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Global warming caused by carbon emissions is a central concern across the world. Given
the immense contribution of Northeast China to total carbon dioxide emissions, this study
explores the driving forces of carbon emissions in that region from the perspective of
investment-related factors, applying a logarithmic mean Divisia index (LMDI) model. We
assess the driving forces on carbon emissions using a temporal LMDI model and explore
interregional differences using a spatial LMDI model. The main findings are as follows. First,
the trajectory of investment evolution is consistent with the mitigation of carbon emissions,
which indicates that investment-related factors have a significant impact on carbon
emissions. Second, the region’s carbon emissions are mainly generated by industry in
Inner Mongolia and Liaoning, which suggests that the industry structure in Inner Mongolia
should be adjusted to improve its coal-based energy consumption. In Liaoning, in contrast,
the investment efficiency effect is a major driving force, which suggests that the regional
investment structure should be adjusted to generate a more significant and orderly
momentum. Lastly, although the impact of industry structure on carbon emission
mitigation has significantly increased over time in Northeast China, local policy needs
to be updated regularly. In line with these findings, several potential suggestions are offered
for the formulation of practical and appropriate guidelines by the regional government.
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INTRODUCTION

The IPCC Sixth Assessment Report has pointed out that substantial and sustained reductions in
carbon dioxide (CO2) and other greenhouse gas emissions will limit climate change. There is
international dedication to improving the atmospheric environment, with more and more attention
being paid to the threat from irreversible changes in the climate system. This issue is a central
concern for China, which has made great efforts to handle its continuously increasing carbon
emissions. Analysis of daily data published in Global Energy Review shows that countries in total
lockdown are experiencing an average decline of 25% in energy demand per week, whereas countries
in partial lockdown are seeing an average decline of 18%.1 Although countries worldwide have been
making a considerable effort to reduce their energy consumption, carbon emissions have shown only
a slight decline. Global CO2 emissions from fuel combustion reached a historical high of 33.5 Gt in
2018, driven by robust growth in population and economic activity. They showed a slight decline
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(<1%) in 2019, mainly due to the power sector in advanced
economies and milder weather conditions across continents.2

China, in particular, has promised to reduce CO2 emissions per
unit of GDP by 40% to 45% compared with 2005 levels by 2020
(Wang and Yang, 2015; Liu et al., 2019). As the country’s oldest
and most extensive industrial base, Northeast China has
contributed greatly to national economic development and has
triggered energy consumption and carbon emissions. The four
northeastern provinces are energy-oriented regions with
abundant energy-based natural resources, such as coal and
crude oil. Analysis of the dominant driving forces of carbon
emissions is crucial for solving the problem effectively.
Accordingly, here we explore how comprehensive and
profound exploitation of influential characters can lead to
more appropriate regulation for reducing CO2 emissions.

For the purposes of studying regional factors in carbon
emissions using a geographically weighted regression model,
Northeast China contains four regions: Inner Mongolia,
Liaoning, Jilin, and Heilongjiang (Xu et al., 2017). The
northeastern region was honored as “the Industrial Cradle” in
the initial phase of China’s development; it contributed
significantly to China’s heavy equipment manufacture
industry, and it remains prominent in industrial and scientific
research. For example, machine tools produced in Liaoning
province account for 11% of the national total, and
automobiles produced in Jilin province account for 11.5%.
Thermal power and hydropower equipment in Heilongjiang
province accounts for 33% and 50% of the national market,
respectively, and power transmission and transformation
equipment in the northeastern area accounts for 40% of the
national total, reflecting its essential role in guaranteeing national
economic security. Most importantly, there are rich mineral
resources in the northeastern region, with coal and oil
resources the most abundant. The reserves of coal in
Northeast China are approximately 72.3 billion tons, of which
60% are in the east of Inner Mongolia, 27% in Heilongjiang, and
13% in Liaoning and Jilin.3 Northeast China also has the largest
oil resources reservoir, accounting for approximately half of the
national reserves. The three largest oilfields (Daqing, Liaohe, and
Jilin) have made an outstanding contribution to China’s
economic development. Daqing oilfield, located in Daqing
City, Heilongjiang province, is the largest in China, with an
annual output of 40–50 million tons. Liaohe oilfield, located in
Liaoning and Inner Mongolia, produces 10 million tons of crude
oil and 900 million cubic meters of natural gas annually. Jilin
oilfield, located in Jilin, has reached annual output of 6.5 million
tons of crude oil and a processing capacity of 700,000 tons. In
general, although some studies have carried out decomposition
analysis of the four northeastern regions, there has been almost
no focus on the investment perspective in the regional
breakdown.

This study therefore explores the driving forces of carbon
emissions in Northeast China from the perspective of investment,

including energy structure (ES), energy intensity (EI), industrial
structure, investment efficiency (IE), investment activity (IA),
and population scale (PS). We use an extended Kaya identity with
temporal and spatial logarithmic mean Divisia index (LMDI)
measurement to probe the evolution of regional CO2 emissions
and investigate discrepancies between areas. This study makes the
followingmain contributions to the literature. First, it investigates
the influential factors in four resource-rich areas and examines
the critical driving forces for carbon emissions in the context of
regional discrepancies, providing a point of reference for the
policy committee and informing regional regulations. Second, we
adopt a practical perspective, emphasizing that the investment
trend is closely correlated with the direction of economic output
and is indirectly related to energy consumption, as demonstrated
by China’s actual conditions. We are the first to attempt to
decompose the carbon emissions in the northeastern regions
in terms of investment. Our results provide novel insights into the
reasons for carbon emission changes and suggest innovative
solutions that policy committees can use to decrease total
emissions. Finally, this study ranks the performance of a range
of effect factors in the four regions, which is crucial for
formulating differentiated measures of energy conservation
and emission reduction. The results of this empirical study
will therefore be valuable for local agents seeking to renew
existing policy in light of investment-related suggestions.

The rest of this study is organized as follows. Literature Review
reviews the literature, and Methods and Data introduces the
methodology and data sources. In Results and Discussion, we
describe the decomposition results and analyze the potential
measurement of carbon emission changes. The conclusions
and policy implications are given in Results of Driving Forces
in Carbon Emissions.

LITERATURE REVIEW

Global warming triggered by CO2 emissions affects crop
production (Rehman et al., 2020), forestry production,
livestock production, energy usage, population growth,
temperature, and rainfall (Rehman et al., 2021a). This is the
reason research has focused on analyzing decomposition of
carbon emissions, and various trends have been identified.
Some studies have focused on global deterioration and
decoupling trends. The results show no clear decoupling state
in most developing countries and confirm that EI has a significant
effect worldwide (Wang and Su, 2020). Other studies on a variety
of countries, including Thailand, Pakistan, Lithuania, Turkey, the
United States, and Bangladesh (Dalton et al., 2008; Akbostancı
et al., 2011; Baležentis et al., 2011; Chontanawat et al., 2020;
Yasmeen et al., 2020; Murshed et al., 2021), have identified a
rising trend and have made suggestions for government energy
conservation and carbon emission reduction policies.

The current literature on the roles of crucial drivers of CO2

emissions in China can be divided into two categories. Many
scholars have adopted a national scope analysis perspective
(Meng et al., 2018; Shan et al., 2018; Sun et al., 2019; Chen C.
et al., 2019), including several studies that emphasize analysis of

2Source: https://www.iea.org/reports/co2-emissions-from-fuel-combustion-overview.
3https://news.bjx.com.cn/html/20160929/777000.shtml.
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manufacturing (Shi et al., 2019; Hang et al., 2019), showing that
EI is the dominant factor responsible for the intersectoral
discrepancies in CO2 emissions among the 28 subsectors of
manufacturing. Sun et al. (2021a) considered how the
institutions of neighboring countries influence domestic energy
efficiency, as well as the effects of technological innovation (Sun
et al., 2021b; Khan et al., 2021). A few studies from the economic
perspective have analyzed the decomposition of carbon emissions
(Chen C. et al., 2019; Dai and Gao, 2016; Chishti et al., 2021;
Rehman et al., 2021b). Some studies have also carried out regional
analysis of carbon emissions (including research on the
decomposition of carbon emissions in Beijing-Tianjin-Heibei
(Wang and Yang, 2015), Guangdong (Xie et al., 2020), Suzhou
and Anhui (Zhang and Fang, 2013), Shanghai (Zhu and Zhang,
2011), and Xinjiang (Gu and Gong, 2012), concluding that
secondary industry dominates carbon emissions.

Investment trends are highly relevant to economic output and
have an indirect impact on carbon emissions. As a result,
investment-related factors have become a dominant
decomposition factor of CO2 emissions, and we find studies
that investigate the relationship between foreign direct
investment (FDI), economic growth, and CO2 emissions (Sbia
et al., 2014; Kivyiro and Arminen, 2014; Hussain and Rehman,
2021). Their results indicate that FDI increases carbon emissions
in some countries but reduces them in others. Some studies have
focused on investment in innovation. Zhang et al. (2018)
investigated the relationship between public–private
partnership investment in energy and CO2 emissions by
considering the role of technological innovations in China.
Research has also shown that investment in the energy
industry may influence economic performance (Álvarez-
Herránz et al., 2017; Ahmad et al., 2020; Ahmad et al., 2021),
in some cases with a focus on investment in low-carbon energy
(Lee, 2013; Mo et al., 2016).

A number of other factors that have been explored as critical
factors contributing to carbon emissions are primary inhibitors of
the increase in carbon intensity. For example, the EI effect reflects
changes in the ratio of industrial energy consumption to the
value-added economy (which generates low efficiency in emission
changes when its value is high), making it a primary inhibitor of
increases in carbon intensity (Diakoulaki and Mandaraka, 2007;
Chen J. et al., 2019; Hang et al., 2019; Chishti et al., 2021). As ES
adjustment is essential for low-carbon development in the future,
and because energy is the primary carbon emission source, the ES
needs to be adjusted to favor clean energy (Zhang and Da, 2015;
Zhao et al., 2015; Wei et al., 2019; Zhu et al., 2021). In that
connection, Rehman et al. (2021c) investigated the interaction of
CO2 emissions with industrialization, energy imports, carbon
intensity, economic progress, and gross capital formation. It
appears that changes in energy demand are partially
determined by the population, and some studies have taken
the population effect as the main factor stimulating the
increase in CO2 emissions (Wei et al., 2019; Wang and Wang,
2020). Wei et al. (2019) noted, however, that although the
population size effect has shown a fluctuating trajectory, the
cumulative changes in carbon emissions have continued to
increase.

We summarize the relevant literature in terms of research
object, research technique, and major influence factors in the
Supplementary Material.

METHODS AND DATA

The Decomposition Model
Carbon Emission Estimation
We use the calculation method of carbon emissions estimation
from the 2006 IPCC Guidelines proposed for National
Greenhouse Gas Inventories,4 as given in the following formula:

Ct
i � ∑

j

∑
k

Ct
ijk � ∑

j

∑
k

Et
ijk × Fk × 44

12
(1)

where Ct
i means the total carbon emissions in region i in year t,

region i (i � 1, 2, 3, 4) refers to the four northeastern divisions
(Inner Mongolia, Liaoning, Jilin, and Heilongjiang). Et

ijk
represents energy consumption type k of sector j in region i in
year t, while subsector j (j � 1, 2, 3, 4, 5, 6) includes agriculture,
industry, construction, transportation, retailer trade, resident
consumption, and others. k represents the energy type, k �
1, 2, . . . , 17 (raw coal, washed coal, coke, coke oven gas, other
oven gas, other coke products, crude oil, gasoline, diesel oil, fuel
oil, LPG, refinery, other petroleum products, natural gas, heat,
electricity, and other energy). Fk indicates the CO2 emission
coefficient of energy type k, taken from the China Sustainable
Energy and Carbon Emissions Scenario Analysis Comprehensive
Report released by the Energy Research Institute. 44/12 is the
conversion coefficient from carbon to CO2.

Kaya Identity
Decomposition analysis has been used widely in energy and
carbon emissions research to identify the factors that are
influential over time. Two popular decomposition techniques
were proposed by Ang (2005) and Ang et al. (2016): index
decomposition analysis and spatial decomposition analysis
(SDA), which is the measurement we apply in the present
study. The CO2 emissions are decomposed into seven
components: the ES effect, the EI effect, the industry structure
(IS) effect, the IE effect, the IA effect, and the PS effect. Carbon
emissions are expressed as in the following equation:

Ct
i � ∑

j

∑
k

Ct
ijk � ∑

j

∑
k

Et
ijk

Et
ij

× Et
ij

Qt
ij

× Qt
ij

Qt
i

× Qt
i

Iti
× Iti

Pt
i

× Pt
i × Fk × 44

12

� ∑
j

∑
k

EStijk × EItij × IStij × IEt
i × IAt

i × PSti×Fk × 44
12

(2)

where Et
ijk denotes the energy consumption based on fuel k of

subsector j in region i in year t, Qt
ij represents the total economic

4IPCC. IPCC guidelines for national greenhouse gas inventories. Japan:
IPCC, 2006.
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output of sector j in region i in year t, Iti measures the investment
in fixed assets of the energy industry in region i in year t, and Pt

i
refers to the population in region i in year t, EStijk � Et

ijk/E
t
ij

indicates the ratio of fuel k in total energy consumption of sector j
in region i in year t, and EItij � Et

ij/Q
t
ij gives the energy

consumption per economic output based on sector j in region
i in year t, which is referred to as the EI. IStij � Qt

ij/Q
t
i is the ratio

of the economic production based on the industry sector j to the
total economic output of region i, which represents the IS. IEt

i �
Qt

i /I
t
i expresses the economic output per investment in region i in

year t and is known as IE. IAt
i � Iti /P

t
i denotes investment per unit

of population in region i in year t, and PSti � Pt
i is the PS in region

i in year t.

The Temporal LMDI Model
We calculate the mitigation of carbon emissions for region i
between the base year 0 and target year t using the following
formula:

ΔCt
i � Ct

i − C0
i � ESt−0eff + EIt−0eff + ISt−0eff + IEt−0

eff + IAt−0
eff + PSt−0eff

(3)

The effect characters in the equation above can be calculated
using the following formula:

ESt−0eff � ∑
j

∑
k

L(Ct
ijk, C

o
ijk) ln⎛⎝EStijk

ESoijk
⎞⎠ (4)

EIt−0eff � ∑
j

∑
k

L(Ct
ijk, C

o
ijk) ln⎛⎝EItij

EIoij
⎞⎠ (5)

ISt−0eff � ∑
j

∑
k

L(Ct
ijk, C

o
ijk) ln⎛⎝IStij

ISoij
⎞⎠ (6)

IEt−0
eff � ∑

j

∑
k

L(Ct
ijk, C

o
ijk) ln(IEt

i

IEo
i

) (7)

IAt−0
eff � ∑

j

∑
k

L(Ct
ijk, C

o
ijk) ln(IAt

i

IAo
i

) (8)

PSt−0eff � ∑
j

∑
k

L(Ct
ijk, C

o
ijk) ln(PStiPSoi

) (9)

where L(Ct
ijk, C

o
ijk) �

Ct
ijk−Co

ijk

lnCt
ijk
−lnCo

ijk
.

Spatial LMDI Model
Our study of discrepancies in CO2 emissions between regions is
based on SDA. We calculate the carbon emissions in region Ri

and the regional average level Ru, and we take the average level to
be the arithmetic average of the four northeastern regions,
calculated as follows:

ΔCRi
tot � CRi − CRu

� ESRi−Ru
eff + EIRi−Ru

eff + ISRi−Ru
eff + IERi−Ru

eff + IARi−Ru
eff + PSRi−Ru

eff

(10)

The effect characters in the equation above can be calculated
using the following formula:

ESRi−Ru
eff � ∑

j

∑
k

L(CRi
ijk, C

Ru
ijk) ln⎛⎝ESRi

ijk

ESRu
ijk

⎞⎠ (11)

EIRi−Ru
eff � ∑

j

∑
k

L(CRi
ijk, C

Ru
ijk) ln⎛⎝EIRi

ij

EIRu
ij

⎞⎠ (12)

ISRi−Ru
eff � ∑

j

∑
k

L(CRi
ijk, C

Ru
ijk) ln⎛⎝ISRi

ij

ISRu
ij

⎞⎠ (13)

IERi−Ru
eff � ∑

j

∑
k

L(CRi
ijk, C

Ru
ijk) ln(IERi

i

IERu
i

) (14)

IARi−Ru
eff � ∑

j

∑
k

L(CRi
ijk, C

Ru
ijk) ln(IARi

i

IARu
i

) (15)

PSRi−Ru
eff � ∑

j

∑
k

L(CRi
ijk, C

Ru
ijk) ln(PSRi

i

PSRu
i

) (16)

where L(CRi
ijk, C

Ru
ijk) �

C
Ri
ijk
−CRu

ijk

lnC
Ri
ijk
−lnCRu

ijk

.

Data Collection and Processing
Analysis of the driving forces for CO2 emissions depends on the data
available. Our data cover the four northeastern regions for the period
2002–2017. The calculation of carbon emissions consisted of two
stages. First, the direct emissions in relation to fossil fuel combustion
were estimated with reference to the 2006 IPCC Greenhouse Gas
Emissions Inventory Guide. The CO2 emission coefficient of energy
was proposed by the China Sustainable Energy and Carbon Emissions
Scenario Analysis Comprehensive Report released by the Energy
Research Institute, National Development and Reform
Commission of China. The data for energy and the energy
conversion coefficient were obtained from the China Energy
Statistical Yearbook (2003–2018). The total energy consumption
was weighted by million tons of standard coal equivalent (Mtce).
Second, the carbon emissions generated indirectly from electricity and
heat were calculated using the equation in Supplementary Material,
and the related data were obtained from the China Power Statistics
Yearbook (2003–2018).

The EI effect and IS calculations were based on economic
output in terms of GDP. The added value of the industry
indicator was obtained from the China Economic and Social
Development Statistical Bulletin (2003–2018). The investment
data used to compute the IE and IA effects were taken from the
China Statistical Yearbook (2003–2018), and we adopted its
indicator for investment in fixed assets of state-owned units in
the energy industry by region. Population data were obtained
from the National Bureau of Statistics.5

RESULTS AND DISCUSSION

Trends in Main Factors
Before we carried out the decomposition analysis, it was necessary
to understand the historical trends in carbon emission and energy

5http://www.stats.gov.cn/tjsj/pcsj/.
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consumption for the four northeastern regions. Figure 1 shows
that the trends of the changes in CO2 emissions and energy
consumption in the four northeastern areas were similar.
Liaoning and Inner Mongolia had greater CO2 emissions and
energy consumption than the other two areas. From 2002 to 2017,
Inner Mongolia increased its CO2 emissions by 213% and its
energy consumption by 250%. In Liaoning, CO2 emissions
increased by 77% and energy consumption by 131%. As
Figure 1 shows, the increase was not steady over the whole
period. There was a significant increase between 2002 and 2011
(except for 2007), and a partial recovery following the decline
between 2011 and 2017. The trends in Liaoning and Jilin were
consistent with the trend in Inner Mongolia, although there was a
steady growth in energy-related CO2 emissions as a proportion of
the annual growth rate in Jilin from 2002 to 2017. It is worth
noting that the growth in these three regions exhibited an
inverted U-shape tendency; this is because the Chinese State
Council issued the Notice on the Issuance of the Work Plan for
controlling greenhouse gas emissions during the First Five-Year
Plan period.

Figure 2 compares CO2 emissions and investment in fixed
assets in the energy industry. The two objects evolved in similar
ways in all four northeastern regions, which shows that
investment in fixed assets in the energy industry is a crucial
effect for CO2 emissions. This is the basis of the decomposition
analysis of CO2 emissions. The investment data show that Inner
Mongolia had the most significant investment of the four regions.
Moreover, the trend for investment in fixed assets in the energy
industry remained steady from 2002 to 2010, with the largest
amount of investment in 2014 (122.40 billion RMB). Investment

in the four regions increased by 2,474% in Inner Mongolia, 325%
in Liaoning, 821% in Jilin, and 832% inHeilongjiang from 2002 to
2017 and accounted for 4.75 billion, 10.82 billion, 4.27 billion,
and 6.82 billion RMB, respectively, in the base year 2002. From
our analysis of carbon emissions and investment, we conclude
that the rapid growth of investment contributed to rapid
economic growth and expansion of production capacity. It
also increased energy consumption and carbon emissions.

Energy consumption came mainly from agriculture, industry,
construction, transport, retail trade, residential consumption, and
others, and carbon emissions were relevant to the five sectors.
Figure 3 shows the share of the carbon emissions from different
sectors in the four northeastern regions from 2002 to 2017. The
carbon emissions in the industry sector accounted for
approximately 63.0% in Inner Mongolia, 53.9% in Liaoning,
56.1% in Jilin, and 46.9% in Heilongjiang, making it the
largest of the regional CO2 emitters for the five sectors. The
results confirm that industrialization is an essential factor in
energy consumption and CO2 emissions; Northeast China is
China’s old industrial base, and it laid the foundation for the
industrialization of the country as a whole.

However, industry’s share of the carbon emissions declined
from 2010, as the four regions began to adjust their industrial
structure in response to the national policy of optimizing the ES.
Residential consumption and other sectors had the second-largest
shares in regional CO2 emissions, accounting for as much as one-
fifth of the total. The transport sector was the third largest
regional CO2 emitter, and its share fluctuated slightly between
2000 and 2017 (4.7%–12.7% for Inner Mongolia, 8.3%–15.8% for
Liaoning, 5.1%–16.7% for Jilin, and 5.8%–12.9% for

FIGURE 1 | Evolution of energy consumption and CO2 emissions in the four northeastern regions.
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Heilongjiang). The share in carbon emissions of the agriculture
and retail trade sectors was higher in Inner Mongolia and
Heilongjiang than in the other two northeastern regions
because of geographical factors that favor the development of
those sectors. Our analysis thus indicates that there was variation
over time in the proportion of the five elements accounted for by
each region.

RESULTS OF DRIVING FORCES IN
CARBON EMISSIONS

Temporal Decomposition Results
The influential factors on the changes in CO2 emissions for the
four northeastern regions throughout the period are shown in
Figures 4–6. It is convenient to track the effects of all the
components at 5-year intervals, consistent with China’s Five-
Year Plans.

The decomposition effect of CO2 emissions in the four regions
from 2002 to 2017 is shown in Figure 4. Notably, the results show
that the evolution of carbon emissions was influenced by the ES
effect, the EI effect, the IS effect, the IE effect, and the IA effect.

ES effect: The ES effect made a substantial contribution to the
increase in carbon emissions, most significantly in Liaoning. The
cumulative contribution of the ES effect reached 503.53 Mt and
accounted for approximately 76.97% of the total changes in
carbon emissions from 2002 to 2017. The cumulative
contribution of this effect reached 28.41 Mt in Inner Mongolia,
5.77 Mt in Jilin, and 217.79 Mt in Heilongjiang, accounting for

24.59%, 5.77%, and 73.14%, respectively. These results show that
the ES effect positively influenced levels of CO2 emissions from
2002 to 2007 for the four northeastern regions, mainly because of
the importance of coal, washing coal, gasoline, and diesel in their
energy consumption, followed by the policy of revitalizing the old
industrial base. However, this effect drove a decline in energy-
related CO2 emissions in 2007–2012 in InnerMongolia, Liaoning,
and Jilin, when the cumulative contributions reached −33.64
−320.74, and −193.44 Mt and accounted for −88.59%,
114.68%, and 123.58%, respectively. In addition, in 2008, the
government adopted a series of measures to economize on energy
and reduce emissions for the Beijing Olympic Games (Wang and
Yang, 2015). As Inner Mongolia, Liaoning, and Jilin are located
relatively close to Beijing, this is likely to have helped to adjust
their regional industrial structure and optimize their ES.

EI effect: It is clear that EI was a dominant driving force in
reducing carbon emissions from 2002 to 2017. The cumulative
contribution of the EI effect reached −15.29 Mt in Inner
Mongolia, −40.94 Mt in Liaoning, −106.13 Mt in Jilin, and
−19.16 Mt in Heilongjiang, accounting for −13.23%, −6.25%,
−105.99%, and −6.43%, respectively. It should be noted that EI
denotes energy consumption per output and therefore relates to
both energy-saving and energy efficiency measures. Energy
saving involves reducing demand by adopting more efficient
technologies in energy application, while energy efficiency
involves improvements in production technology
(Budzianowski, 2012). Local policies also played a role in the
EI effect, such as the phasing-out and retirement of small-scale
thermal power units and the elimination of backward production

FIGURE 2 | Evolution of investment in fixed assets in the energy industry and CO2 emissions in the four northeastern regions.
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FIGURE 3 | Share of CO2 emissions from the different sectors in (A) (Inner Mongolia), (B) (Liaoning), (C) (Jilin) and (D) (Heilongjiang).
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capacity (Lin and Du, 2014; Yang and Lin, 2016). This positively
impacted carbon emissions in three of the regions, but not in Jilin,
which played a negative and insignificant role from 2012 to 2017,
with total contributions of 49.81, 89.74, and 32.68 Mt. Overall, the
EI effect on the level of carbon emissions in Jilin was −3.06 Mt.
This indicates that energy consumption increased from 2012 in
the other three regions because these areas are energy-oriented
cities where the local government had prioritized improving the
economy. As a result, EI played an important role in the
relationship between regional economic development and
carbon emissions.

IS effect: IS was another crucial factor in the mitigation of CO2

emissions. From 2002 to 2017, the contributions of the IS effect to
cumulative carbon emissions decreased considerably in Inner
Mongolia, Liaoning, and Heilongjiang, which accounted for
−32.62, −35.97, and −46.12 Mt of carbon emissions,
respectively, and changed CO2 emissions by −28.23%, −5.49%,
and −15.49%. The negative influence can be attributed mainly to
the industry sector, which accounted for a substantial share of the
growth of CO2 emissions (as shown in Figure 2 and in the results
of other studies) (Wang and Yang, 2015; Shi et al., 2019). Notably,
in Jilin, the IS effect on CO2 emissions amounted to 13.18 Mt.
However, the industry sector played a critical role in the
mitigation of carbon emissions, with transportation in second
place, showing a significantly improving trend and exerting a
positive influence on CO2 emissions. As a result, the IS effect
resulted in an increase of 13.16%. Moreover, the IS effect had a
noticeable impact on the decline in the cumulative carbon
emissions of all four northeastern regions from 2012 to 2017,
as shown in the trend in alternation between the industry sector
and other sectors. The analysis above indicates that industrial
restructuring has a vital role to play in the management of energy
consumption and carbon emissions. The government should
therefore pay more attention to policy formulation in relation
to IS.

Investment Efficiency effect: The investment efficiency (IE)
effect was the main factor contributing to the increase in
cumulative CO2 emissions. Over the entire period of
2002–2017, this reached 91.18 Mt in Inner Mongolia,
189.35 Mt in Liaoning, 12.34 Mt in Jilin, and 13.89 Mt in
Heilongjiang, accounting for 78.91%, 28.94%, 12.32%, and
4.66%, respectively. From the analysis above, we know that the
IE effect had a substantial influence on the growth of carbon
emissions in Inner Mongolia. In addition, this effect had an
immense impact on rising CO2 emissions (127.56 Mt) in
2007–2012, a period in which heavy industry’s share of local
investment share increased, leading to rapid economic growth
and rising CO2 emissions. However, from 2002 to 2007, the IE
effect drove down CO2 emissions by −0.30 Mt in Inner Mongolia,
−12.96 Mt in Liaoning, −2.88 Mt in Jilin, and −31.45 Mt in
Heilongjiang. This was due to growing awareness of the
importance of environmental protection in the northeastern
regions and to investment starting to target green
energy–related industry. IE refers to regional output per

FIGURE 4 | Temporal decomposition of CO2 emission changes in (A)
(Inner Mongolia), (B) (Liaoning), (C) (Jilin) and (D) (Heilongjiang).
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investment. When local government prioritizes rapid economic
growth by investing in production scale, an increase in carbon
emissions will result. In contrast, the IE effect plays a role in the
decline in carbon emissions through investment in
environmental technology and energy conservation–related
industries.

IA effect: The IA effect was clearly a dominant driving force in
changing CO2 emissions. The IA effect increased carbon
emissions by 43.87 Mt, accounting for 37.97% of the total
emissions in Inner Mongolia during the period under study
(2002–2017). In addition, there was an upward trend in the
positive impact of IA on carbon emissions, which in Inner
Mongolia reached 0.60 Mt in 2002–2007, 7.57 Mt in
2007–2012, and 35.7 Mt in 2012–2017. During the recovery
from the Asian financial crisis, the local government adopted
measures that increased investment in infrastructure
construction, leading to rising energy consumption and to
investment per capita having a positive effect on total carbon
emissions. In Liaoning, Jilin, and Heilongjiang, the IA effect
positively influenced total carbon emissions, accounting for
38.26, 174.96, and 131.34 Mt from 2002 to 2017. Surprisingly,
it also had a positive effect in other periods, except for 2012–2017,
when the IA effect played a dominant role in reducing carbon
emissions to 166.89, −2.46, and −101.55 Mt, accounting for
−72.66%, −2.37%, and −564.41%, respectively.

Population Scale effect: The Population Scale (PS) effect is
another factor that significantly increased CO2 emissions,
accounting for 141.56 Mt in Inner Mongolia, 233.52 Mt in
Liaoning, 188.74 Mt in Jilin, and 144.76 Mt in Heilongjiang,
especially between 2002 and 2017. Over the period 2007–2012,
all the northeastern regions increased their CO2 emissions
significantly, and the “universal two-child policy” was
implemented in 2016 to boost the population by encouraging
couples to have more than one child. As the population statistics
show, from 2007 to 2012, Inner Mongolia and Liaoning saw a
more significant increase in population than the other two
regions, with annual averages of 0.51% and 0.45%,
respectively. It should be noted that in Liaoning, thanks to a
falling marriage rate and population mitigation measures, the PS
effect helped to reduce CO2 emissions by −12.88 Mt in
2012–2017, a period when total emissions were increasing in
the other three regions.

From our comparison of the decomposition factors in the
four northeastern regions in 2002–2017, we see that the most
substantial total changes in carbon emissions were in
Liaoning (reaching 654.22 Mt), followed by Heilongjiang,
Inner Mongolia, and Jilin (reaching 297.75, 115.54, and
100.13 Mt, respectively). As the bar chart shows, the ES,
IE, and IA effects combined to produce a positive effect on
CO2 emissions in all four areas, with total reductions in
carbon emissions from the EI effect of 15.29, −40.94,
−106.13, and −19.16 Mt. In Liaoning, the ES effect led to
the most extensive advancement in total carbon emissions (by
76.91%, 503.53 Mt), followed by the IE effect (189.35 Mt),
with the IA effect in third place (38.26 Mt). Nevertheless, the
EI and IS effects accounted for reductions in gross emissions
of −40.94 and −35.97 Mt, respectively, indicating that the

policy of improving the EI and adjusting the ES was effective.
The influencing factors in Inner Mongolia and Heilongjiang
were similar to those in Liaoning. However, in Jilin, all the
effect factors were associated with an increase in carbon
emissions, except for the EI effect, which reached −106.13 Mt.

Spatial Decomposition Results
The present objective is to analyze the discrepancies in the
mitigation of carbon emissions between provinces and their
averages in 2002, 2007, 2012, and 2017, which were
decomposed into the five effect factors shown in Figure 5.
The influencing factors generated different insights in the
spatial decomposition than in the temporal decomposition
analysis. For example, a positive value for the IE effect
indicates that regional output per investment of a province
was higher than the regional average; a positive value for the
EI effect indicates that the energy utilization of a province was less
efficient than the regional average. Figure 6 shows that the IA
effect was a leading driving force in the northeastern regions,
which indicates that all four regions need to put more effort into
adjusting their IA. The EI and IS effects followed a similar
trajectory, which suggests that they had a similar impact on
the carbon emission changes in the four areas.

In 2002, the ES and IA effects performed best in Liaoning, with
changes in carbon emissions of 73.16 and 65.66 Mt, respectively;
thus, the ES and IA effects in Liaoning were higher than the
regional average. Inner Mongolia was the best case for the ES
effect in terms of decreasing carbon emissions, accounting for
−104.33 Mt, which indicates that the emission change in Inner
Mongolia was lower than the regional average. The EI effect in
Inner Mongolia was the highest and had an effect on total
emissions reaching 15.76 Mt, which reflects lower energy
efficiency in that area, leading to higher carbon emissions than
the regional average. In Jilin, the IS effect was stronger than in the
other three northeastern regions, accounting for 1.97 Mt. In
Heilongjiang, the IE effect was relatively high, reaching
27.70 Mt. However, the PS effect was uneven in terms of
changing the carbon emissions in 2002 compared with the
other years under study, and the PS effect played a role in
increasing total emissions, accounting for 125.16 Mt in Liaoning.

FIGURE 5 | Temporal decomposition of CO2 emission changes in the
four northeastern regions, 2002–2017.

Frontiers in Energy Research | www.frontiersin.org December 2021 | Volume 9 | Article 7772909

Wang et al. CO2 Emissions in Northeast China

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


In 2007, Inner Mongolia had the highest ES, EI, IS, and IA
effects of the four regions, reaching 13.33, 14.47, 5.32, and
165.73 Mt, respectively. Inner Mongolia was the poorest
performer in terms of the IE effect, accounting for −226.98 Mt
and indicating an industry efficiency in decreasing the total CO2

emissions that was higher than the average. Liaoning was the
second-highest performer of the five driving forces, at −28.45 Mt
for ES, 10.47 Mt for EI, 3.07 Mt for IS, 44.78 Mt for EI, and
−108.89 Mt for IA. These results show that all the driving forces
had a significant impact. In 2012, the differences between regions
in the EI, IS, EI, and IA effect factors were not conspicuous, as
Figure 6 shows. We conclude that the ES effect played a crucial
role in reducing carbon emissions for the four regions shown,
reaching −224.19, −338.56, −446.14, and −70.53 Mt.

In 2017, the IA effect was a prominent driving force in
emission change in Inner Mongolia, reaching 59.39 Mt, which
indicates IE higher than the average. Although this effect was
weakest in Liaoning (−80.93 Mt), unit investment per person
nevertheless caused a decline of 80.93 Mt carbon emissions

compared with the regional level. In 2017, the ES effect on
emission change were similar to those in 2012, leading to
emission reduction in the four regions (−181.18, −127.18,
207.15, and −70.98 Mt). The IS effect in Inner Mongolia
shifted from being the best performer in 2012 to being the
poorest in 2017, whereas in Heilongjiang it shifted in the
opposite direction. As Figure 6 shows, the ES effect trajectory
varied significantly across the period under study, indicating that
the ES efficiency in the four regions varied over time.

Performance Ranking
Following the SDA, we investigated the regional performance
and the potential evolution of carbon emissions by ranking the
effects in the four regions in 2002, 2007, 2012, and 2017.
Supplementary Table S1 gives the ranking of the five driving
forces (the ES, EI, IS, EI, and IA effects) in the four areas, thereby
showing the ranking of the potential changes of carbon
emissions by effect factors. For example, the IE effect in
Heilongjiang ranked highest in 2002, indicating a significant

FIGURE 6 | Spatial decomposition results for the four northeastern regions in (A) 2002, (B) 2007, (C) 2012, and (D) 2017.
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potential of emission mitigation induced by the IE effect
compared with the other three regions. However, the EI
effect in Heilongjiang ranked low, denoting only a small
potential for emission changes. This finding can be explained
in terms of a local preference for EI over energy conservation.

Inner Mongolia was ranked lowest in 2002 in terms of the ES
effect but had moved to first place by 2007, which indicates that
its ES had evolved and that local government needs to pay more
attention to optimizing it. In 2007, Liaoning was the second-best
performer for all five driving forces, which reflects the local
government’s implementation at this time of a series of
policies and measures to influence carbon emissions. All the
driving forces had a significant effect.

Supplementary Table S1 shows that Jilin has immense
potential to change its emissions in terms of the IE effect. The
local government could decrease the total emissions by adjusting
the investment structure to increase IE. Heilongjiang came last in
terms of the EI effect, which implies that it has significant
potential for changing its carbon emissions through
management of EI. The analysis above is consistent with Ang
et al. (2015), who noted that the top-ranked regions have
enormous potential for energy conservation and emission
mitigation if adequate measures are taken.

CONCLUSION AND POLICY
IMPLICATIONS

Conclusion
The northeastern region in China has had a dominant impact on
energy-related CO2 emissions at the national level in recent
decades. We therefore used temporal and spatial LMDI
models to examine the driving forces in the four northeastern
regions from 2002 to 2017, carrying out a comprehensive and in-
depth analysis of carbon emissions from the perspective of
investment-related factors. The following main conclusions
can be drawn.

Of the four regions, the main carbon emitters and
consumers of energy were Inner Mongolia and Liaoning.
Energy consumption in Inner Mongolia increased
significantly from 19.84 to 69.58 Mtce over the study period
(2002–2017). In line with this, CO2 emissions rose from 69.24
to 216.96 Mt, an increase of 213%. Although emissions in 2017
were higher than in the base year (2002), the most significant
carbon emission levels (reaching 246.49 Mt in Liaoning) and
the most significant energy consumption increase (from 39.06
to 90.34 Mtce) were found in 2011. CO2 emissions rose from
105.63 to 187.30 Mt, an increase of 77%, peaking in 2011 at
230.62 Mt. From our analysis of the share of the carbon
emissions from different sectors in 2002–2017, we can
conclude that industry was the main emitter. This confirms
that industrialization is the critical factor in energy
consumption and CO2 emissions, reflecting Northeast
China’s role as an old industrial base that laid the
foundations for the industrialization of the country as a
whole. More surprisingly, we found that the trajectory of
the evolution of investment was similar to the mitigation of

carbon emissions, which indicates that investment is a major
driving force in changing total emissions.

Our analysis shows that the leading causes of the mitigation in
total emissions during the study period were ES and IE. In
2002–2017, the ES effect played a crucial role in changing
carbon emissions by 91.18 Mt in Inner Mongolia. The IE
effect was a major driving force in Liaoning, accounting for
503.53 Mt, and in Heilongjiang, accounting for 217.79 Mt.
However, IA had a more extensive influence on Jilin’s
changing emissions, accounting for 174.96 Mt of carbon
emissions. The differences in the effect factors between the
regions that our analysis reveals can help local governments to
develop region-specific policies for changing carbon emissions.
The investment-related effect and policy implications are clear
from the decomposition results presented above.

Another key finding associated with the EI effect concerns its
significant impact on decreasing the total emissions in all regions
from 2007 to 2012 (reaching −65.58 Mt in Inner Mongolia,
−107.79 Mt in Liaoning, −76.39 Mt in Jilin, and −27.63 Mt in
Heilongjiang). The EI effect in Inner Mongolia was the most
significant factor for emissions, with an impact reaching 15.76 Mt
in the base year (2002). The results show lower energy efficiency
in Inner Mongolia (which was second highest in terms of EI),
leading to carbon emissions higher than the regional average in
the final year (2017). The results above show that the degree of
effect changed over time.

The detailed analysis of the industry sector shows a substantial
carbon emission concentration. In the four regions, the absolute
value of the IS effect increased over the period, indicating that the
impact of IS on carbon emission mitigation increased
significantly over time. The contribution of the IS effect on the
cumulative carbon emissions decreased considerably in Inner
Mongolia (−32.62 Mt), Liaoning (−35.97 Mt), and Heilongjiang
(−46.12 Mt), which can mainly be attributed to the industry
sector (as shown in Figure 2). However, the share of carbon
emissions from the transportation sector increased in recent
years, and there was some variation between sectors in terms
of their share of the total.

Policy Implications
The four northeastern areas under study are among the country’s
major carbon emitters, and they should decrease their carbon
emissions to improve the national environment. The results of
our analysis enable us to provide a number of practical
suggestions for appropriate regional policies.

First, IS is a primary driving force of carbon emission change,
which means that adjusting the IS will improve the coal-based
energy consumption structure. Because the development of local
industry is based mainly on coal consumption, as the energy
consumption data show, local governments should establish
various energy consumption structures to diversify resource
implementation. Accordingly, new energy technology can be
boosted by taking active steps to use the superior resources of
the four northeastern provinces. For example, tidal energy is
abundant in the gulf area in Liaoning, and Heilongjiang is rich in
solar and water energy. It would be appropriate to make the most
of these local advantages.

Frontiers in Energy Research | www.frontiersin.org December 2021 | Volume 9 | Article 77729011

Wang et al. CO2 Emissions in Northeast China

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Second, to reduce total emissions, local governments should
pay more attention to the EI effect. They should actively
introduce foreign advanced management experience and
specialize in the technology of energy conservation and
emission reduction, especially in terms of clean coal mining
technology, nuclear power technology, and pollution control
technology. It is important to encourage the introduction of
these technologies to shorten considerably the cycle of energy
production and consumption and to improve energy utilization
efficiency through the adoption of advanced technologies.
More effort should also be put into researching the most
advanced and untapped energy development technologies,
such as photovoltaic power generation, hydrogen energy,
fuel cells, and other new energy technologies with positive
development prospects.

Third, as the factors of IE and IA play a dominant role in
changing CO2 emissions, governments should increase
investment into the technology of energy conservation and
emission reduction. Investment growth in Northeast China
accelerated significantly, thanks to a series of policies from
national central government promoting coordinated
development of regional economies, with investment in 2017
up 423.61% compared with 2002. We therefore suggest that the
government should adjust the regional investment structure to
generate more significant and orderly momentum for promoting
collaborative regional economies. Social development should use
the market mechanism to target environmental protection,
increasing investment and energy efficiency improvements and

decreasing interest rates for private environmentally friendly
investments.

Finally, our results have implications for the formulation of
policy. Local policies need to be updated regularly to keep pace
with variations over time in the economic environment,
population, and other factors. We recommend the
development of low-carbon urban transportation, which is also
a crucial measure for reducing carbon emissions. We also suggest
a multilevel approach to the vigorous development of
environmentally friendly transportation methods, as this will
enhance investment in research into new-energy vehicles and
will improve the infrastructure for public transportation.

This study has two main limitations that should be noted. First, it
covers a small number of industrial cities in China over a relatively
short period. Future studies should include a greater number of
locations and a longer evaluation period. Second, we only give a
macrolevel analysis for China’s regional carbon emissions and further
analyze the emissions from every industrial source. Future studies
could consider the distinction between the two.
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