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The uncertainty of wind resources is one of the main reasons for wind abandonment.
Considering the uncertainty of wind power prediction, a robust optimal dispatching model
is proposed for the wind fire energy storage system with advanced adiabatic compressed
air energy storage (AA-CAES) technology. Herein, the operation constraints of the power
plant and constraints of the reserved capacity are defined according to the operation
characteristics of AA-CAES. Based on the limited scenario method, a solution framework
is proposed to achieve the optimal robustness and economical operation of the system,
which provides a new way for the application of the intelligent algorithm in the robust
optimal dispatching. Specifically, a novel equilibrium optimization algorithm is employed to
solve the optimal dispatching problem, which has good global search performance. The
proposed solution is validated through simulations based on the IEEE-39 node system.
The simulation results verify the effectiveness of the proposed dispatching model and the
intelligent solver.

Keywords: robust optimal dispatching, wind fire energy storage, AA-CAES, solution framework, equilibrium
optimization algorithm

INTRODUCTION

Facing the challenge of global warming and energy crisis, wind power generation has been rapidly
developed in recent years (Song et al., 2021b). In 2018, a significant growth of 51.3 GW was
reached for the global installed capacity (Yang et al., 2021). However, due to the intermittence and
uncertainty of wind power, its large-scale grid connection has brought a great challenge to the
reliability of power system. Taking China as an example, the average wind abandonment rate in
China was 4% in 2019. With the gradual increase of total installed capacity, the problem of wind
abandonment has been increasingly prominent (Song et al., 2021a). In order to reduce the wind
abandonment rate, the application of multiple energy complementary system and energy storage
system has been widely concerned (Chen et al., 2022).

The application of energy storage system is one of the common methods to reduce the wind
abandonment rate of wind farm. As a typical energy storage technology, conventional compressed air
energy storage (C-CAES) has been widely used in integrated energy system. It was proved that the
utilization of C-CAES can increase the flexibility of comprehensive energy system and improve
economic benefits (Sedighizadeh et al., 2019). However, the application of C-CAES in the power
system is limited, due to its high construction cost, low conversion efficiency and dependence on
specific geographical conditions. As an improved energy storage mode of conventional one,
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advanced adiabatic compressed air energy storage (AA-CAES)
can store compression heat and has the advantages of high
efficiency, long service life, low cost, and fast response.

At present, AA-CAES has been applied into the integrated
energy system dispatching. The energy system dispatching model
based on AA-CAES was studied, and its value was analyzed in
monopoly power market, energy market and reserve market (Ding
et al., 2019). Based on the heating and power supply characteristics
of AA-CAES, it was proposed an optimal dispatching model of
zero carbon emission microgrid integrated with AA-CAES (Rui et
al., 2016). This series of research verified the effectiveness of AA-
CAES system in the integrated energy system, and provided
potential dispatching schemes for the integrated energy system
with AA-CAES. However, the existing researches only model the
combination between the AA-CAES and the traditional energy.
Moreover, the uncertainty of reserved capacity and renewable
energy is seldom considered.

Generally, the optimal dispatching model of the power system
usually presents the characteristics of nonlinearity, high
dimension, strong coupling and multi constraints. Most
optimal dispatching problems are solved for the whole time
series. When using intelligent algorithms, there are problems
such as high dimension and difficulty in meeting constraints.
Based on these problems, an optimization framework suitable for
the utilization of intelligent algorithms is proposed, which has
better solution results and shorter solution time. Specifically, to
solve the formulated optimal dispatching problem, it is employed
a novel equilibrium optimization (EO) algorithm (Faramarzi
et al., 2020), which has unique advantages in exploration,
exploitation, and local minimum avoidance when solving
high-dimensional, nonlinear and multi constraint problems.

Combining AA-CAES with renewable energy, a robust optimal
scheduling model is established for the wind fire energy storage
system, in which the limited scenario method is used to represent
the uncertainty of wind power prediction. In order to solve
the dispatching scheme corresponding to minimizing the
comprehensive cost in the extreme scenario, an effective framework
based on the intelligent algorithm solution is proposed. The novel EO
algorithm is used to solve the dispatching scheme corresponding to the
minimal comprehensive cost under different prediction error bounds.
Finally, the effectiveness of the dispatching model and solution
framework is verified under the improved IEEE-39 node.

The remainder of this paper is organized as follows. In section
Robust Optimal Dispatching of Wind Fire Storage System, the robust
optimal dispatching model of the wind fire storage system is
established, and a solution framework based on the intelligent
algorithm solution is proposed. Experimental validation and
result analysis are shown in section Experimental Validation and
Result Analysis. Finally, section Conclusion concludes the paper.

ROBUSTOPTIMALDISPATCHINGOFWIND
FIRE STORAGE SYSTEM

The limited scenario can represent all error scenarios in the
uncertainty set. The robust optimal dispatching model can meet
the dispatching of all scenarios only by meeting all limited

scenarios. In this section, the limited scenario method is used
to establish the robust optimal dispatching model of wind fire
energy storage system, and the objective function and related
constraints are presented.

Robust Optimal Dispatching Modelling
The limited scenario method is used to quantify the uncertainty
of wind power prediction, and the established uncertainty set of
wind power prediction is as follows:

(1 − β)Pt
Wp,i ≤P

t
Wp,i ≤ (1 + β)Pt

Wp,i (1)

where Pt
Wp,i is the predicted power generation of wind farm i at

time t, and β is the scaling factor of wind power prediction error
limit, which determines the performance of the system.

The integrated energy system studied in this paper includes
wind power, thermal power and AA-CAES. Among them, the
mechanism model includes operation constraints and reserved
capacity constraints. The cost models of these three types of
power stations can be expressed in three parts: energy cost,
environmental cost and standby market cost. As a part of the
comprehensive cost, the production cost of the integrated energy
system can be expressed as:

CO � CF + CW + CCAES + CE + (CLup + CLdown) (2)

where CF, CW , CCAES are the power purchase cost of thermal
power, wind power and AA-CAES, respectively. CE is
environmental cost, and CLup and CLdown are the positive and
negative standby market cost, respectively.

The power purchase cost, environmental cost and power
purchase cost of thermal power, wind power and AA-CAES
power stations are as follows:

CF � ∑T
t�1

∑NG

i�1
pf,iP

t
F,i (3)

CW � ∑T
t�1

∑NW

i�1
pw,iP

t
W,i (4)

CCAES � ∑T
t�1

∑NC

i�1
pc,g,iP

t
CAES,i (5)

CE � ∑T
t�1

∑NG

i�1
(λsαs

iP
t
F,iΔt + λcα

c
i P

t
F,iΔt) (6)

CLup � ∑T
t�1

∑NC

i�1
pcaes,i,LupP

t
CAES,i,Lup +∑T

t�1
∑NG

i�1
pf,i,LupP

t
F,i,Lup (7)

CLdown � ∑T
t�1

∑NC

i�1
pcaes,i,DownP

t
CAES,i,Down +∑T

t�1
∑NG

i�1
pf,i,DownP

t
F,i,Down

(8)

where pf,i, pw,i and pc,g,i are the unit power purchase cost of wind
power, thermal power and AA-CAES, respectively; pc,c,i is the
unit cost required to buy electricity under the compression state
of the power station. pcaes,i,Lup, pcaes,i,Down, pf,i,Lup and pf,i,Down

are the unit power purchase cost of wind power and AA-CAES in
positive and negative standby Market, respectively; λs and λc are
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the cost factor of gas emission of SO2 and CO2 respectively; Pt
F,i,

Pt
W,i and Pt

CAES,i are the output of the corresponding unit at time
t, respectively; Pt

F,i,Lup and Pt
F,i,Ldown are the positive and negative

standby capacity provided by thermal power unit i at time t,
respectively. NG, NW and NC are the number of thermal power
units, wind power units and AA-CAES units, respectively; T is the
dispatching period which is set as 24 in this study.

In order to ensure the effectiveness and accuracy of the
established dispatching model, some power system operation
constraints need to be considered, including standby
constraints, unit climbing constraints, wind power output
constraints and wind power prediction uncertainty set
constraints. The system operation constraints are set as follows:

• System power balance constraints and positive and negative
reserved capacity constraints:

∑NG

i�1
Pt
F,i + ∑NW

i�1
Pt
W,i +∑NC

i�1
Pt
CAES,i � Pt

Load (9)

∑NG

i�1
Pt
F,i,Lup +∑NC

i�1
Pt
CAES,i,Lup ≥R

t
Lup,min (10)

∑NG

i�1
Pt
F,i,Ldown +∑NC

i�1
Pt
CAES,i,Ldown ≥R

t
Ldown,min (11)

• Thermal power unit output upper and lower limit
constraints, positive and negative reserved capacity
climbing constraints, start and stop constraints:

Pt
F,i + Pt

F,i,Lup ≤PF,i,max (12)

PF,i,min ≤Pt
F,i − Pt

F,i,Ldown (13)

0≤Pt
F,i,Lup ≤ rF,i,Lup (14)

0≤Pt
F,i,Ldown ≤ rF,i,Ldown (15)

• Wind power output constraints and wind power prediction
uncertainty set constraints:

0≤Pt
W,i ≤P

t
Wp,i (16)

(1 − β)Pt
Wp,i ≤P

t
Wp,i ≤ (1 + β)Pt

Wp,i (17)

where Pt
Load is the load value at time t, Rt

Lup,min and Rt
Ldown,min are

the minimum positive and negative reserved capacity required at
time t, respectively. rF,i,Lup and rF,i,Ldown are the up and down
climbing speed of thermal power unit i, respectively.

Baes on the established robust optimal dispatching model, the
risk cost and comprehensive cost can be calculated. Risk cost
includes the wind abandonment cost and load shedding cost. In
this study, it is assumed that the probability distribution of wind
power prediction is a normal distribution with the predicted value
as the mean. Therefore, combined with the wind power
probability distribution curve, the expected value of the wind
power prediction range that fails to be absorbed by the
dispatching plan can be obtained, which is the expected value
of the abandoned wind power of the dispatching plan in this
period. Meanwhile, the cost of wind abandonment also considers

the fuel cost and environmental cost of thermal power. The
expression of abandoned wind cost is as follows:

CW,ab � ∑T
t�1
(aiQ2

W,abandon,t + biQW,abandon,t + ci + λsα
s
iQW,abandon,t

+ λcα
c
i QW,abandon,t)

(18)

whereQW,abandon,t is the expected value of abandoned wind power
corresponding to time t, and ai, bi, ci are the three fuel cost
factors.

Meanwhile, the expected value is calculated by integrating the
minimum wind power range that the system can dispatch, and
then the expected value of abandoned wind power in the
dispatching plan in this period can be obtained. Therefore, the
load shedding cost can be expressed as:

CW,cut � ∑T
t�1

pcut,tQW,cut,t (19)

where pcut,t is the unit cost required to cut off the load at time t,
and QW,cut,t is the expected value of cut-off load power at time t.

Combined with the abandoned wind cost, load shedding cost
and production cost, the comprehensive cost can be finally
obtained as follows:

CTotal � CO + CW,ab + CW,cut (20)

Solution Framework for Solving the
Established Dispatching Model
According to the definition of wind power prediction
uncertainty set by the limited scenario method, the scaling
factor β of the wind power prediction distribution will
determine the system performance. The value of scaling
factor β depends on the user’s estimation of the degree of
uncertainty of prediction. In this study, the effective range of
scaling factor β is set to be 5–30%. Based on the established
robust optimal dispatching model, the robust optimization
problem is formulated, and the final objective function is
presented in a robust format as follows:

minCTotal(Pw, PF, PCAES, PF,Lup, PF,Ldown, PCAES,Lup, PCAES,Ldown, β)

s.t.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Eq.(9) − (17)
Pt
F,min ≤P

t
F ≤P

t
F,max

−PCAES,max ≤PCAES ≤PCAES,max

PCAES,Lup,min ≤PCAES,Lup ≤PCAES,Lup,max

PCAES,Ldown,min ≤PCAES,Ldown ≤PCAES,Ldown,max

∀β ∈ [−30%, 30%]
(21a)

where Pt
F,min, P

t
F,max are the minimum and maximum output of

thermal power; PCAES,max is the maximum output of AA-CAES;
PCAES,Lup,min, PCAES,Lup,max are the minimum and maximum
positive standby output of AA-CAES; PCAES,Ldown,min,
PCAES,Ldown,max are the minimum and maximum negative
standby output of AA-CAES.
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In order to solve the minimum comprehensive cost
corresponding to the worst scenario under different β value
ranges, an effective solution framework is proposed as show in
Figure 1. The specific procedure is carried out as follows:

Initialization
Firstly, initialize β � 5%, set the current time value t � 1, and set
input parameters such as unit dispatching output boundary value,
cost coefficient and electricity price. Set the initial unit output
value as the lower limit of the processing range.

External circulation
Use EO algorithm to solve the optimal scheduling scheme
corresponding to the minimum comprehensive cost in the next
24 times when β � 5%. When β< 30%, then β � β + 5%, and
continue to use EO algorithm to solve the model at all 24 times
under the updated β condition. When β> 30%, the cycle ends and
all the β and its corresponding production cost, risk cost, minimum
comprehensive cost and dispatching output are collected.

Internal circulation
First, input the initialized unit output value as the optimal output
value at the previous time. Then, use EO algorithm to solve the
dispatching model at present time moment, and get the

corresponding production cost, risk cost and minimum
comprehensive cost. When t< 24, t � t + 1 and the optimal
dispatching output at the current time is used as the system
input at the next time. In this way, the optimal dispatching output
scheme corresponding to the minimum comprehensive cost
under 24 time series at a determined β value is obtained.

The Solver Based on the Equilibrium
Optimization Algorithm
According to the established objective function and the relevant
constraints, the optimal dispatching model can be transformed
into an optimization problem. In order to ensure the solution
speed and accuracy, EO algorithm is presented to solve this
optimization problem. EO algorithm is inspired by control
volume mass balance models used to estimate both dynamic
and equilibrium state. Considering the high-dimensional and
multi constraint characteristics of this optimization problem, the
intelligent algorithm solver proposed in this paper solves a single-
step time series and takes the optimal scheduling output at the
current time as the input of the next time, which can effectively
reduce the solution time while ensuring the solution accuracy.
The solver based on EO algorithm is structurally divided into the
following parts:

Initialization
Input the optimal dispatching output at the previous time and the
system parameters. Determine the user defined parameters,
number of design variables and their boundary conditions.
Initialize the weight constant coefficient a1 and a2 of the
global search and the generation probability GP.Based on
system constraints and boundary constraints, generate N
random points, which are D dimensional.

Individual concentration update
Step 1: When the current iteration number Iter is less than the
maximum iteration number, sort the individual concentration
according to the fitness function, and put the four individuals
with the highest concentration into the equilibrium pool as the
optimal candidate solution. Then, save the best point of the
previous time and compare it with the current best point. If
the best point of the previous time is better than the current best
point, the best point of the previous time will replace the current
best point.

Step 2: Randomly select a candidate point in the equilibrium
pool as Ceq

��→
. Generate random vectors �λ and �r. Update the

parameter t and �F as Eq. 21a, Eq. 21b and Eq. 22. Based on
the updated parameters, update the Individual concentration �C as
Eq. 23. If the updated Individual concentration �C cannot meet
the system constraints and boundary constraints, repeat step 2 to
regenerate the individual concentration until the constraints
are met.

t � (1 − Iter
Max iter

)(a2 Iter
Max iter)

(21b)

FIGURE 1 | The solution framework for solving the robust optimal
dispatching model.
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where Iter is the current number of iterations, and Max iter is
the maximum number of iterations.

�F � a1sign( �r − 0.5)[e− �λt − 1] (22)

where �λ and �r are random vectors, and a1 is weight constant
coefficient.

�C � Ceq

��→+ ( �C − Ceq

��→) �F + �G
�λV

(1 − �F) (23)

where �C is the individual concentration,V is the unit set as 1, and
�G is the generation rate.

Full time series solution
The optimal dispatching output at time t is taken as the system
input at time t + 1. On this basis, the optimal dispatching at time
t + 1 is solved. In this way, the optimal scheduling output,
production cost, risk cost and the corresponding minimum
comprehensive cost at each time in the whole time series are
obtained. The minimum comprehensive cost under the whole
time series is calculated and output as the optimal dispatching
scheme of the whole time series under the corresponding β value.

EXPERIMENTAL VALIDATION AND
RESULT ANALYSIS

In order to prove the effectiveness of the established robust
optimal dispatching model and the proposed solution
framework, the improved IEEE-39 node based on a real power
grid case is used. The cost changes of the system under different β
values are compared. For the optimization problem, EO
algorithm is compared with the traditional Grey Wolf
Optimizer (GWO) algorithm.

Numerical Example Description
Referring to a regional power grid system in China, the IEEE-39
node system is appropriately modified. Its structure diagram is

shown in Figure 2A. The wind farms 1 and 2 are connected to the
system from nodes 1 and 2, respectively. AA-CAES power station
and wind farm 3 are connected to the system from node 29. The
predicted power generation curve and load curve of the wind
farm are shown in Figure 2B, the minimum load is 800 MW, and
the maximum load is 1600 MW.

Result Analysis
The production cost, risk cost and minimum comprehensive cost of
the whole system under different β values are shown in Table 1. It
can be seen that with the increase of β value, the minimum
comprehensive cost and corresponding production cost of the
system tend to decrease. When the β value is 5, 10, 15, 20, 25
and 30%, the minimum comprehensive cost solved by EO algorithm
is 23,294,803￥, 16,507,080￥, 13,997,459￥, 13,099,144￥,
12,765,750￥, and 12,645,801￥, respectively. The results show
that increasing the uncertainty range can provide an effective way
to further reduce the comprehensive cost. When more scenarios are
considered, the minimum comprehensive cost decreases with the
increase of β value. Meanwhile, with the increase of uncertainty
range, the space for comprehensive cost reduction decreases. On the
other hand, with the increase of the uncertainty range, the risk cost
decreases. At the same time, the production cost and minimum
comprehensive cost obtained by EO algorithm under different β
values are smaller than GWO, indicating that EO has better global
search performance in solving this optimization problem.

When β � 5%, the dispatching plan and reserved capacity
purchase plan of each power station are shown in Figure 3. As
can be seen from Figures 3A–C, the capacity of thermal power
units No. 1 and No. 2 is 350MW, which undertakes the main
output of thermal power in the dispatching process because of their
large capacity and low production cost coefficient. When the load
demand reaches themaximum, the output ofNo. 1 andNo. 2 is 344
and 330MW respectively. Meanwhile, considering the system
requirement, the wind turbine output reaches the limit scenario
boundary value, which is 95% of the predicted output. For No. 8,
No. 9 and No. 10 thermal power units with small capacity of
50MW, due to small capacity, high cost and lack of competitive
advantage, the output is significantly lower than that of other units.

FIGURE 2 | Example node system diagram and wind farm output prediction and load curve: (A) node system diagram; (B) wind farm output prediction and
load curve.
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TABLE 1 | The production cost, risk cost and minimum comprehensive cost under different β values.

(%)β Algorithm Production cost [￥] Risk cost [￥] Minimum comprehensive cost [￥]

5 EO 12,648,207 10,646,596 23,294,803
GWO 12,697,791 10,646,596 23,344,387

10 EO 12,627,044 3,880,036 16,507,080
GWO 12,692,989 3,880,036 16,573,025

15 EO 12,617,752 1,379,707 13,997,459
GWO 12,697,606 1,379,707 14,077,313

20 EO 12,581,916 517,228 13,099,144
GWO 12,655,983 517,228 13,173,211

25 EO 12,546,433 219,318 12,765,750
GWO 12,654,178 219,318 12,873,496

30 EO 12,534,872 110,929 12,645,801
GWO 12,673,696 110,929 12,784,625

FIGURE 3 |Optimal scheduling scheme and corresponding minimum comprehensive cost: (A) Unit output; (B) Unit active standby; (C) Unit negative standby; (D)
Minimum comprehensive cost at all times.
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AA-CAES undertakes most of the standby capacity due to its low
cost and fast response, and its maximum standby capacity is
100MW. Meanwhile, the output of AA-CAES is low at the
peak of wind power output. For example, the output of AA-
CAES in time 17 is only 9MW. It is indicated that AA-CAES
has the potential to promote wind power consumption. The
minimum comprehensive cost at each time under the optimal
scheduling scheme is shown in Figure 3D. Among the 24
dispatching times, the minimum comprehensive cost value solved
by EO is less than GWO in 17 times. The change trend of minimum
comprehensive cost is the same as that of load, which shows that the
scheduling scheme tracks the load change well. Meanwhile, the
minimum comprehensive cost obtained by EO is lower than GWO
at most time, indicating that EO has better search accuracy and local
optimal avoidance ability than GWO in solving the optimization
problem. Combined with Figures 3A–C, it can be explained that the
solution framework based on intelligent algorithm can determine an
effective unit output scheduling scheme according to load changes,
and EO algorithm can effectively solve this optimization problem
and has better search ability than GWO.

CONCLUSION

This study has presented an effective intelligent algorithm
solution framework for solving the established robust optimal
dispatching model of wind fire energy storage which considering
the application of AA-CAES and the uncertainty of wind power
prediction. The simulation results show that the production cost
and comprehensive cost can be further reduced by considering
the uncertainty of wind power prediction. Meanwhile, the
application of AA-CAES can increase the system flexibility
and provide guarantee for system standby. On the other side,

the equilibrium optimization algorithm shows better robustness
and higher search accuracy than GWO in solving this
optimization problem. In the future work, other uncertainties
such as operation and maintenance uncertainty and energy
storage location uncertainty will be further considered.
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