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In this article, alumina/water nanofluid (NF) flow in a heatsink (H-S) with wavy
microchannels (W-MCs) is simulated. The H-S is made of aluminum containing four
similar parts. Each part has an inlet and outlet. Constant heat flux is applied on the
bottom of the H-S. The study is based on two-phase (T-P) mixture and single-phase (S-P)
models to determine the difference between these two types of simulations. FLUENT
software and the control volume method were used for simulations. The volume control
method is employed to solve equations. The effective variables include the volume fraction
0 < φ < 5% of alumina and Reynolds number (Re) 300 < Re < 1800. The maximum H-S
bottom temperature, the required amount of pumping power (PP), the temperature
uniformity, and the heat resistance of the H-S are the outputs studied to simulate the
S-P and T-P models. The results show that the use of the T-P model has less error in
comparison with the experimental data than the S-P model. An increment in the Re and φ
reduces the maximum temperature (M-T) of the H-S. The S-P model, especially at a higher
value of φ, leads to a lower M-T value than the T-P model. The S-P model shows a 0.5%
greater decrease than the T-P model at the Reynolds number of 300 by enhancing the
volume percentage of nanoparticles (NPs) from 1 to 5%. Temperature uniformity is
improved with Re and φ. The reduction of H-S thermal resistance with Re and φ is the
result of this study. Adding NPs to water, especially at higher amounts of φ, enhances the
required PP. The T-P model predicts higher PP than the S-P one, especially at a high value
of φ. The T-P model shows 4% more PP than the S-P model at Re � 30 and a volume
fraction of 4%.
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INTRODUCTION

Heatsinks (H-Ss) are widely used in various industries such as
electronics and electrical industries, solar industries, military
industries, aerospace, etc. H-Ss are employed to prevent the
temperature enhancement of electronic components in different
devices (Nakayama, 1986). Electronic components need to be cooled
so that the components are not damaged. They are heated during the
operation and power consumption and therefore need to be cooled
(Alihosseini et al., 2020). These parts are used in many devices. The
H-Ss play a pivotal role, and many researchers have studied their
performance (SohelMurshed and Nieto de Castro, 2017; Zhao et al.,
2019; Qi et al., 2020a; Cheng et al., 2021; Pordanjani et al., 2021; Tian
et al., 2021). The purpose of these studies has been to enhance the
thermal efficiency of the H-S and thus reduce the temperature of the
electronic components on which the H-S is installed. Researchers
have used different base fluids for their studies (Choi et al., 2012;
Zhang et al., 2020a). Air has gained a lot of attention due to its
availability and cheapness, but due to its limited cooling capacity, it is
not suitable for parts with very high processing power. However,
various researchers have used air as a H-S working fluid (Khattak
and Ali, 2019; Elsayed et al., 2020). Kalbasi (2021) introduced a new
H-S using phase-change material (PCM) and air-adopted with
electrical equipment. He used the characteristics of PCM and air
to remove heat and keep the temperature of the electronic
device low.

Nowadays, nanotechnology and the use of devices in micro-
and nanoscales are widely used in various applied industries with
different scientific fields (Li et al., 2019; Zhang et al., 2020b; Zhang
et al., 2020c; Guan et al., 2020; Zhang et al., 2021). Due to the
limited cooling capacity of air, some researchers have used various
liquids, including water, to cool the H-S. One of the fluids that is
widely used as a coolant is nanofluids (NFs) (Afrand et al., 2014;
Aghakhani et al., 2019; HajatzadehPordanjani et al., 2019;
Toghyani et al., 2019; Ghalandari et al., 2020). NFs have better
thermal properties, especially thermal conductivity, than their base
fluids (Esfe et al., 2019; Eshgarf et al., 2020; ShahsavarGoldanlou
et al., 2020; Yan et al., 2020; Maleki et al., 2021; Pordanjani and
Aghakhani, 2021). Various researchers have used NFs in different
fields of heat transfer (Aybar et al., 2015; Ghodsinezhad et al., 2016;
Sharifpur et al., 2016; Aghakhani et al., 2020; Shi et al., 2021),
including closed enclosures, heat exchangers, solar energy, etc.
(Giwa et al., 2020; Osman et al., 2019; Esfe et al., 2018; Shahsavani
et al., 2018). Numerous articles have been presented on the use of
NFs in H-Ss (Saeed and Kim, 2018; Awais and Kim, 2020; Qi et al.,
2020b; Tariq et al., 2020; Yang et al., 2020).

Single-phase (S-P) and two-phase (T-P) mixture models can
be used to simulate the cooling performance of NFs in different
equipment (Shadloo et al., 2020; SafdariShadloo, 2021). The
possible difference in the results of using these methods
encouraged a group of researchers to simulate various
problems using these models and compare the results with
experimental data (MokhtariMoghari et al., 2011; Göktepe
et al., 2014). In the above-mentioned articles, considering NF
flow in various heat exchangers, the S-P model has been used to
model the NF flow; however, the researchers have rarely
employed the T-P method to simulate the performance of NF.

In one of these articles, Akbari et al. (2012) analyzed the cooling
performance of water–Al2O3 NF in a tube using these two
schemes. It was reported that the outcomes of the T-P method
are more consistent with the experimental data. In another study,
Moraveji and Ardehali (2013) compared the results of two
methods and revealed the superior performance of the T-P
method compared to the S-P one.

Due to the wide range of applications of H-Ss in the applied
industry, a large number of studies have been conducted in this field.
The reason for researchers’ attention to H-Ss is their widespread use
and importance in industries. This study aims to enhance the
thermal efficiency of H-Ss by changing their geometry. On the
other hand, the use of NFs in recent decades has been very much
considered by researchers due to the challenge of using S-P or T-P
models in recent years (Peng et al., 2020; Ahmadi et al., 2020;
Ahmadi et al., 2020; Giwa et al., 2021; Bagherzadeh et al., 2019). In
the present article, the effect of using alumina/water NF flow in aH-S
with wavy walls is numerically investigated. One of the innovations
of this work is the comparison of S-P and T-P schemes in the H-S.
H-S temperature, temperature uniformity, pumping power (PP),
and heat resistance of H-S at different values of Re and φ are studied.
The effective variables are Reynolds number (Re) and φ when S-P
and T-P models are employed. In summary, the effect of S-P and
T-P modeling of NFs in a H-S with wavy walls is the innovation of
the present work.

PROBLEM DESCRIPTION

The H-S is a rectangle structure of four similar parts made of
aluminum, as shown in Figure 1. The dimensions of the H-S,
including its thickness, wall thickness, and the dimensions of the
inlets and outlets can be seen in Figure 1. A constant heat flux of
1 MW/m2 is applied to the bottom of the H-S. The heat flux is
applied to the enclosure with a surface area of 111.6 mm2, which
is located under the microchannels. The wavy microchannel
(W-MC) walls are designed to be corrugated to enhance heat
transfer. Alumina/water NF flows in the middle of the W-MCs.
By changing φ from 0 to 5%, the thermal efficiency of the H-S is
evaluated using the T-P and S-P models.

GOVERNING EQUATIONS

S-P Model Equations
The equations governing fluid flow within the H-S, as S-P for the
laminar and continuous flow of incompressible Newtonian fluid,
are as follows. These equations include mass, momentum, and
energy conservation (Akbari et al., 2011):

∇.(ρ �v) � 0 (1)

ρ �v.∇ �v � −∇P + ∇.(μ∇ �v) (2)

∇.(ρ �vcpT) � ∇.(k∇T). (3)

where, �vis the velocity; T is the temperature, P is the pressure, ρ is
the density, k is thermal conductivity, cp is the specific heat
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capacity, and μ is the viscosity. These properties correspond to
NFs, which are calculated as follows:

ρ � φρp + (1 − φ)ρf (4)

ρcp � (1 − φ)(ρcp)f + φ(ρcp)p. (5)

where, the indices p and f refer to nanoparticles (NPs) and the
base fluid, respectively, and φ is the volume fraction of NP. The
viscosity of the NF is calculated according to the following
equation, and this equation is specific to alumina NF
(Khanafer and Vafai, 2011):

μ � −0.4491 + 28.837
T

+ 0.574φ − 0.1634φ2 + 23.053
φ2

T2

+ 0.0132φ3 − 2354.735
φ

T3
+ 23.498

φ2

d2
− 3.0185

φ3

d2
. (6)

The equation of thermal conductivity, which depends on the
diameter of NPs, is expressed as follows (Teng et al., 2010):

k

kf
� 0.991 + 0.253(100ω) − 0.001 T − 0.002d − 0.189(100ω)2

+ 6.190 × 10−5T2 + 1.317 × 10−5d2 + 0.049(100ω)3 − 7.66

× 10−7T3. (7)

where d is the diameter of NPs equal to 40 nm, ω is the mass
percentage of NPs, and T is the temperature. Other properties of
water and alumina NPs are given in Table 1.

T-P Mixture Model Equations
The T-P model solves mass, momentum, and energy
conservation equations for the mixture as a volume
percentage equation for the second phase (Akbari et al.,
2012; Moraveji and Ardehali, 2013). Then, the relative
velocities are calculated using the equations. Relative
equations are defined as follows:

Conservation of mass:

∇.(ρm �vm) � 0. (8)

FIGURE 1 | Details of the H-S geometry.

TABLE 1 | Thermophysical properties of water and Al2O3 Teng et al. (2010),
Khanafer and Vafai (2011), Aghakhani et al. (2019).

CP (J/kg.k) k(W/m.k) ρ(kg/m3) μ (kg/m.s)

Water 4,179 0.613 997.1 0.001
Al2O3 765 40 3,970 —

FIGURE 2 | The impact of the number of grid elements on the TAve of
the H-S.
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Conservation of momentum:

∇.(ρm �vm.∇ �vm) � −∇Pm + ∇.(μ∇ �vm) − ρm,iβm,ig(T − Ti)

+∇.⎛⎝∑n
k�1

Fikρk �vdr,k �vdr,k⎞⎠. (9)

where the index m represents the mixture. In the above equations,
the mean velocity values of the mixture and density can be
expressed as follows:

�vm � ∑n
k�1Fikρk �vk

ρm
. (10)

ρm � ∑n
k�1

Fikρk. (11)

Conservation of energy:

∇.⎛⎝∑n
k�1

Fikρkcp,k �vkT⎞⎠ � ∇.(k∇T). (12)

Volumetric percentage:

∇.(Fipρp �vm) � −∇.(Fipρp �vdr,p). (13)

It should be pointed out that the S-P model equations (Eq. 6
and Eq. 7) are used for the thermal conductivity and viscosity
models in the T-P model. Drift velocity expressed for the second
phase and can be calculated using the following equation for the
kth phase:

�vdr,k � �vpf −∑n
i�1

Fikρk
ρm

�vfk. (14)

Slip velocity, or relative velocity, is defined as the secondary
phase velocity depending on the primary phase.

�vpf � �vp − �vf. (15)

�vpf � ρpd
2
p(ρp − ρm)

18μff dragρp
�a. (16)

f drag � [ 1 + 0.15Re0.687p , Rep ≤ 1000
0.0183Re0.687p , Rep > 1000

(17)

The gravitational acceleration is also defined as follows:

�a � �g − ( �vm.∇) �vm. (18)

where the heat transfer is by natural convection, and the
gravitational acceleration is considered in the equations.

Boundary Conditions
It should be pointed out that the no-slip boundary condition is
applied to the walls. In the H-S, which is made of aluminum (Al)
with thermal conductivity of 202.4W/mK and a specific heat
capacity of 871 J/kg.K, conductive heat transfer occurs. A
constant heat flux of 1MW/m2is applied on the H-S bottom

FIGURE 3 |Comparison of the average Nusselt number between the present study, an experimental work (Ho and Chen, 2013), and a numerical one (Moraveji and
Ardehali, 2013).

TABLE 2 | Local heat transfer coefficient for two channel lengths: comparison
between the present work and the work of Kim et al. (2009).

x/D Kim et al. (2009) Present study Error (%)

22 1,440 1,501 4.2
394 723 763 5.5

TABLE 3 | Comparison of the result between the S-P and T-P models with the
experimental data Ho and Chen (2013).

Re 135 390 655 915 1,300 1,530

Average Nusselt number

Ho and Chen (2013) 6.07 7.71 10.12 12.14 13.15 13.63
S-P 5.85 7.48 9.7 11.85 12.88 13.41
%Err 3.6 2.9 4.1 2.3 2.0 1.6
T-P 6.1 7.75 10.30 12.31 13.40 13.80
%Err 0.5 0.5 1.7 1.4 1.9 1.2

Frontiers in Energy Research | www.frontiersin.org October 2021 | Volume 9 | Article 7602014

Khetib et al. Micro-Heatsink With Wavy Microchannels

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


with an area of 111.6mm2. The top wall of the H-S is assumed to
be insulated. The fluid enters the H-S at a temperature of 293K
and exits at a p � 101.325 kPa boundary condition.

Numerical Method and Validation
To simulate the problem, geometry is first generated and meshed by
mesh software. The generated mesh type is tetrahedral. The control
volume method is employed for numerical solution, and the
SIMPLE algorithm is used to couple the velocity and pressure
fields. The second-order upwind model is used to solve the
equations of momentum and energy. The convergence criterion
used for all equations is set to 10−5. A PC with CPU i7 and 8-GB
DDR4 RAM had been used to solve the equations. The approximate
time of the runs varied from 150 to 200min depending on the
Reynolds number. Themesh generated on the geometry is evaluated
for S-P and T-P models. Different results are examined for different

numbers of the grid point, and eventually, the grid with 1,552,680
elements is selected as the optimal one. Figure 2 demonstrates the
average temperature of the H-S for various numbers of elements at
two Re, when φ � 5% for T-P and S-P models.

For the validation, the results are compared with two other
articles to investigate the accuracy of the S-P and T-P models using
the thermal conduction model and the selected viscosity. The
verification is performed using numerical simulations of
Moraveji and Ardehali (2013) and experimental data of Ho and
Chen (2013). The results of the comparison are provided in
Figure 3. As can be seen, the differences between the results are
small, particularly with experimental results, and the results are
more promising. The maximum error for the S-P model was
observed for Re � 655 compared to the experimental data of Ho
and Chen (2013). The maximum error of the S-P model was 4.1%
and that of the T-P one was 1.9% at Re � 1,300.

FIGURE 4 | Velocity contours on the middle plane of the H-S for various amounts of Re for water/Al2O3 with φ � 5%.
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Besides, the value of the local heat transfer coefficient is
compared between the present work and that of Kim et al.
(2009) for two different channel lengths (Table 2). The
comparison table shows that the simulation results are
reasonable due to a maximum error of 5.5% between the
present work and the experimental data.

RESULTS AND DISCUSSION

It is necessary to measure the error of both S-P and T-P models
with a valid reference to determine which method is more
accurate with respect to the experimental data.

Table 3 shows the error values of T-P and S-P models
compared with the experimental model of Ho and Chen
(2013). It can be seen that the amount of error between the
T-P model and the experimental work is less than the S-P one. It
is generally seen that the amount of simulation error at lower
amounts of Re is lower for both models than for high values of Re.

FIGURE 5 | Velocity vector of the NF flow for Re � 1800.

FIGURE 6 |Maximum H-S temperature at different values of Re when φ
� 2% for the T-P and S-P simulation models.

FIGURE 7 | Temperature uniformity at the H-S bottom at different values
of Re when φ � 2% for the T-P and S-P simulation models.
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Finally, it is found that the T-P model leads to better results in the
W-MCs than the S-P one.

Figure 4 presents contours on the middle plane of the H-S for
various amounts of Re for water/Al2O3, with φ � 5%. As can be
seen, the enhancement in Re raises the velocity in the
microchannels. An increment in the Re means an
enhancement in the fluid velocity in the inlet of the H-S. It is
observed that the maximum velocity occurs in the internal
microchannels of the H-S. In such a H-S, the fluid moves
faster due to shorter distance. The use of NFs slightly reduces
the maximum velocity in the H-S.

Figure 5 demonstrates the velocity vector for the NF flow at
Re � 1800. This figure clearly displays the motion direction of the
fluid. It can be observed that the fluid is directed toward theW-MCs
after entering, and the velocity in the internal W-MC is higher than
in other regions. This channel has a higher velocity because of its
shorter passage to the outlet and less energy loss in the fluid due to its
viscosity. In sharp corners, the velocity variations are more
noticeable. In the W-MC, the velocity is enhanced in its spiral parts.

Figure 6 shows the maximum temperature (M-T) of the H-S
at different values of Re when φ � 2% for T-P and S-P simulation
models. It can be seen that an increment in the Re reduces the
M-T for both types of NF models. Also, an enhancement in the φ
has the same effect. For T-P simulation, the mixture model is
used, and for the S-P model, the expressed relationships for
viscosity and temperature-dependent thermal conductivity are
used. It can be seen that at low amounts of φ, the difference
between the S-P and T-P models is low, but the amount of
temperature difference is enhanced with enhancing φ. The
temperature value obtained by the T-P method is slightly
lower than that achieved from the S-P one, which is more
accurate due to the validation of the T-P model.

Figure 7 shows the temperature uniformity at the H-S bottom
at different values of Re when φ � 2% for the T-P and S-P
simulation models. The amount of temperature uniformity
depends on the M-T and minimum temperature of H-S. As
the Re is enhanced, the amount of Teta is reduced, which means
better temperature uniformity. Enhancing the φ has the same
result. The reduction in the M-T is the most important reason for
the increase in temperature uniformity. It can be seen that the
difference between the simulations using the T-P and S-P models
when φ � 0.05 is more noticeable. In the S-Pmodel, the results are
dependent on the viscosity and thermal conductivity models, and
changing the viscosity and thermal conductivity models can
change the results.

Figure 8 shows the H-S thermal resistance at different
amounts of Re and two values of φ for the T-P and S-P
simulation models. It can be seen that the enhancement in Re
reduces the amount of heat resistance of the H-S. The addition of
more NPs has the same effect. A reduction in the average
temperature of the H-S with Re and φ reduces the heat
resistance of the H-S. It can be observed that there is a
difference in the simulation results of the S-P and T-P models,
which is higher at larger amounts of φ. Of course, the difference
between the T-P and S-P models is more noticeable at lower
magnitudes of Re. At lower flow rates, the effect of NF on heat
transfer is higher, and as a result, the effect of NF simulation is
more noticeable.

Figure 9 shows PP at different values of Re when φ � 2% for
T-P and S-P simulationmodels. An increment in the Remeans an
enhancement in the volume flow rate of the fluid, leading to
intensification in the amount of power required by the pump. The
addition of NPs in both NF models enhances the viscosity, so the
shear stress in the fluid is increased, and more power is required

FIGURE 8 | H-S thermal resistance at different amounts of Re and two
values φ for the T-P and S-P simulation models.

FIGURE 9 | PP at different values of Re when φ � 2% for the T-P and S-P
simulation models.
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for the NF pumping. Since the effect of adding NPs to the fluid is
much less than the variations of Re on the PP, the effect of the S-P
or T-P model on the PP is low. However, at high fluid velocities
and at values of Re where the shear stress has a more significant
effect, the effect of the S-P and T-Pmodels is more visible. At high
values of Re, for example, 1800, the role of the type of viscosity is
more important. In this respect, at Re � 1800, the difference
between the results is more remarkable. The value expressed by
the T-P model for PP is more significant than the S-P one.

CONCLUSION

This article simulated the water/alumina NF flow in a H-S with
W-MC using S-P and T-P models. By changing the Re and φ, the
M-T, H-S temperature uniformity, thermal resistance, and PP
were studied. The results of numerical analysis and comparison of
two models demonstrated the following:

1) In general, the error percentage of using the T-P mixer model is
lower than the S-P method, but the error of both methods is
enhanced compared to the experimental data by increasing φ.

2) An increment in the Re and φ reduces theM-T in the H-S. The
S-P method predicts a lower M-T than the T-P one. At Re of
300, an increment in the volume percentage of NPs from 1 to
5% reduces the maximum H-S temperature by 3.9 and 3.4%
for the S-P and T-P models, respectively.

3) An enhancement in the flow rate and the use of thicker NF
provide better temperature uniformity in the H-S. The S-P
method predicts a better amount of temperature uniformity
than the T-P model.

4) An increment in the φ and the Re reduces the thermal
resistance of the H-S. The T-P mixer model shows higher
thermal resistance than the S-P one.

5) At low NF velocities, an enhancement in the φ and the type of
phase model do not have a considerable effect on the PP, while
at higher velocities, the addition of NPs enhances the PP, and
the T-P model has a higher prediction than the S-P one.
Enhancing the volume percentage of NPs from 1 to 5%
increases the amount of PP by 24 and 28% for the S-P and
T-P models, respectively, when Re � 300.
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