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The severity of the ongoing environmental crisis has prompted the development of
renewable energy generation and smart grids integration. The access of enewable
energy makes the economic dispatching of smart grid complicated. Therefore, the
economic dispatching model for smart grid is very necessary. This paper presents an
economic dispatching model of smart power grid, which considers both economy and
pollution emission. The smart grid model used for the simulation is construced of wind
energy, solar energy, fuel cell, and thermal power, and the use of fuel cell enables the smart
grid to achieve multi-energy complementar. To overcome the defect of the traditional
centralized communication methods, which are prone to communication jams, this paper
adopts a multi-agent inform ation exchange method to improve the stability and efficiency.
In terms of the solution method for this model, this paper proposes Improved Strength
Pareto Evolutionary Algorithm 2(ISPEA2) and Improved Non-dominated Sorting Genetic
Algorithm 2(INSGA2) that solves the economic dispatch problem of a smart grid. The
strength Pareto evolutionary algorithm 2(SPEA2),non-dominated sorting genetic algorithm
2(NSGA2) and the improved algorithms are simultaneously applied to the proposed smart
grid model for economic dispatching simulation. The simulation results show that ISPEA2
and INSGA2 are effective. ISPEA2 and INSGA2 have shown improvements over SPEA2
and NSGAZ2 in accuracy or running times.

Keywords: economic dispatch (ED) problem, multi-objective optimization (MOO), SPEA2 method, NSGA2, smart grid
(SG) power system

1 INTRODUCTION

While traditonal fossil fuels has brought tremendous postive impact to the world, its large negative
impacts to the environment is hard to ignore and many would argue that it’'s one of the most
important problems faced by humanity right now. The concept of “carbon peak” and “carbon
neutral” make people pay more and more attention to the application of renewable energy in power
generation. The economic dispatching problem of power grid is very important all the time. The
original economic dispatch problem of electric power grid can be traced back to the 1920s. The main
types of generators in traditional electric power grids are thermal power generators. At the same time,
the total number of power units is small, which makes the economic dispatch problem of the ancient
electric power grid relatively simple. The access of renewable energy makes the economic dispatch
problem of smart grid complicated and the economic dispatching model of smart grid becomes very
important. Many scholars have carried out research in related fields. A new distributed dual-Newton
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descent (DDND) algorithm for energy management of
multiple energy bodies is proposed in Literature Yushuai
et al. (2020). Literature Li et al. (2019) proposed an event-
triggered based distributed algorithm for energy management
of multi-energy systems. In order to enhance the adaptability
and flexibility of multi-energy systems, a double-mode energy
management model of multi-energy systems is established in
Literature Li et al. (2020). Literature Jing (2018) many studies
on the economic dispatch of smart grids. Literature Tang et al.
(2019) applies the Lagrangian method to solve economic
scheduling problems in large wind power scenarios.
literature Liang et al. (2017) proposes a state-based
potential game approach to solve the smart grid economic
dispatch problem. Literature Yin et al. (2020) combined deep
learning with the economic dispatch of smart grids, and the
authors proposed a possibility for the future development of
smart grids. Literature Elnozahy et al. (2021) applied artificial
neural network and sliding mode control to new energy
operation control. As shown by the recent research trends,
it’s inevitable that power grid will become more and more
intelligent, requireing more information exchange between
different components of the powergrid and communication
congestion will become one of the most prevalent challenges as
mentioned in Ali et al. (2018). To address the communication
congestion issues, this paper proposes a dis tributed
communication scheme that greatly improves the
communication  efficienc and  robustness of the
communication network. It can better meet the plug-and-
play of smart grids. Literature Younes et al. (2021) proposes
a new smart grid economic dispatch method, but this method
is a single-objective optimization. This paper proposes a multi-
objective (Zx and Kai, 2021; Simonetti et al., 2021; Zhou et al,,
2021) optimization in the true sense, and the results are
expressed by the Pareto-front (Hja et al., 2019; Zheng and
Wang 2019), which expresses the relationship between cost
and emissions. Therefore, the solution method for the
economic dispatch model of smart grid proposed in this
paper shall use multi-objective optimization algorithms.
Among many published multi-objective optimization
algorithms, some of them have received very high attention
in scientific, engineering and commercial applications because
of their powerful ability to obtain the closest approximation to
the real Pareto frontier. SPEA2 and NSGA2 are two widely
adopted multi-objective optimization algorithms, but their
computational performances still have the potential to
improve due to fixed genetic parameters. In this paper, the
two algorithms are improved, and the simulation results show
that the improved algorithms are effective.

The main contributions of this paper are as follows: Firstly,
wind power, thermal power, solar power, and fuel cells are used to
construct a multi-energy complementary smart grid economic
dispatching model. Both economy and pollution emission are
considered in this model. Secondly, two algorithms are improved
in this paper. The performance of four algorithms in solving the
economic dispatching of a smart grid is compared. The solutions
and running time are analyzed, providing more algorithm choices
for the economic dispatching of the smart grid. Experimental
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results show that ISPEA2 is more accurate than before. INSGA2 has
higher computational accuracy and higher computational speed than
before. Finally, a distributed communication method is proposed in
this article to obtain information through the neighbor nodes, which
is suitable for the plug-and-play mode of smart grids.

2 PROBLEM DESCRIPTION

In this paper, a mathematical model is established with generators
of photovoltaic(PV) wind, thermal, and fuel cells. In this model,
multi-energy complementarity is reflected.

2.1 Cost Function and Constraints
As mentioned in Zhang and Liang (2021), Hetzer et al. (2008), the
cost of the system is the sum of the costs of all generators.

C.() =X Cri(t)+ ) Crs() + ) Copri(t)
+Y Crip(t)+ ) Crir () + Y Cui(t) (1)
+3 Cair (8) + ) Cainr (£) + ) Cpy, (t)

The acronyms are shown as follows C,(t) total cost of grid, C, «(t)
cost of thermal unit, Cr;(£) cost of wind unit, Cg; () penalty cost
of wind, Cg;(f) reserve cost of wind, Cy(t) cost of fuel cell,
C,;,(t) thermal load cost, C,; y(t) hydrogen storing cost, Cpy(t)
Photovoltaic power generation cost, All generators can not exceed
their respective generating capacity (Hetzer et al., 2008; El-Sharkh
et al., 2006; Yin et al., 2021).

P (t) < P, (t) < PP (1), Vi, (2)
PR (£) < Pai (8) < PR (1), Vi, ®)
0<Py,;(t) <Py, Vi, (4)

0 < Ppyi (£) < P (1), Vi, ®)

The acronyms are shown as follows P, (t) power of thermal unit,
P (t) maximum thermal generator power, P;');""(t) minimum
thermal generator power, P;(t) power of fuel cell, P (t)
maximum fuel cell power, P;’,‘,’f”(t) minimum fuel cell power,
P¢(t) power output of wind unit, P, wind unit rated power,
Ppy,(t) Photovoltaic generator output power, Py} (f) Maximum
output power of photovoltaic generator, The total generating power
must meet the sum of power demand, Pp,.,,,(t) is total power demand.

Y Prvi(t)+ Y Ppi(t)+ ) Pri(t)+ ) Pai(t) = Ppew (1), Vi,
(6)
2.2 The Model of Unit Operation

Thermal power generating units conform to the following model
(Hemamalini and Simon, 2009; Cheong et al., 2010; Bahrani and
Patra, 2017; Wang et al., 2010; Wei et al,, 2021).

%Pi,- (t)+ BPri (1) +y, + | sin( £i( P (8) - Pos (1)) @)

E.i(t) = a;+biPi(t) + P (t) +eiexp (kP (1) (8)

Cr,i (t) =

a; by c; e f; are emission coeffcients. 0; B i ¢ k; are cost
coefficients. This article takes 8; = 1, f; = 1.25, y;, = 1, ¢; = 0.3,
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K; = 15, a; = 0.036, b; = 0.04256, ¢; = 0.06490, ¢; = 2.6615™°, f; =
2.857. Wind turbine generators conforms to the following model
(Hetzer et al,, 2008). k,; is penalty cost coefficient and P is
available wind for generator,

Cyi(t) = diPy, (1) 9)
Crip(t) = kp(Prix = Pyi(t))
= kyil0.5P7  Ver f (u) = (Pl = Pri(t)P i
+0.5P2 e I (10)

#=Pfit)

This article takes k,; = 2. If the power of the wind turbine is less
than the required value, then power compensation must be
obtained from the outside world (Hetzer et al., 2008).

Crir(t) = kri(Pf,i (1) - Pf,i,k)

2 4=0.5+ L
~0.5P%  Nmer f (i)]mos (11)

This article takes k,;, = 4. PEM fuel cell conforms to the
following model El-Sharkh et al., 2006).

(12)

Cri(t) = C,,(Pd’i (t) + sz(t) +P, (t))

;-

C, is price of natural gas, Py, is auxiliary devices power, P
is equivalent power for hydrogen production, #; is electrical
efficiency of fuel cell. This article takes C,, = 0.4. When the fuel
cell is loaded enough, the heat generated can be used to
generate electricity. It is worth mentioning that multi-
energy complementarity is achieved in this case. At this
point, the working situation of the fuel cell unit is more
complicated. This paper considers the operation of the fuel
cell unit in this case. The use of fuel cells can meet not only the
electrical load, but also the thermal load. Partial load ratio is
represented here by PR. The ratio of heat energy to electric
energy is expressed asyp p = 0.6801. When PR <0.05, #,_ =
0.2716. When PR > 0.05, #;_ is expressed in Eq. 13.

M, = 0.9033PR; — 2.9996PR; + 3.6503PR; — 2.0704PR;
+0.4623PR; + 0.3747 (13)

The ratio of heat energy to electric energy is expressed as
Eq. 14.

Yap = 1.0785PR} — 1.9739PR; + 1.5005PR; — 0.2817PR,
+0.6838 (14)

The thermal power from the fuel cell can be expressed as
Prig () = ygp(Pai (1) + Py (£) + Py (1)) (15)
The cost generated by heat load is expressed as
Crir (t) = Co max (Prir (t) — Prir(£),0) (16)

Cr,;r(t) is the cost generated by heat load, Pg;g(f) is the
thermal power from the fuel cell. Photovoltaic units are
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conformed to the following model (Niknam et al., 2012). This
cost includes two parts: operation cost and penalty cost.

t
Cpv,i (t) = kpy,i J (PPV,f + APPV)dt (17)
to
t
Cppv,i(t) = kppv; j lGR - Gfldt (18)
to

kpy, is Photovoltaic power generation cost coefficient, Ppy is
Photovoltaic forecast power, APpy is the value of Photovoltaic
actual power minus predicted power, Gy, is actual light intensity,
G_f is forecast light intensity, Cppy(f) is Photovoltaic power
penalty cost, kppy; is PV power penalty cost coefficient.

2.3 System Structure

As shown in Figure 1, each generator is connected to an
agent. Each agent exchanges information with the agents of
its neighboring units (Li et al., 2018). Before the entire
system starts to work, the operating parameters of each
unit are first uploaded to their respective agents. After
several information exchanges, the operating parameters
and weather conditions of all units are uploaded to each
agent. Then the system starts to work. Finally, the
instructions are sent to each unit through distributed
information transmission to achieve harmony and unity
of the entire system. In this system, thermal power
units and wind turbines generate alternating current,
while fuel cells and photovoltaic units generate direct
current. All the electricity is modulated by the inverter
and sent to the loads.

Due to limited space, this article uses four agents to describe
the communication process briefly. The process is shown in
Figure 2.

Before the information exchange begins, each agent has their
own information. After information exchange, the information of
each agent is described as follows.

Agentl:{l, < 2, 4 >},
Agent2:{2, < 1, 3 >},
Agent3:{3, < 2, 4 >},
Agent4:{4, < 3, 1 >},

For example, Agent 1 communicates with Agent 2 and Agent
4. At this point, Agent 1 gets the informations from Agent 2 and
Agent 4. Other agents get the informations in exactly the same
way. At this time, each agent not only has its own information,
but also obtains the information of neighboring nodes. After a
step of information exchange again, each agent has more
abundant information. The details are as follows.

Agentl:{1, < 2,4 >}, {2,<1,3>}, {4, <3, 1>},
Agent2:{2, < 1,3 >}, {1, < 2,4 >}, {3, < 2,4 >},
Agent3:{3, < 2,4 >}, {2,<1,3>},{4,<3,1>},
Agent4d:{4, < 3,1 >}, {3, <2,4>}, {1, < 2,4 >},

The amount of information held by each agent increases
again. For the reader’s convenience, the expression here does
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FIGURE 1 | System structure.
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FIGURE 2 | Communication progress.

agent4d

SPEA2 (Sla et al., 2020; Cao et al., 2020; Mk et al., 2020; Biswas
and Pal, 2020) and NSGA2 (Khammassi and Krichen, 2020;

Che et al.,, 2021; Prakash et al., 2020; Zhang and Liu, 2020;
Yeh, 2019), as classical multi-objective optimization

start

’ initialization ‘

l

fitness assignment ‘

l

’ envirormental selection ‘

|
)

termination

NO“ l

mating selection ’

variation

FIGURE 3 | Workflow of spea2.

N YES

algorithms, can be widely used in solving multi-objective
optimization problems. For example, Literature Sla et al.
(2020) applies SPEA2 to solve multiobjective optimization
of a continuous kraft pulp digester. Literature Yeh (2019)
applies NSGA2 to solve a bi-objective optimization problem
of multi-state electronic transaction network. This paper is to
solve a multi—objective optimization problem. So these two
algorithms can be used. However, these two algorithms have
limitations. In order to get the optimal solution faster and
more accurately, the two algorithms are improved in this
paper. Experimental results show that the improved
algorithms are effective.

3.1 SPEA2

SPEA2 is a broadly used multi-objective optimization algorithm.
It can be known the procedure from Figure 3.

3.1.1 Start

Generating initial solutions whose number is N. At the same time,
an empty achieve is needed. The initial solutions are stored inp ,
and the empty achieve is called A, .

not remove duplicate informations owned by the Agents.

3.1.2 Fitness Assignment
Each solution is given an strength value S(i) whether in Py or A, .

SG) =|{jljePt_ u At_ni> j}, (19)

After the information exchange, each agent will have global
information. For example, Agentl has informations from all

Each individual is assigned a fitness value called R(3).
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start

T

initialization

i

’ Non-dominated sorting ‘

I

Crowding distance sorting ‘

l

termination S —— output
No l
variation
FIGURE 4 | Workflow of nsga2.
R =Y (), (20)
JEP:_ U Ay ,j>i

Next, the density information should be known. The values are
calculated from the kth neighbor.

D(i) =

, (21)

ok +2

the % means the distance from i to the kth nearest neighbor, and
the 2 makes D(i) is a value between 0 and 0.5. In this way, multiple
individuals having the same S(i) value is avoided. So, the fitness
F(i) is the sum of R(i) and D(i).

3.1.3 Selection From Environment
The non-dominated solutions are transferred to the next
generation.

A ={ilie P, UA, A f(i)<1}, (22)

If the solutions can fit the archive size, then A;; = N.
Otherwise, some other methods are taken to make the number
of current solutions is equal to N.

3.1.4 Termination
When the condition is met, the loop ends.

3.1.5 Mating Selection
The mating pool is filled by binary tournament selection from
| A

3.1.6 Variation
Perform mutation and reorganization operations.

start

‘ initialization ‘

l

fitness assignment ‘

H l

‘ environmental selection

4

YES
termination

» ‘
NO l

’ mating selection ‘

I

Changing evolutionary parameters

variation

FIGURE 5 | Workflow of ispea2.

3.2 NSGA2

Non-dominated sorting genetic algorithm (NSGA2) is another
multi-objective optimization algorithm. The workflow NSGA2 is
shown in Figure 4.

3.2.1 Start
Parent solutions P,_is gererated randomly. Next, each solution is
assigned a fitness from its dominance rank.

3.2.2 Variation
Then the next generation individuals Q, whose size is N. The
whole solutions are Py U Qg .

3.2.3 Sorting According to Ranks

The solutions should be sorted according to ranks.

3.2.4 Sorting According to Crowding Distance

Then selecting the individual F1 of the best rank, that is, all non-
dominated solutions appear. If the number of F1 is not enough,
sub-optimal solutions called F2 will also be selected. Repeat this
process until N individuals are met. Obviously, N is sure, so the
selected individuals in the lowest rank need to be eliminated. In
other words, only the best part of the lowest-rank individuals
selected can be transferred to the next step. It can be called the
lowest rank F3. The selection of the optimal solution in F3 has its
own rules. The rules are called crowded distance sort.
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I(i+1), -I(i-1),_

fmux fmin
m_ m_

Dis(i)zDis(i)+< >,‘v’i61,i¢1,l,

(23)

Dis(i) is distance of solutions in spea2, where Dis(1) = Dis(l) =
00. After the crowding distance sorting, the best individuals
whose size is (N — |F1| — |F2|) from F3 are chosen.

3.2.5 Termination
When the condition is met, the loop ends.

3.3 ISPEA2

The defects of SPEA2 cannot be ignored. From the variation point
of view, the values of crossover and mutation are invariable.
Therefore, the flexibility of SPEA2 is reduced severely. This paper
adopts a method to make the probabilities of crossover and
variation vary with the current solution. The workflow of
ISPEA?2 is shown in Figure 5.

In this paper, a few concepts Chengwang and Lixin, 2010)
need to be understood. The population diversity index is used to
evaluate the quality of population diversity. The population
diversity index is defined as H.

S

H= Smax (24)

$=- pilogp; (25)
i=1

The m represents groups quantity, p; represents the
proportion of the ith species to the whole groups. Suppose
the distance of several individuals is less than D. In that case,
they are very resemblance. These individuals are defined as
one group. H € [0, 1], The more even the distribution of the
population, the greater the value of H, so it is more likely to
find the suspected optimal solutions. According to the
population diversity parameter H, the crossover and
mutation probability values will be dynamically changed
in the next step.

. (H=*m
P, = Pepin + (PcMax - PcMin) * SIH( ) (26)

H*m

Py = Postin + (Pruntax — Prunin) * COS( ) (27)

Portins Pestaxs Pmatin and Py,prq, are the preset range of
crossover and mutation probability values respectively. It
should be noted in particular that the variation range of
genetic parameters can be determined by experimenter
according to the actual situation. The numerical range
adopted in this paper are: P.yp, = 0.001, Ppax = 0.1, Popsin
= 0.9, P.prax = 0.97. It is worth mentioning that this range can
be changed according to the actual needs of the researchers. In
this way, the probabilities of crossover and mutation from
SPEA2 are adaptive. So the algorithm performance is
improved.

Economic Dispatch Methods

3.4 INSGA2
The genetic parameters of traditional NSGA2 are fixed. In this paper,

dynamic genetic parameters are adopted to enhance the adaptability
of the algorithm. As the number of iterations changes, the crossing
probability of INSGA?2 is updated according to Eq. 28. The workflow
of INSGA2 is shown in Figure 6.

D1 = Peimax — (pclmax - pclmin) *i/M (28)

As the number of iterations changes, the mutation probability
of INSGA2 is updated according to Eq. 29.

pml = pmlmin + (Pmlmax - pmlmin) * I/M (29)

i is the current iteration, M is the total number of iterations.
Petmaxs Peimin are the maximum and minimum crossover
probability, and pmimar Pmimin are the maximum and
minimum mutation probability. Their range of variation can
be determined by the researchers according to the actual
situation. The values adopted in this paper are as follows:
Peimax = 095, Pemin = 04y Primax = 0.1, Poimin = 0.01.
Researchers can change this range to suit their different needs.

4 SIMULATION RESULTS

Before the simulation starts, the configuration number of each
kind of generator needs to be determined. The system consists
of five thermal power generators, three fuel cells, two wind
power generators, and two photovoltaic generators. In this
paper, it is considered that the computational performance of
the algorithms mentioned above for smart grid economic
dispatch with fewer iterations. Before the algorithms
running, the initialization individuals of the four
algorithms are the same. Running the algorithms 20 times
and the average valus are taked as the final results. In this
paper, the output of the generators is expressed by the sum of
normalized values.

As shown in Figure 7 and Tables 1-3, the number of
iterations is 100. The performance of SPEA2 is better than
that of NSGA2 from the point of view of the solutions.
Compared with the improved algorithm, the accuracy and
diversity of ISPEA2 solutions are better than that of SPEA2.
INSGA2 solutions are not significantly better than NSGA2
solutions. In terms of running time, NSGA2 runs much faster
than SPEA2, and INSGA2 runs faster than NSGA2.

As shown in Figure 8 and Tables 4-6, the number of
iterations is 200. SPEA2 is better than NSGA2 overall. From
the perspective of solutions, ISPEA?2 is superior to SPEA2, while
INSGAZ2 is not superior to NSGA2. ISPEA2 runs longer than
SPEA2. In terms of running time, ISPEA2 runs slower than
SPEA2, and INSGA2 runs faster than NSGA2.

As shown in Figure 9 and Tables 7-9, in this case, the
solutions from INSGA2 are better than these of NSGA2. The
running time of INSGA2 is less than that of NSGA2. On the other
hand, the solutions produced by ISPEA2 are not obviously
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FIGURE 6 | Workflow of insga2.

- Number of generations = 100 TABLE 2 | The least cost scheme at 100 iterations.
ot # SPEA2 Algorithm Thermal power  Wind power Photovoltaic Fuel cell
016 @ ISPEA 2 |
i Y o oAl | SPEA2 1.684942 1.172386 1.263625 3.379047
: @ - NSGA2 2.921474 1.247965 0.760825 2.569737
c 015f E 4 ISPEA2 2.093457 1.015058 1.054696 3.336788
,g -‘E# INSGA2 2.907721 1.176557 0.738921 2.676801
8 0145 i g
E
(5]
s 014f + 1
g
g 0.135 [ % 1 TABLE 3 | The least emissions scheme at 100 iterations.
< (o]
0.13 1 o 4 Algorithm  Thermal power  Wind power  Photovoltaic Fuel cell
TR
0125 * ? 1 SPEA2 1.303302 1.41503 1.766311 3.015357
) ot
| e @ity ] NSGA2 1.721885 1.870412 1.155672 2.752032
012 F . oom ISPEA2 1.328214 1.507701 1310309  3.358776
L ¥ .
0.115 . il AL O . 3 INSGA2 1.60489 1.620995 1.425408 2.848707
17.5 18 18.5 19 19.5 20
Operating cost
different from solutions of SPEA2 on the whole, and ISPEA2 has
FIGURE 7 | 100 iterations. . . o . .
a slight advantage in obtaining lower-cost solutions. The running

time of ISPEA?2 is slightly longer than SPEA2.
As shown in Figure 10 and Tables 10-12, the iteration number is

TABLE 1 | 100 iterations.

Algorithm SPEA2 ISPEA2 NSGA2
Emin(ton/h) 0.1161 0.1161 0.1211

Cmin($/h) 18.0646 17.8420 18.3700
time(s) 3.9730 4.3210 1.4070

400. The solutions from ISPEA2 are better than those from SPEA2,
and the solutions from INSGA?2 are better than those from NSGA2.
INSGA2  From the running time perspective, as before, ISPEA2 is faster than
0.1184 SPEA2. INSGA2 is still faster than NSGA2.

18.3027 As shown in Figure 11 and Tables 13-15, the iteration
1.3690 number is 500. At this point, the computing power of ISPEA2
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FIGURE 8 | 200 iterations.
TABLE 4 | 200 iterations.
Algorithm SPEA2 ISPEA2 NSGA2 INSGA2
Emin(ton/h) 0.1161 0.1161 0.1161 0.1170
Cmin($/h) 17.7960 17.7379 17.7722 17.7623
time(s) 7.9060 8.1200 2.2810 2.2380

TABLE 5 | The least cost scheme at 200 iterations.

Algorithm  Thermal power  Wind power  Photovoltaic  Fuel cell
SPEA2 2.303944 0.93989 1.028783 3.227382
NSGA2 2.514736 0.957151 0.809179 3.218934
ISPEA2 2.116473 0.946305 1.018767 3.418455
INSGA2 2.317267 0.990976 0.845954 3.345803
TABLE 6 | The least emissions scheme at 200 iterations.

Algorithm  Thermal power  Wind power  Photovoltaic Fuel cell
SPEA2 1.312516 1.149055 1.586885 3.451544
NSGA2 1.332547 1.018 1.786001 3.363453
ISPEA2 1.340919 1.378198 1.372097 3.408787
INSGA2 1.495224 1.102759 1.548095 3.353922
TABLE 7 | 300 iterations.

Algorithm SPEA2 ISPEA2 NSGA2 INSGA2
Emin(ton/h) 0.1161 0.1161 0.1161 0.1161
Cmin($/h) 17.8337 17.8000 17.8745 17.8115
time(s) 12.0550 12.2210 3.9090 3.6880
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FIGURE 9 | 300 iterations.

TABLE 8 | The least cost scheme at 300 iterations.

Algorithm Thermal power Wind power Photovoltaic Fuel cell

SPEA2 2.112679 0.997161 1.050533 3.339627
NSGA2 2.511344 0.990781 0.951936 3.045939
ISPEA2 2.272125 1.038351 0.907097 3.282427
INSGA2 2.092264 1.03601 1.089012 3.282715

TABLE 9 | The least emissions scheme at 300 iterations.

Algorithm  Thermal power  Wind power  Photovoltaic Fuel cell

SPEA2 1.314326 1.36376 1.412212 3.419701
NSGA2 1.309147 1.307245 1.483354 3.400254
ISPEA2 1.313774 1.541804 1.2556385 3.389037
INSGA2 1.333483 1.320083 1.46705 3.37943

and SPEA?2 tends to be the same. The solutions of INSGA2 are
better than these of NSGA2. The running time of NSGA2 is
significantly shorter than that of SPEA2. The running time of
INSGA2 is shorter than that of NSGA2. It is important to
note that the pollution emission provided by the solutions
will not be zero. The main reason is that the operation cost of
thermal power unit is less, and its operation stability is
stronger. In actual operation, the waste caused by shutting
down the thermal power unit completely and restarting it is
very serious. Therefore, the minimum value of pollution
emission in this paper is not zero.

5 CONCLUSION

This paper presents a multi-energy complementary model for
smart grid economic dispatching and provides the solution to
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TABLE 10 | 400 iterations.

Algorithm SPEA2 ISPEA2 NSGA2 INSGA2
Emin(ton/h) 0.1161 0.1161 0.1161 0.1161
Cmin($/h) 17.7613 17.7588 17.9167 17.8333
time(s) 11.4770 11.2050 3.9080 3.2300
TABLE 11 | The least cost scheme at 400 iterations.

Algorithm Thermal power Wind power Photovoltaic Fuel cell
SPEA2 2.119391 1.053909 0.901614 3.425086
NSGA2 2.106319 1.15936 1.075992 3.158328
ISPEA2 1.875477 1.051127 1.102771 3.470626
INSGA2 1.885996 1.160107 1.048259 3.405638
TABLE 12 | The least emissions scheme at 400 iterations.

Algorithm Thermal power  Wind power Photovoltaic Fuel cell
SPEA2 1.31305 1.388701 1.320382 3.477867
NSGA2 1.310583 1.509376 1.540883 3.132084
ISPEA2 1.313774 1.541804 1.255385 3.389037
INSGA2 1.308089 1.605501 1.255914 3.330496

the model. The economic dispatching model of smart grid
constructed in this paper can well reflect the characteristics of
multi-energy complementarity of smart grid, and also meet
the plug and play mode of new energy. In terms of the
solution method, this paper has demonstrated
improvements of ISPEA2 and INSGA2 over SPEA2 and
NSGA2 via this model. From the point of view of the
obtained solution, ISPEA2 is better than SPEA2 regardless
of the number of iterations. When the number of iterations is

TABLE 13 | 500 iterations.

Algorithm SPEA2 ISPEA2 NSGA2 INSGA2
Emin(ton/h) 0.1161 0.1161 0.1161 0.1161
Cmin($/h) 17.7700 17.7793 17.8608 17.6607
time(s) 12.0970 12.6820 4.1460 3.7670
TABLE 14 | The least cost scheme at 500 iterations.

Algorithm Thermal power Wind power Photovoltaic Fuel cell
SPEA2 1.893881 1.056683 1.102907 3.446529
NSGA2 2.093862 1.190873 0.991284 3.22398
ISPEA2 1.881558 1.056786 1.128345 3.4331
INSGA2 2.092246 0.868215 1.052962 3.486576
TABLE 15 | The least emissions scheme at 500 iterations.

Algorithm  Thermal power  Wind power  Photovoltaic Fuel cell
SPEA2 1.327454 1.448908 1.236683 3.486955
NSGA2 1.310583 1.509376 1.540883 3.139158
ISPEA2 1.312474 1.451972 1.324006 3.411548
INSGA2 1.303875 1.548222 1.637543 3.010359

small, the output results of INSGA2 and NSGA2 are not
significantly different. When the number of iterations is
large, INSGA2 is consistently better than NSGA2. From
the perspective of running time, ISPEA2 is slightly slower
than SPEA2, and INSGA2 is slightly faster than NSGA2. In
the next phase, the smart grid economic dispatching model
needs to be further improved. The calculated speed of ISPEA2
still needs to be accelerated, and the accuracy of INSGA2 also
needs to be improved. In summary, ISPEA2 has the best
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accuracy and INSGA?2 has the best efficienchy out of the four
algorithms compared. Depends on the needs, either ISPEA2
or INSGA2 can be suitable for the model.
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