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Operational faults in centrifugal chillers will lead to high energy consumption, poor indoor
thermal comfort, and low operational safety, and thus it is of significance to detect and
diagnose the anomalies timely and effectively, especially for those at their incipient stages.
The least squares support vector machine (LSSVM) has been regarded as an effective
algorithm for multiclass classification. One of the most difficult issues in LSSVM is
parameter tuning. Therefore, this paper reports a development of a gravitational search
algorithm (GSA) optimized LSSVM method for incipient fault diagnosis in centrifugal
chillers. Considering the inadequacies of conventional principle component analysis
(PCA) algorithm for nonlinear data transformation, kernel principle component analysis
(KPCA) was firstly employed to reduce the dimensionality of the original input data.
Secondly, an optimized “one against one” multi-class LSSVM classifier was developed
and its penalty constant and kernel bandwidth were tuned by GSA. Based on the fault
samples of seven typical faults at their incipient stages in chillers from ASHRAE RP 1043,
the proposed GSA optimized LSSVM fault diagnostic model was trained and validated. For
the purpose of demonstrating the priority of the proposed fault diagnosis method, the
obtained results were compared to that of using the LSSVM classifier optimized by another
two algorithms, namely, the conventional cross-validation method and particle swarm
optimizer. Results showed that the best fault diagnosis performance could be achieved
using the proposed GSA-LSSVM classifier. The overall average fault diagnosis accuracy
for the least severity faults was reported over 95%.

Keywords: fault diagnosis, water chillers, least squares support vector machine, kernel principle component
analysis, gravitational search algorithm

INTRODUCTION

Centrifugal chillers are one of the most widely used heating, ventilation and air conditioning
(HVAC) systems in large-scale buildings for maintaining a desired indoor thermal environment.
Nearly half of the energy utilized in commercial buildings is used to maintain indoor thermal
comfort (Enteria and Mizutani, 2011). Water chillers are more beneficial in large-scale buildings than
direct expansion (DX) type A/C systems in terms of a larger operational range, higher system
efficiency, and better part-load characteristic. Almost five million water chillers were in use in China
at the end of 2017 (IEA, 2019), and space air conditioning (A/C) accounted for nearly 9.2% of total
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building energy consumption in 2016 (IEA, 2018). Unexpected
chiller failures, on the other hand, might occur after a lengthy
period of system operation. Chiller failures are one of the most
common problems in building automation systems, lowering
system reliability and reducing energy efficiency. Chiller
failures are said to account for 42% of service resources and
26% of repair expenses (Comstock et al., 1999). As a result, it is
critical to detect and diagnose chiller abnormalities as soon as
possible for energy saving of buildings.

Generally, the fault detection and diagnosis (FDD) techniques
may be classified into three groups, namely, quantitative model-
based methods, qualitative model-based methods and process
history based methods (Katipamula and Brambley, 2005a;
Katipamula and Brambley, 2005b). Compared to the first two
methods where a priori knowledge of process is assumed, only
historical data are required for formulating the FDD model, and
thus it has gained a wider application. The process history-based
methods include gray-box models and black-box models. The
first one uses first principles to establish the empirical model
where its parameters (such as coefficients in the model) are
identified from historical data, such as the state observer based
(Shin et al., 2014) and the Kalman filter based (Sun et al., 2017)
models. With the growing complexity of building energy systems,
black-box model-based methodologies, also called data-driven
approaches, have been viewed as a potential way to building
performance simulation (Fan et al., 2021), system optimization
(Xuetal., 2021b), as well as FDD of HVAC systems which include
vapor compression refrigeration systems (Han et al, 2010),
variable refrigerant flow (VRF) systems (Guo et al,, 2017; Guo
et al., 2018), air handling units (AHUs) (Li and Wen, 2014; Lee
et al,, 2019), building ventilating fan (Xu et al., 2021a) and water
chillers (Zhao et al., 2013; Li et al., 2016; Wang et al., 2018). In
comparison to the fault detection technique which aims to
identify the fault-free operation from all other possible
abnormal operations and can be simply treated as a special
one-class classification problem, fault diagnosis, as a multiclass
classification technique, is more complicated.

Incipient faults in systems always occur slowly and are usually
unnoticed in their early stages. If diagnostic tools or proper
monitoring systems ignore them, they could not be detectable
until their effects become severe and cause catastrophic damages
to systems (Safacipour et al., 2021). A lower fault level will give a
smaller impact on the system operation, making it harder to
identify the incipient defects. Over the years, while a number of
data-driven approaches have been successfully applied for fault
diagnosis in chillers (Han et al., 2011; Yan et al., 2014; Huang
etal,, 2018; Wang et al., 2018; Xia et al., 2021a), timely identifying
the faults at their incipient stages is still a significant challenge.
For example, the diagnosis accuracies for the incipient faults of
refrigerant over charging and lubricant over charging were only
48 and 54.3%, respectively, in a recently reported study (Huang
et al, 2018). Therefore, more effects should be done to the
enhanced fault diagnosis performance of the incipient chiller
faults.

As a robust intelligence classifier, support vector machine
(SVM) firstly maps the training data into a high-dimensional
space via introducing a nonlinear feature function and then tries
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to maximize the separating margin of two different classes in the
feature space at the same time minimizing training errors using
conventional optimization methods (Chang and Lin, 2011). SVM
can effectively overcome the problem of over-fitting and has a
relatively high generalization capability. Therefore, it has been
widely applied for fault diagnosis of HVAC systems. Liang and
Du (2007) developed a multi-layer SVM classifier to identify the
faults in a single zone HVAC system. Three different types of fault
were successfully identified with an acceptable correct rate using a
four-layer SVM classifier. Han et al. (2011) proposed an “one
against one” multi-class SVM based chiller fault diagnosis
method with its kernel parameters being tuned by genetic
algorithm optimizer. Results showed that a significant
improvement in fault diagnosis performance was achieved for
the faults of refrigerant leak and refrigerant overcharge. Yan et al.
(2014) studied a hybrid FDD method for water chillers, which
incorporated auto-regressive model with exogenous variables and
SVM. The FDD performance was compared to that in the case of
using the multilayer perceptron neural network classifier,
demonstrating the superiority of the proposed method in
terms of higher prediction accuracy and lower false alarm
rates. Sun et al. (2016) proposed a hybrid approach for
identifying refrigerant charge faults in a multi-split air
conditioning system. For filtering out the measuring noise, the
proposed fault diagnosis method combined the SVM with wavelet
de-noising.

However, as the solution of SVM can be regarded as solving a
quadratic programming (QP) problem with inequality
constraints, the increase of training samples will increase the
computational complexity dramatically, resulting in difficult
SVM training. Thus, Suykens and Vandewalle (1999) proposed
a variation type of conventional SVM, named as least squares
SVM (LS-SVM), which converts inequality constraints in SVM
into equality constraints by minimizing squared error rather than
non-negative error in objective function. As a result, the training
of LS-SVM model can be expressed as in terms of solving a linear
system instead of a quadratic programming problem, and thus
reducing the computational complexity significantly. LS-SVM
has gained wide applications in pattern recognition (Yu and
Cheng, 2006), system modelling (Borin et al, 2006), time
series prediction (Yu et al.,, 2009; Zhang et al., 2013) and fault
diagnosis (Li et al., 2019; Zhao et al., 2020). In terms of the HVAC
field, Gao et al. (2016) proposed a novel nonlinear autoregressive
with exogenous (NARX) model for the cooling dehumidifier FDD
based on LS-SVM. The parameters in NARX model were
identified using LS-SVM algorithm, and further adopted for
recognizing the faults of condenser fouling and compressor
refrigerant insufficient. Han et al. (2019) developed a LS-SVM
based fault diagnostic model for chiller FDD. Results showed that
a higher fault diagnosis accuracy and a lower running time could
be achieved as compared to the conventional SVM classifier. As a
matter of fact, parameter optimization in LS-SVM classifier is of
great significance for its learning performance and generalization
capability. In this study reported by Han et al. (2019), a
deterministic optimization algorithm, called grid search with
5-fold cross-validation, was performed to optimize the
hyperparameters in LS-SVM classifier. However, grid search
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requires an exhaustive search over the parameter space, leading to
an intensive computational complexity (Zhang et al., 2013). As
compared to the deterministic approaches, the heuristic ones
present a higher probability of obtaining a global solution, and
thus have been employed for parameter optimization in
formulating the fault diagnostic model. For example, Zhang
et al. (2015) applied barebones particle swarm optimization
and differential evolution method to search the optimal
parameter combination in SVM based fault diagnostic system
for rolling element bearings. An improved particle swarm
optimization was introduced by Wang et al. (2019) for tuning
the parameters in SVM classifier for fault diagnosis of nuclear
power plants. Results showed that the optimization of critical
parameters with PSO acquired more accurate and faster SVM
classification than the conventional cross-validation approach.
Recently, a novel heuristic search algorithm, called the
gravitational search algorithm (GSA) (Rashedi et al, 2009),
has been proposed and merged as a promising optimizer. GSA
is motivated by gravitational law and the laws of motion, and has
a flexible and well-balanced mechanism that enhances
exploration and exploitation capabilities. It was previously
reported that, compared with genetic algorithm and particle
swarm optimization, the best regression accuracy and
generalization capacity could be achieved when using GSA to
optimize the parameters in LS-SVM (Zhang et al, 2013).
Therefore, in this reported study, an GSA optimized LS-SVM
method is proposed to develop the diagnostic model of incipient
chiller fault.

On the other hand, in order to reduce the modelling
complexity and computational cost, data decomposition is
generally required before performing the multi-class
classification. In view of the FDD methods used for HVAC
systems, principal component analysis (PCA) is one of the
most extensively adopted algorithms (Du et al., 2007; Chen
and Lan, 2009; Zhao et al., 2013; Li et al., 2016; Wang et al,,
2018; Yu et al, 2020). PCA is a linear data decomposition
approach that preserves as much of the original data’s second
order statistics as possible. Therefore, as a typical nonlinear
process, it may not be suitable for reducing the data
dimensionality of water chillers. Another data decomposition
method, called kernel PCA (KPCA), has been merged as a
promising technique for tackling the nonlinear problem (Lee
et al., 2004; Wong et al.,, 2014). KPCA first projects the input
space onto a high-dimensional feature space via a nonlinear
mapping. Through introducing a positive semidefinite (psd)
kernel function, which computes inner products in the kernel
feature space, the kernel matrix thus could be constructed. Then,
the principal components could be obtained by performing the
eigen-decomposition of the kernel matrix. KPCA is more
advantageous than the linear PCA in feature extraction and
multi-class classification in a nonlinear system. However, no
studies may be identified to apply KPCA based data
decomposition method for chiller FDD.

To the best of the authors knowledge, while a number of
relevant investigations on developing SVM classifiers for fault
diagnosis of HVAC systems (Liang and Du, 2007; Chang and Lin,
2011; Han et al,, 2011; Yan et al,, 2014), identifying the chiller
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incipient chiller faults using KPCA-LSSVM method is not
reported in the literature. Consequently, this paper reports the
development of an GSA-optimized incipient fault diagnostic
system for water chillers combining the LSSVM with KPCA.
The paper is organized as follows. Firstly, the basics of KPCA,
LSSVM classifier and GSA are introduced in Methods and
Principles. Then the structure of the proposed fault diagnostic
system is detailed in Proposed Fault Diagnostic System for Water
Chillers. Experimental Data Descriptions gives a brief
introduction of the experimental system from ASHRAE RP-
1043. The validation results are presented in Validation of the
Proposed Fault Diagnosis Method. Finally, the main contributions
of the current study are summarized.

METHODS AND PRINCIPLES

Kernel Principal Component Analysis

In KPCA, assuming a m dimensional observed data matrix, XeR™,
its mapping onto a high-dimensional feature space, F, could be
presented as ®@: R"—F. In this regard, the covariance matrix in the
high-dimensional feature space, F, can be evaluated as

N
"= 1 Y PP () 1)
k=1

where ®(xy,) is the kth sample in the feature space with zero-mean
and unit-variance, N the sample size. Then, a Gram kernel matrix,
K, could be determined as

Kij = (@ (x;), O(x;)) = K(x"’xj) @

Through introducing a kernel function, this inner product can
be obtained. In this paper, one of the most widely used kernel
function, called Gaussian kernel, is adopted,

K@ﬂ:w%—k1ﬁ> )

202

where o is the constant kernel parameter. The kernel matrix
should be centralized as

K = K - IyK - KIy + IyKIy 4)

Eigen-decomposing the kernel matrix, K, yields

pr % Ka (5)

where, a = [a, a,, ..., ay]" is the orthonormal eigenvectors
corresponding to the eigenvalues, A;21,>...>Ay. Consequently,
the score vector of the kth observation could be obtained via
mapping ®(x) onto the eigenvector vy in F, namely,

N
= (Ve @(x)) = Y af{D(x,), ®(x)), k=1,2,..d (6)

i=1

where d is the number of PCs constructing the dominant space,
which could be determined using the method of cumulative
percent variance (CPV).
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Least Squares Support Vector Machine

In LSSVM,, assuming a training data set { (x;, y;)},, where N is the
training data size, x;,€R", is the input vector corresponding to its output,
¥, its classification problem could be mathematically expressed as an
optimization problem as follows (Suykens and Vandewalle, 1999),

. Lirg 1S g
mm](w,e)ziw w+zy;ei, y>0

st. yifo'e(x)+bl=1-¢, i=1...,N (7)

where weZ is the weight vector, beR is the bias. Z is the high-
dimensional space projected by the nonlinear function ¢(x) from
the original space R. y is the regularization parameter used for
balancing the model complexity and prediction accuracy. ¢; is the
error between the actual output and the predicted one,
demonstrating the deviation degree of the data from the idea
condition of the classification model.

Through introducing the Lagrange multipliers, o;, the
objective function described in Eq. 7 can be rewritten as its
Lagrangian form,

1 1 N N
L(w,b,e,a) = EwTw + EyZe,z - Za,-{yi[wT(p(xi) +b]-1+e}
i1 P

®)

Based on the Karush-Kuhn-Tucker conditions, taking the
partial derivatives of Eq. 8 with respect to w, b, e and «,
respectively, yields

87L_0_) _i Vi (X;) %)
0 = Z ®; Y@ (X;

oL N

—ab_0—> ;(x,y,—o (10)
oL _, (11)
05 = ve

de; %= e
%zO—»yi[wT(p(x,)+b]—1+ei=O (12)

Eqs 9-12 can be rewritten as a linear equation set in a matrix
form via eliminating e; and w,

T
0 E L b _ 0 (13)
E Q+Ey a y
where E = [1,1, ... , 1]%, an N-dimension vector;
a=[ag,a, a7, the support-value vector;

y= [y, y2 5 yal', the output vector. Q is an NxN
symmetric matrix, and its elements, ();;, can be evaluated
through introducing a kernel function K (-),

Q== 9(x)'o(x;) = K(xx;), ij=1...N  (14)

Consequently, via solving Eq. 13, « and b can be obtained, and
the decision function for classification can be given by

N
y(x) =sign|:Z(x,-yiK(x,x,-)+b:| (15)

i=1
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As indicated by Eq. 15, the kernel function directly influences
the output of the decision function, and thus the classification
performance of LSSVM. In the current study, radial basis
function (RBF), one of the most effective kernel functions in
LSSVM (Lu et al, 2016; Han et al, 2019), was employed.
Therefore, the width parameter, o, in RBF, together with the
regularization parameter, y, should be tuned when developing the
LSSVM based fault diagnostic system.

Gravitational Search Algorithm
Inspired by the Newtonian laws of gravity and motion, GSA was
initially proposed by Rashedi et al. (2009). In GSA, all the agents
can be regarded as objects with masses. All these objects were
attracted by each other due to the gravity force, which will
consequently cause a global movement of all objects towards
those with heavier masses. The movements of the objects with
heavy masses, namely, the good solutions, are slower than lighter
ones, which guarantees the exploitation step of the algorithm.
In this optimizer, there are four specifications in each agent,
namely, position, inertial mass, active gravitational mass, and
passive gravitational mass. The position of the agent refers to a
solution to the problem. Assuming a system with N agents, the
position of the ith agent can be defined as

Xi=(x}.oxf . ox), i=12,...,N (16)

where x¢ is the position of the ith agent in the dth dimension.
The force acting on the ith agent from the jth one as a given
time, ¢, can be evaluated as

M, (t) X M, (t)

d —
Fi (1) = G(1) R, (D +¢

(i -xm) a7
where M,; is the active gravitational mass corresponding to agent
Jj» Mp; is the passive gravitational mass corresponding to agent i, €
is a small constant, and R;(t) is the Euclidian distance. G(t) is
gravitational constant at time ¢, which is set to G, at the beginning
and then exponentially decreased toward zero over time.

The total force that acts on the ith agent in a dimension d is
defined as

Fl(t)= ) rand;Fi(t) (18)

jeLj#i

where rand; is a random number ranging from 0 to 1.
Therefore, the acceleration of the ith agent at time ¢ in the dth
dimension can be evaluated as follows
Fé(1)
d i
al (t) = ——= (19)
: M;; (¢)
where Mj; is the inertial mass corresponding to agent i.
The position the ith agent in the dth dimension at the next
time step can be updated based on the position at the current time
step and the velocity, which is expressed as

VA (t+1) = rand; x v (t) + a? (t) (19a)
¥ (t+1)=xl () + v (t+ 1) (20)
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Fault identification using LSSVM
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FIGURE 1 | Structure of the proposed fault diagnostic system.
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where r and; is also a uniform random number ranging from
0to 1.

After computing the fitness of the ith agent at the current time
step, fit,(t), the gravitational and inertial masses for the ith agent

could be updated as

Mai:Mpi:Mii:Mi) i:1,2,...,N (21)
_ fiti(t) —worst (t)

"0 = best (1)~ worst (1) 22
_om(1)
MO S =

where the best and worst fitness values are respectively
defined as

best (t) = vl{na)gl} fit;(t) (24)
Jje{l...,
worst (t) = jeg,l_i__l,lN} fit;(t) (25)

Based on Eqs 17-25, the best agent corresponding to the
maximum value of fitness function can be determined.

PROPOSED FAULT DIAGNOSTIC SYSTEM
FOR WATER CHILLERS

The structure of the proposed fault diagnostic system for
centrifugal chillers is schematically shown in Figure 1. As
seen, the fault diagnostic system includes two parts, namely,
the feature extraction part and the fault identification part. The
feature extraction in the proposed fault diagnostic system was
performed using KPCA, while the fault identification was based
on LSSVM classifier. It was previously shown that “one-against-
one” logic was more suitable for the practical use of LSSVM
(Chih-Wei and Chih-Jen, 2002). Hence, it was adopted to solve
the multi-class classification problem in the current study. In both
feature extraction and fault identification parts, there are two
procedures, one for training the fault diagnostic model and the
other for testing. These two procedures are detailed as follows,
respectively.

In the model training process, the fault data from ASHARE
RP-1043 were collected and then normalized. Secondly, the
normalized data were mapped onto a feature space, ®(x),
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FIGURE 2 | Schematic diagram of the experimental centrifugal chiller
reported in ASHRAE RP1043.

which was nonlinearly related to the input space. Thirdly, using
the RBF, the kernel matrix, K, was evaluated, and thus it could be
eigen-decomposed to compute the corresponding eigenvalues
and eigenvectors. At the fourth step, through sorting the
eigenvalues, the CPV for the top s PCs could be calculated,
and the number of PC, d, determined based on a preset CPV
limit. Finally, the score matrix for each observation could be
obtained.

Next, in the fault identification part of model training
process, GSA was adopted to optimize the kernel width
parameter, o, and the regularization parameter, y, in
LSSVM model. Firstly, these two parameters, (y, o),
together with the parameters in GSA, namely, agent
number, N, and the maximum time step, f,,,, Wwere
initialized. Then, based on the data after being decomposed
by KPCA, the LSSVM model for fault identification could be
established. Thirdly, the fitness, namely, the fault diagnosis
accuracy, was obtained, and thus the corresponding, best(t),
worst(t), a;(t) and M;(t). Fourthly, the position of the agent, or
the parameter required to be optimized, could be updated. This
procedure was not stopped until the iteration time step, t,
reached its maximum value. Finally, the optimal pair of
parameters, (p, 0)op: was determined and the optimal
LSSVM model established.

On the other hand, based on the proposed fault diagnostic
model trained, the operating faults can be recognized. Given
a testing dataset, x,, through nonlinear mapping onto a
feature space, ®(x,), its kernel matrix, K, could be
evaluated. Then, the score matrix on the dominant
subspace constructed by the top d PCs was obtained, and
thus the original dataset, x,, was compressed to a low-
dimensional dataset, x,. Finally, the compressed dataset

Chiller Fault Diagnosis Using LSSVM

TABLE 1 | Fault types and their corresponding generation methods.

Fault code Fault type Generation method

1 ReduCF Reducing water flow rate entering the condenser
2 ReduEF Reducing water flow rate entering the evaporator
3 RefLeak Discharging refrigerant weight

4 RefOver Overcharging refrigerant weight

5 ExcsOil Increasing lubricant in charge

6 ConFoul Plugging tubes of the condenser

7 NonCon Adding nitrogen volume

was input to the optimal LSSVM model, and the different
types of fault could be identified.

EXPERIMENTAL DATA DESCRIPTIONS

In order to validate the proposed fault diagnosis method, the
operating data of a water-cooled chiller reported in the ASHRAE
Research Project 1043 (RP-1043) (Comstock et al., 1999) were
utilized. The experimental facility is schematically shown in
Figure 2. A shell-and-tube evaporator and condenser were
installed in the 90-ton centrifugal water chiller. There were
five flow paths in the experimental system, namely, the chilled
water circuit, the cooling water circuit, the hot water circuit, the
city water supply and the steam water supply. Detailed
descriptions of the experimental facility can be found in the
report ASHRAE RP 1043 (Comstock et al., 1999).

The experimental system was fully instrumented with highly-
precise sensors. 48 operating parameters were directly measured
and then used for evaluating the other 16 operating parameters,
and thus totally 64 variables were recorded. Seven types of faults
listed in Table 1 were manually imposed for generating their
corresponding fault samples.

It should be pointed out that for the seven typical faults, each
has four different severity levels, denoted by the symbols SL1 to
SL4, corresponding to the least severe fault to the most severe one.
Generally, in chiller routine operation, if a certain kind of fault
occurs, its severity level gradually grows with time. Timely
identifying the incipient fault is beneficial for reducing
equipment downtime, energy waste, and maintenance expense.
Hence, incipient fault identification is of vital significance to
prevent serious performance deterioration and ensure an optimal
system operation. A lower degree of fault severity level will have a
lesser influence on the system operation, which makes it more
difficult to identify the incipient faults than the serious ones (Yan
etal, 2014; Huang et al., 2018). Therefore, in the current research,
the seven typical faults at their least severity level, totally, seven
categories, were considered to examine the proposed fault
diagnosis method.

VALIDATION OF THE PROPOSED FAULT
DIAGNOSIS METHOD

Before developing the proposed fault diagnostic model, the
sample data were required to be pre-processed to filter out the
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TABLE 2 | Descriptions of the selected features.

No Feature Description

1 TEI Temperature of entering evaporator water

2 TEO Temperature of leaving evaporator water

3 TCl Temperature of entering condenser water

4 TCO Temperature of leaving condenser water

5 kW Compressor motor power consumption

6 TEA Evaporator Approach Temperature

7 TCA Condenser Approach Temperature

8 TRE Saturated Refrigerant Temperature in Evaporator
9 TRC Saturated Refrigerant Temperature in Condenser
10 TRC_sub Liquid-line Refrigerant Subcooling from Condenser
11 T_suc Refrigerant Suction Temperature

12 Tsh_suc Refrigerant Suction Superheat Temperature

13 TR_dis Refrigerant Discharge Temperature

14 Tsh_dis Refrigerant Discharge Superheat Temperature
15 TO_sump Temperature of Oil in Sump

16 PO_feed Temperature of Oil Feed

outliers and transient data between two steady states present. A
geometrically weighted variance based filter was adopted to
remove these measuring noises, which was the same as that
developed in the previous studies (Xia et al., 2021b). Three
key operating variables, namely, chilled water supply
temperature, inlet water temperatures of the evaporator and
condenser, were selected as the indicators of steady-state.
Consequently, measuring noises were able to be removed if
the related data went beyond the slop threshold predefined.
The slop threshold and time window length were 0.2°C and
80s, respectively. Furthermore, the filtered data were also
normalized in the data pre-processor for guaranteeing all the
variables having even contributions.

Within the pre-processed dataset, 560 experimental samples
were randomly selected and further separated into two parts; 420
samples (75% of the total samples) for training the fault
diagnostic model, while the remaining 140 samples (25% of
the total samples) for testing.

Feature Extraction

Before performing the feature extraction, the key features
representing the inherent characteristics of chillers should be
selected. In the current study, 16 variables were selected as the
fault indicative features, which was the same as that used in a
previous study (Zhao et al., 2013). The descriptions of these 16
indicative features are listed in Table 2.

For reducing the modelling complexity and computational
cost, KPCA based data decomposition was firstly performed to
realize the feature extraction. In order to illustrate the
performance of nonlinear data transformation using KPCA,
conventional PCA was also employed. The CPVs for the top
8 PCs using PCA and KPCA are shown in Table 3. The limits of
CPV for both PCA and KPCA were all predefined at 90%. As
seen, the CPV for the first 5 PCs could reach at 92.9% based on
PCA. Therefore, these top 5PCs, corresponding to the
eigenvalues of 7.8364, 3.7721, 1.4942, 1.1400, and 0.6318, were
selected to construct the dominant subspace. On the other hand,
when using KPCA for data decomposition, the CPV for the first

Chiller Fault Diagnosis Using LSSVM

TABLE 3 | Data decomposition results based on PCA and KPCA.

PC PCA KPCA
Eigen value CPV (%) Eigen value CPV (%)

1 7.8364 48.92 7.4545 64.65
2 3.7721 72.49 3.9127 83.33
3 1.4942 81.83 1.3008 92.86
4 1.1400 88.95 0.3474 95.41
5 0.6318 92.90 0.2534 97.27
6 0.6044 96.68 0.1968 98.71
7 0.3172 98.66 0.0644 99.18
8 0.0777 99.15 0.0233 99.35

Bold highlights the PC number selected.

3 PCs was able to reach at 92.86%. Hence, the input 16 features
were able to be compressed to these 3 uncorrelated
comprehensive features. This superiority was due to the fact
that according to Cover’s theorem, the nonlinear data
structure in the input space is more likely to be linear after
high-dimensional nonlinear mapping. Therefore, fewer PCs were
required when performing the data decomposition in a high-
dimensional feature space which was nonlinearly related to the
input space.

Fault Diagnosis Results

LSSVM Method Based on Grid Search With Cross
Validation

As mentioned in Introduction, grid search with cross validation is
predominantly used for parameter tuning in LSSVM. In this
regard, the proposed KPCA based LSSVM (KPCA-LSSVM) fault
diagnosis method with its parameters optimized by grid search
with 10-fold cross validation was performed as the basis for
comparison. In addition, the fault diagnostic models using single
SVM, single LSSVM and LSSVM with PCA data decomposition
(PCA-LSSVM) based on the same parameter tuning method were
also developed for demonstrating the performance of the
proposed KPCA-LSSVM method. The tuning results of (y, o)
for SVM, LSSVM, PCA-LSSVM and KPCA-LSSVM classifiers
were (32.056, 0.641), (2.158, 2.258), (1.138, 1.066) and (1.419,
1.886), respectively.

The fault diagnosis results as expressed in terms of the
confusion matrixes are shown in Figure 3. As seen, for two of
the most common faults, i.e., RefLeaf (fault code 3) and ConFoul
(fault code 6), all four classifiers shared similar results with the
reported fault diagnosis accuracy of over 85%. All the fault
samples of ConFoul (fault code 6) could be correctly identified
when using SVM classifier, while all that of RefLeaf (fault code 3)
could be successfully recognized when using KPCA-LSSVM
classifier. However, a closer look at the results of SVM
classifier illustrated that only 20% fault samples of ReduEF
(fault code 2) and RefOver (fault code 4) could be identified,
and the overall fault diagnosis accuracy was about 73.57%. When
using LSSVM, the fault diagnosis accuracies for these two types of
fault could be significantly improved to 82.4 and 54.6%,
respectively, and the overall fault diagnosis accuracy was
reported at 83.57%. When performing the PCA based data
decomposition  before using LSSVM for multi-class
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classification, as shown in Figure 3C, the fault diagnosis accuracy
for the fault of RefOver was further improved to 69.6%. While the
overall performance of PCA-LSSVM was reported at about 85%
which was not significantly improved as compared to that of
LSSVM, its training time was much less than the single LSSVM
classifier. The best performance among these four classifiers was
achieved using KPCA-LSSVM method. As seen in Figure 3D,
100% fault samples for the faults of RefLeak (fault code 3),
ExcsOil (fault code 5) and NonCon (fault code 7) could be
correctively diagnosed. While the fault diagnosis accuracy for
the fault of ReduEF was only 61.9% smaller than that of LSSVM
and PCA-LSSVM methods, the overall accuracy was reported at
about 89.29% larger than the other three classifiers.

LSSVM Method Optimized by GSA

As mentioned in Introduction, parameter optimization in LS-
SVM classifier is of great significance for its learning performance
and the generalization capability. The results reported in LSSVM
Method Based on Grid Search With Cross Validation were
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obtained based the conventional deterministic approach, namely,
grid search with cross validation. In this Section, the fault
diagnosis results based on KPCA-LSSVM method optimized
by GSA (KPCA-LSSVM-GSA) are reported. In addition,
another heuristic approach, called particle swarm optimization
(PSO) algorithm, was also adopted to tune the parameters in
LSSVM. In GSA, the agent number, N, was set at 30 and the
maximum iteration time step was predefined at 100. The
parameter tuning process as expressed in terms of the
variation in fitness value with the increase of iteration step is
shown in Figure 4. The fitness referred to the fault diagnosis
accuracy when training the diagnostic model. As seen, the best
fitness value of 91.6% was achieved at 28th iteration using PSO,
while the value of 96.6% at 26th iteration was achieved using GSA.
Their corresponding pairs of the regularization parameter, y, and
the kernel bandwidth, o, were (1.634, 2.308) and (1.414, 1.047),
respectively. Therefore, GSA was more advantageous than PSO
when tuning the parameters in LSSVM, as expressed in terms of a
higher fitness value and a shorter convergence time.

Figure 5 displays the fault diagnosis results based on the
proposed KPCA-LSSVM method optimized by PSO and GSA. As
seen, all the fault samples for the faults of ExcsOil (fault code 5)
and NonCon (fault code 7) were able to be correctively diagnosed
using both methods. When using the proposed KPCA-LSSVM-
GSA method, the fault diagnosis accuracies for the remaining five
types of fault, except for the fault of ConFoul (fault code 6), were
larger than that in the case of using the KPCA-LSSVM-PSO
method. While the fault diagnosis accuracy for the fault of
ConFoul (fault code 6) was reported at 90%, it was acceptable
in practical application. With respect to the KPCA-LSSVM-GSA
method, its fault diagnosis accuracies for the fault of ReduCF
(fault code 1), ReduEF (fault code 2), RefLeak (fault code 3) and
RefOver (fault code 4) were 100, 89.5, 100, and 92.3%,
respectively. For the KPCA-LSSVM-PSO method, the

corresponding diagnosis accuracies were 92.6, 72.7, 89 and
91.7%, respectively. In short, the overall fault diagnosis
accuracies of KPCA-LSSVM-PSO and KPCA-LSSVM-GSA
methods were 91.42 and 95.7%, respectively, larger than that
of KPCA-LSSVM method tuned by grid search with cross
validation. These results indicated that the heuristic
optimization methods were more suitable to tune the
parameters in LSSVM as compared to the deterministic
optimization method. Moreover, the fault diagnosis
performance for KPCA-LSSVM-GSA method was better than
the KPCA-LSSVM-PSO as expressed in terms of a higher overall
fault diagnosis accuracy. This was because, as indicated in
Figure 4, a better model training performance could be
achieved using the GSA, and thus a higher fault diagnosis
accuracy could be obtained using the GSA optimized
parameters in LSSVM fault diagnostic model.

DISCUSSIONS

The fault diagnosis results aforementioned demonstrating the
proposed KPCA-LSSVM-GSA method shared the best fault
diagnosis performance among these mentioned methods. The
improvement in fault diagnosis performance owes to the
following aspects. Firstly, as compared to the conventional
PCA method, in water chillers whose operating process
exhibits high nonlinearities, KPCA is more suitable for feature
extraction. In addition, via converting inequality constraints in
SVM into equality constraints by minimizing squared error
rather than non-negative error in objective function, LSSVM
classifier is more advantageous to tackle with the problems arising
from the large amount of training samples. Finally, the fault
diagnosis results indicated that GSA was an effective tool to tune
the parameters in LSSVM. This was partially due to the fact that
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the heuristic optimizers generally present a higher probability of
obtaining a global solution than the deterministic ones.

Moreover, as mentioned in Feature Extraction, the commonly
used 16 variables were selected as the indicative features for
validating the proposed FDD method. It is well acknowledged
that feature selection significantly influences the FDD
performance, and with the change of FDD methods, the
corresponding indicative features selected may be varied. For
example, instead of 16, 8 variables were selected when performing
SVDD based method for fault detection (Li et al., 2016). Wang
et al. (2018) selected 9 variables as input features, while Huang
et al. (2018) used 10 variables for associative classifier based fault
diagnostic model development. In this regard, more efforts will be
done to examine the proposed method with different input
features. Furthermore, it should be pointed out that the FDD
results of the proposed method were based on the experimental
data form ASHRAE RP-1043 reported in 1999. While lots of
improvements have been made in water chillers to enhance the
operational performance, the basic working process in water
chillers is still unchanged, and thus the general results
obtained and the related analysis should remain valid. It is our
belief that the proposed fault diagnosis method is capable to be
extended to other water chillers.

CONCLUSION

This article reports on the development of an effective way of
diagnosing chiller failure using KPCA based LSSVM classifier with
its parameters being optimized by GSA. The proposed fault
diagnostic model was validated using the experimental data
generated from ASHRAE RP-1043, and further compared with
that in the case of using a single SVM classifier, single LSSVM
classifier, PCA based LSSVM classifler, grid search algorithm tuned
KPCA-LSSVM classifier and PSO tuned KPCA-LSSVM classifier.
Results indicated that the best possible fault diagnosis performance
could be accomplished with the proposed GSA tuned KPCA-
LSSVM classifier. The main contributions are concluded as follows:

e Considering the nonlinearities exhibited in water chillers,
KPCA is more suitable for feature extraction in comparison
to the conventional PCA method. The overall fault
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GLOSSARY

0 kernel parameter

A regularization parameter

b bias

e predicted error

« lagrange multiplier

Y output

a acceleration in GSA

¥ velocity in GSA

X the position in GSA

F force in GSA

M, active gravitational mass in GSA
MP passive gravitational mass in GSA
M; inertial mass in GSA

R euclidian distance in GSA

K{(e) kernel function

@(+), ¢(*) mapping function

X input vector

Y output vector

Chiller Fault Diagnosis Using LSSVM

W weight vector

Q. orthonormal eigenvectors

C covariance matrix

K kernel matrix

A/C air conditioning

AHU air handling unit

CPV cumulative percent variance

DX direct expansion

FDD fault detection and diagnosis

GSA gravitational search algorithm

HYVAC heating, ventilation and air conditioning
KPCA kernel principal component analysis
LSSVM least squares support vector machine
PC principal component

PCA principal component analysis

PSO particle swarm optimization

SVM support vector machine

VREF variable refrigerant flow

Frontiers in Energy Research | www.frontiersin.org

13

November 2021 | Volume 9 | Article 755649


https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

	Incipient Chiller Fault Diagnosis Using an Optimized Least Squares Support Vector Machine With Gravitational Search Algorithm
	Introduction
	Methods and Principles
	Kernel Principal Component Analysis
	Least Squares Support Vector Machine
	Gravitational Search Algorithm

	Proposed Fault Diagnostic System for Water Chillers
	Experimental Data Descriptions
	Validation of the Proposed Fault Diagnosis Method
	Feature Extraction
	Fault Diagnosis Results
	LSSVM Method Based on Grid Search With Cross Validation
	LSSVM Method Optimized by GSA


	Discussions
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References
	Glossary


