indicates that the 8-bit integer precision is used
after quantization and compression of the model, and it is
experitmented on the edge intelligent ice monitoring device.

Construction of Image Sample Library for
Insulator Icing Monitoring
The sample library constructed in this paper contains more than
4,000 insulator icing monitoring image. This paper divides the
icing level based on icing and snow conditions of insulators and
transmission lines, combined with the actual inspection
experience and application requirements. The icing thickness
of insulators is divided into five icing levels, including level_ 1,
level_ 2, level_ 3, level_ four and level_ 5 (Ma et al., 2021). Each
icing level represents a different insulator icing thickness range, as
shown in Table 3.

Experiment Environment and Parameter
Setting
In order to ensure that the performance indexes before and after
model compression are compared under the same computing power
as much as possible, the main configuration of the server side is 8-
core CPU, 32 GB memory and an NVIDIA Tesla P4 graphics card
with 8 GB video memory, its power consumption is 70W. Huawei
atlas 200 DK chip is used as the intelligent processing chip in the
edge ice monitoring device, which is shown in Figure 10. The
experimental environment is deep learning framework Caffe under
Ubantu system, and the power consumption is edge intelligence chip
is 20W. The 8-bit integer peak computing power of Tesla P4
graphics card and Atlas 200 DK chip is 22tops (trillion
operations/s). To ensure the performance of the model under the
same training and test conditions, the three methods use the same
training set (including the verification set) in the cloud training. The
number of iterations is 100, and the learning strategy is to

FIGURE 10 | The diagram of edge intelligent analysis module.

TABLE 3 | Classification of insulator icing thickness.

Icing level Thickness Describe

level_1 0 mm No snow and ice
level_2 0∼3 mm Slight snow cover, no ice
level_3 3∼6 mm Snow is thick and slightly ice
level_4 6–10 mm Heavy snow, moderate ice
level_5 >10 mm Heavy snow cover, severe ice
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automatically adjust the learning rate according to the verification
accuracy, and the same test images in the insulator icing picture
library are used for test comparison.

To ensure the sample balance of the test set, 135 images of each
icing level are randomly selected from the insulator icing image
library to form the test set. The number of images in the training
set and the test set was 2,700 and 675, respectively, and the ratio is
8:2. The image distribution of training set on icing level of various
insulator is shown in Figure 11, it can be seen that there is no
sample imbalance in all kinds of icing levels of insulators in the
images of training set and test set.

Comparative Analysis of Icing Identification
Accuracy
This paper compares the models of Faster RCNN, YOLOv3 and
our icing identification method before and after quantification
compression, also compares them with the same test images.
Firstly, the average precision (AP) is used to measure the
performance of these methods. Average precision is achieved
by averaging the precision at different recall points, which is
generally calculated by the 11 point method. By setting a set of

thresholds containing 11 recall points [0, 01, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 1]. Each recall point corresponds to a maximum
Precision. The average of these precision is the AP, and which can
be obtained by the following equation.

AP � 1
11

∑
R∈{0,0.1,......,1}

maxP(R) (4)

Taking insulator icing level_1 as an example, the maximum
accuracy and average precision of different recall thresholds
are given, as shown in Table 4.

From Table 4, it can be seen that the Faster RCNN of the two-
stage method has higher identification accuracy for icing thickness,
which indicates that the RPN network of Faster RCNNmodel of can
improve the detection accuracy. However, the detection accuracy of
YOLOv3 based on integrated convolutional neural network is lower
than that based on RPN, as there is nomechanism to generate target
candidate domain. Besides, the accuracy of the proposed method is
higher than that of the Faster RCNN model, which shows that the
FPN network used in the proposedmethod is helpful to improve the
accuracy of ice thickness identification. In addition, after the model
compression, the Average precision (AP) of Faster RCNN, YOLOv3
and the method proposed in this paper presents a downward trend,
which indicates that the identification accuracy for ice thickness will
be reduced by the quantization compression.

Threfore, compared with the typical target detection methods,
the multi-scale target detection method proposed in this paper
has higher ice thickness identification accuracy for insulator icing
level_1 under the server environment. But the accuracy of our
method by model quantification is slightly lower than that of
Faster RCNN under the edge intelligent equipment environment.
In order to further measure the performance of those methods,
we compare the model size, mean average precision (mAP).
calculation speed and other indicators of those methods.

Average Precision Comparison and
Performance Analysis
After calculating the average precision (AP) of YOLOv3, Fast
RCNN and our method before and after compression for each

FIGURE 11 | Label and image distribution of various insulator icing
levels in the training set.

TABLE 4 | The detection accuracy of different method for insulator icing level_1 before and after compression.

Recall The maximum precision of different models corresponding to different recall thresholds

YOLOv3-FP32 YOLOv3-int8 Faster RCNN-FP32 Faster RCNN-int8 Our method-FP32 Our method-int8

0 1.000 1.000 1.000 1.000 1.000 1.000
0.1 1.000 1.000 1.000 1.000 1.000 1.000
0.2 0.960 0.956 1.000 0.968 0.978 0.892
0.3 0.960 0.956 0.967 0.956 0.978 0.892
0.4 0.960 0.930 0.967 0.956 0.978 0.892
0.5 0.944 0.930 0.944 0.937 0.978 0.892
0.6 0.944 0.927 0.878 0.872 0.978 0.892
0.7 0.932 0.869 0.855 0.843 0.978 0.892
0.8 0.730 0.550 0.855 0.835 0.964 0.892
0.9 0.365 0.275 0.822 0.807 0.964 0.892
1 0.000 0.000 0.000 0.000 0.000 0.000
AP 0.800 0.763 0.844 0.834 0.891 0.831
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insulator icing level, the mean average precision (mAP) of each
method can be calculated, as shown in Table 5. The mean average
precision (mAP) reflects the comprehensive detection accuracy
performance of the target detection method for the insulators
detection with different icing levels. It can be seen from Table 5
that the mAP of our method is the highest on both the server side
and the edge side. It shows that the comprehensive performance
of the proposed method before and after quantization
compression is better than that of YOLOv3 and Fast RCNN
method.

In addition, for the icing online monitoring device with poor
transmission conditions, it requires not only higher
comprehensive detection accuracy performance, but also faster
detection speed, whichs meet the real-time and reliability
requirements of power grid condition monitoring. Therefore,
this paper compares the changes of mAP, detection speed and
model size of the three models before and after quantization
compression, as shown in Tab 6.

It can be seen from Table 6, after quantization compression,
the size andmAP of YOLOv3, Faster RCNN and our method are
reduced, and the recognition speed of Faster RCNN model and
our method also shows a downward trend, while the recognition
speed of YOLOv3 is greatly improved. Besides, the sigle-stage
method has the lowest mAP index for the method before and
after the quantization compression. The mAP of our method
combining the advantages of the single-stage method and the
two-stage method is the highest, and the mAP of the Fast RCNN
of the two-stage method is the middle. In addition, for the
detection speed indicators before and after the quantization
compression, the single-stage method YOLOv3 recognition
speed is the fastest, the two-stage method Faster RCNN
recognition speed is the slowest, and the ice recognition

method proposed in this paper speed combining the
advantages of the two methods is in the middle. At the same
time, after the compression conversion and deployment to the
edge, the recognition speed of YOLOv3 has been improved,
while the speed of Faster RCNN to recognize a single image has
reached 1 s, which can not meet the real-time requirements of
power scene. Based on the above analysis, YOLOv3, Faster
RCNN and our method all maintain a high mAP after
quantitative compression. Although our method is slower
than the single order Yolo V3 method, our method has the
highest recognition accuracy in edge icing monitoring device.
The speed of our method in the edge sideis up to 170 ms/pic,
which can meet the actual needs of icing on-line monitoring.
For the scene of insulator icing edge recognition in this paper,
our method considering both detection accuracy and
recognition speed can better meet the practical application
requirements.

CONCLUSION

To implement the front-end high-precision identification of
insulator icing thickness, a lightweight icing thickness
identification method based on multi-scale feature fusion and
model quantization is proposed in this paper, and the advantages
of the proposed method are verified by experiments. Compared
with other traditional image processing methods, our method can
realize front-end intelligent recognition of icing thickness without
manual adjustment and setting, which can avoid the long-
distance transmission of icing image and show stronger
generalization ability and higher efficiency for thickness
monitoring. The specific conclusions are as follows.

TABLE 5 | The mean accuracy of different method before and after quantify compression.

Icing level The average precision (AP) of different method each icing levels before and after quantify compression

YOLOv3-FP32 YOLOv3-int8 Faster RCNN-FP32 Faster RCNN-int8 Our method-FP32 Our method-int8

level_1 0.800 0.763 0.844 0.834 0.891 0.831
level_2 0.623 0.585 0.861 0.801 0.871 0.867
level_3 0.614 0.538 0.761 0.746 0.875 0.821
level_4 0.724 0.638 0.786 0.707 0.888 0.826
level_5 0.810 0.780 0.800 0.787 0.885 0.882
mAP 0.714 0.661 0.811 0.775 0.882 0.845

TABLE 6 | Performance comparison of model before and after quantization compression.

Method Model size
(MB)

Size change
before and

after compression

mAP Map changes
before and

after compression

speed (ms/pic) The change
of recognition
speed before
and after

compression

YOLOV3-FP32 235.97 −46.63% 0.714 −7.44% 50 64.40%
YOLOV3-int8 125.93 0.661 17.8
FasterRCNN-FP32 445.24 −44.59% 0.811 −4.38% 180 −433.33%
FasterRCNN-int8 246.72 0.775 960
Our method-FP32 139.67 −11.24% 0.882 −4.15% 112 −51.79%
Our method-int8 123.97 0.845 170
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1) Through multi-scale feature fusion of shallow and deep
features of icing image, the accuracy of ice thickness
identification can be effectively improved.

2) The quantification of the model will reduce the accuracy of the
icing identification method. Under the condition of the same
computational power, the mAP of our method proposed in
this paper and classical target detection methods is only about
4–7% lower.

3) Compared to the classical methods YOLOv3 and Faster
RCNN, the proposed method has higher recognition
accuracy before and after model quantization compression.

However, due to the limitation that the icing image can only
reflect two-dimensional information, our method can not realize the
three-dimensional measurement of icing thickness. To impelment
the comprehensive perception of insulator icing thickness, the ice
thickness identification method based on multi-source data fusion,
including image, mechanical sensor, space distance sensor and so on
will be the focus of the next research.
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