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The rapid and accurate measurement of the flame temperature distribution is of great
significance to the structural design and health diagnosis of the engine. Aiming at the low
reconstruction efficiency of traditional flame temperature distribution reconstruction
algorithms, a Direct Solution algorithm for flame temperature distribution reconstruction
is proposed in this paper based on the structural characteristics of the reconstruction
equations. By setting several numerical cases, the performance of the Direct Solution
algorithm and some commonly used traditional algorithms, such as Simultaneous
Algebraic Reconstruction Technique (SART), Least Squares QR-factorization (LSQR)
algorithm, Non-Negative Least Squares QR-factorization (NNLS) algorithm, is
compared in the reconstruction of the flame temperature distribution. The results show
that the efficiency of the Direct Solutionmethod is 169.4, 7.4, and 3483.3 times higher than
that of the SART, LSQR, and NNLS algorithms under the condition of 40 × 40 grids. In
addition, with the increase of the number of grids, the growth rate of the reconstruction
time of the Direct Solution algorithm is much lower than that of other algorithms. The overall
reconstruction accuracy of the Direct Solution algorithm is better than that of SART and
LSQR algorithms. This shows that it has an excellent comprehensive performance and has
a great application prospect in the rapid reconstruction of the temperature distribution.

Keywords: radiation imaging, tomographic reconstruction, flame temperature measurement, rapid reconstruction,
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INTRODUCTION

Thrust-to-weight ratio is a comprehensive index to measure the performance level and working
ability of aero engines. One of the main ways to improve the thrust-to-weight ratio of modern aero
engines is to increase the outlet temperature of the combustion chamber (Zhang et al., 2019). As the
temperature rises, turbine blades and vanes need to bear a greater thermal load. The huge thermal
gradient causes severe thermal stress and strain on the blades, which greatly reduces the creep life of
the blades, and leads to ablation, fracture and failure of the blades (Marahleh et al., 2006). Real-time
monitoring and obtaining accurate combustion chamber outlet temperature can respond to local
temperature sudden changes in the engine in a timely manner, which is of great significance for the
safety of aero-engine operation and prolonged service life (Li et al., 2006; He et al., 2019; Gamil et al.,
2020).
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Due to the shortcomings of thermocouple and other contact
temperature measurement, such as slow dynamic response,
interference with combustion field, narrow temperature
measurement range, only point measurement, high-
temperature oxidation, etc., it is not suitable for cutting-edge
combustion chambers under high temperature, high pressure,
and high-speed conditions (Yang et al., 2015; Jenkins et al., 2020;
Zhang et al., 2016; Lian et al., 2017). In recent years, the flame
temperature distribution reconstruction technology based on
radiation images has received extensive attention from
researchers all over the world (Neuer et al., 2001; Sun et al.,
2018; Qi et al., 2019; Zhao et al., 2017; Hossain et al., 2013; Niu
et al., 2015). It has the advantages of non-invasiveness and no
need for external excitation sources and is more suitable for the
measurement of the exit temperature distribution of the
combustion chamber of aero engines.

The radiation image method for temperature measurement
utilizes flame radiation information from different directions to
reconstruct the flame temperature field, and the use of a
reasonable reconstruction algorithm is beneficial to improve
the efficiency and accuracy of temperature distribution
reconstruction. Generally, the number of grids in the
reconstruction area will affect the efficiency of the
reconstruction algorithm. As the number of grids increases,
the difficulty and time to solve the ill-conditioned equations
transformed from the inverse radiation problem tend to
increase exponentially, which is difficult to meet the current
demand for rapid reconstruction of the exit temperature of the
combustion chamber of aero engines.

To solve the above-mentioned problems, Zhou et al. (2002)
used an improved Tikhonov regularization algorithm to
reconstruct a three-dimensional temperature distribution of
Nx ×Ny ×Nz � 10 × 10 × 10 from the flame image obtained
by the CCD camera, which proved the robustness of the
algorithm, but the reconstruction efficiency is not studied. Liu
et al. (2010) used the Least Square QR decomposition (LSQR)
algorithm to achieve a two-dimensional temperature distribution
reconstruction with a discrete area of Nx ×Ny � 10 × 10 based
on an 8-camera system combined with the Monte Carlo method.
However, if the LSQR algorithm is directly used for large-scale ill-
conditioned problems, there will be a “semi-convergence”
problem, which will affect the accuracy and reconstruction
time. Qiu et al. (2014) combined the Tikhonov regularization
algorithm and generalized truncated singular value
decomposition hybrid algorithm (TR-GSVD) to reconstruct
the temperature distribution in the discrete area of Nx ×Ny ×
Nz � 10 × 10 × 12 in the furnace, and the reconstruction time is
about 2s. Cai et al. (2013) reconstructed the flame temperature
distribution with a grid number ofNx ×Ny ×Nz � 54 × 54 × 10
based on chemiluminescence tomography technology, using
Algebraic Reconstruction Technique (ART) and minimization
algorithm combined with regularization technology. Numerical
simulations and experiments have verified the effectiveness of the
method. However, the low efficiency of the “line-by-line
correction” of the ART algorithm will affect the reconstruction
time. Huang et al. (2018) used the improved Landweber
algorithm to reconstruct the three-dimensional temperature

distribution of the absorbing and scattering flame based on the
light field imaging technology. But it still takes 2.5 s to reconstruct
the temperature distribution with the number of grids
Nφ ×Nr ×Nl � 1 × 20 × 20. The above-mentioned traditional
algorithms have achieved certain results in the reconstruction
of the temperature distribution, but the calculation time for the
reconstruction of the temperature distribution with a large
number of grids is generally too longer. Therefore, it is
necessary to develop a flame temperature distribution
reconstruction algorithm that greatly improves the
reconstruction efficiency under the premise of ensuring
accuracy and is less affected by the increase in the number
of grids.

In this paper, based on the CCD camera imaging and flame
radiative transfer model, the rapid reconstruction method of
absorbing and scattering flame temperature distribution is carried
out. It takes the generalized source term finite volumemethod as the
model of the forward problem and the proposed direct solution
algorithm as the inverse method for reconstructing the temperature
distribution. Two numerical cases of flame temperature distribution
reconstruction are designed to illustrate the performance of the
proposed direct solution algorithm compared with the current main
tomographic algorithms, such as Simultaneous Algebraic
Reconstruction Technique (SART), LSQR, and Non-Negative
Least Squares QR-factorization (NNLS) algorithm.

THEORIES AND METHODS

Forward Model
In the radiation image method for temperature measurement, as
shown in Figure 1, an ideal thin lens model can be used to
describe the imaging process of light from the object space
passing through the lens to the camera detector pixels. The
light entering the camera is characterized by the line between
the center of the CCD pixel and the optical center of the lens.
Considering that the flame is a semi-transparent object, the light
will pass through the flame. When the deflection effect of the
flame refractive index gradient on the light is not considered, the
radiation of the flame voxel through which the light passes all
contributes to the gray value of the pixel. Therefore, it is necessary

FIGURE 1 | The schematic diagram of flame radiation imaging for
temperature measurement.
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to record the number of flame voxels that each detection light
passes through, and the distance traveled in the voxel. According
to the generalized source term finite volumemethod (Zhang et al.,
2017), the radiation energy received on each pixel can be
calculated by the following formula:

I(rp,Ω) � S(rn,Ω)[1 − exp(−βnΔsn)] +∑n−1
i�1 S(ri,Ω)

⎡⎢⎢⎣exp⎛⎝ −∑n

j�i+1 βjΔsj⎞⎠ − exp⎛⎝ −∑n

j�i βjΔsj⎞⎠⎤⎥⎥⎦ (1)

where I(rp,Ω) is the radiation intensity along the direction Ω at
the position rp. n is the total number of the flame voxel that the
light passes through. S(ri,Ω) is the generalized source term of the
n th voxel along the direction Ω. β is the extinction coefficient of
the flame. Δs is the distance that the light travels through the
flame voxel, witch can be determined by the reverse tracing of
the light.

Since the propagation speed of light is much greater than the
equilibrium speed of temperature, the radiative transfer of flame in
radiation image method for temperature measurement can be

expressed by the steady-state radiative transfer equation (Qi et al.,
2015):

dI(r,Ω)
βds

� −I(r,Ω) + (1 − ω)Ib(r) + ω

4π
∫
4π

I(r,Ω′)Φ(Ω′,Ω)dΩ
(2)

where I(r,Ω) is the radiative intensity along the direction Ω at the
flame voxel r. Ib(r) is the black body radiative intensity at the flame
voxel r. ω is scattering albedo of the flame.Φ(Ω′,Ω) is the scattering
phase function, where Ω′ is the incident direction and Ω is the
scattering direction. Ω is the solid angle.

The second and third terms on the right side of Eq. (2)
represent emission-enhanced and scattering-enhanced terms,
respectively. The sum of the second and third terms can be
defined as the generalized source term.

S(r,Ω) � (1 − ω)Ib(r) + ω

4π
∫
4π

I(r,Ω′)Φ(Ω′,Ω)dΩ (3)

Each detected light of the camera can establish as an
equation using Eq. (1), then all detected light of the camera
can form reconstruction equations. The generalized source
term distribution can be obtained through the inversion
calculation of the reconstruction equations. After
substituting the generalized source term, the finite volume
method can be used to calculate the black body radiative
intensity of each flame voxel, and then the temperature of
each flame voxel can be obtained by Planck’s law.

A · S � I, A ∈ RM×N, S ∈ RN, I ∈ RM (4)

where A is the coefficient matrix of the reconstruction equations,
which is related to the flame extinction coefficient and the optical
path of the light passing through the voxels. S is the generalized
source term vector. I is the flame radiative intensity distribution
received by the CCD camera. M and N are the total number of
detected lights and flame voxels.

FIGURE 2 | The schematic diagram of light propagation in the
flame voxel.

FIGURE 3 | The schematic diagram of the element characteristics of the coefficient matrix A.
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Inversion Principle
The dimension of the coefficient matrix A in the reconstruction
equations is determined by the dimensions of the unknowns
vector S and the measured value vector I. Because the current
camera resolution is relatively large (usually millions), resulting in
a huge dimension of the coefficient matrix. This leads to low
solution efficiency. However, the solution process can be
optimized by analyzing the characteristics of the coefficient
matrix. In order to facilitate the demonstration, a two-
dimensional flame and linear CCD are used to analyze the
flame temperature distribution reconstruction in this paper, as
shown in Figure 2.

According to Eq. (1), if the light passes through the flame
voxel, the elements in the corresponding coefficient matrix are
non-zero. If non-zero elements of the coefficient matrix are
represented by blue dots, and zero elements of the coefficient
matrix are represented by blanks, the coefficient matrix can be
represented as Figure 3. It can be seen that the coefficient matrix
A is very sparse. There are several rows of coefficient matrix
containing only one non-zero element, such as rows 1, 2, / , 6,
M-5, M-4, / , M. It means that a specific unknown generalized

FIGURE 4 | The flowchart of the direct solution algorithm.

FIGURE 5 | The original temperature distribution of the 2D four-
peak flame.

FIGURE 6 | The schematic diagram of the layout of the eight linear
camera system.
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source term value can be solved using one equation and one
measured value. Due to the proximity of the voxels in space, many
rows which contain two non-zero elements and one non-zero
element share the same element. For example, row 6 and row 7
share a non-zero element 40. Therefore, the unknowns obtained
in the previous calculation can be used to substitute back to a new
row for elimination. Using this “solving-substitution” model,
only a few equations need to be calculated each time to
gradually complete the solution of large-scale linear equations,
so that a few unknown equations can be calculated all the time to
gradually complete the solution of large-scale coefficient
equations. Considering that there are multiple rays of light
passing through the same flame voxel at the same time, in
order to reduce the influence of measurement error, multiple
equations can be solved at the same time to obtain the least square
solution of the same non-zero element. For example, rows 1, 2, 3,
4, 5, and 6 can form a sub-matrix to solve the 40th unknown
generalized radiation source term.

Since the reconstruction method proposed in this paper is to
solve a certain unknown parameter each time directly, this
method is called Direct Solution algorithm. The procedure for
implementing the Direct Solution algorithm is described as the
following steps, and the flowchart is shown in Figure 4.

Step 1. Input the coefficient matrixA(k) and count the number
of non-zero elements and corresponding positions in each row.

Step 2. According to the counted number of non-zero
elements, arrange the row vectors of the coefficient matrix in
ascending order to form a new coefficient matrix A(k).

Step 3. Extract the row vectors containing the least specific
non-zero element ai,j from the matrix to form the solving sub-
matrix A′(k)

m , and the remaining part form the candidate sub-
matrix A′(k)

n .
Step 4. Check whether the solving sub-matrixA′(k)

m is full rank.
If it is not full rank, go to Step 5. If it is full rank, go to Step 6.

Step 5. Extract the row vectors containing element ai,j and the
least non-zero elements from the candidate sub-matrix A’(k)

n .
Combine them with the solving sub-matrix A′(k)

m to form a new
solving sub-matrix A′(k)

m+t and the remaining candidate sub-matrix
constitutes a new candidate sub-matrix A′(k)

m−t. Then go to Step 4.
Step 6. Use the LSQR algorithm to solve the sub-matrix A′(k)

m .
Substitute the calculation result back into the candidate sub-
matrix A’(k)

n . Eliminate the solved elements in the candidate sub-
matrix to form a new coefficient matrix A(k+1). Loop to Steps 1
until all unknowns are obtained.

RESULTS AND DISCUSSIONS

Evaluation Criterion
In order to evaluate the performance of the Direct Solution algorithm
proposed in this paper, several common traditional reconstruction
algorithms of flame temperature distribution are selected for
comparison, such as SART (Liu et al., 2017), LSQR (Liu et al.,
2010), NNLS (Li et al., 2019) algorithms. In terms of
reconstruction accuracy, the following criteria are used for
evaluation (Resnick et al., 1985): 1) The normalized mean square
distance, q; 2) The normalized average absolute distance, r; Theworst-
case distance, e. The specific expressions are shown in Eqs (5)–(7).

r � ∑N

i�1 ∑N

j�1
∣∣∣∣Ti,j − Ri,j

∣∣∣∣/∑N

i�1 ∑N

j�1
∣∣∣∣Ti,j

∣∣∣∣ (5)

q � ∑N

i�1 ∑N

j�1 (Ti,j − Ri,j)2/∑N

i�1 ∑N

j�1 (Ti,j − T)2 (6)

e � max

1≤i≤[N
2
]

1≤j≤[N
2
]

∣∣∣∣Mi,j − Ei,j

∣∣∣∣, ⎧⎪⎨⎪⎩
Mi,j � (T2i,2j + T2i+1,2j + T2i,2j+1 + T2i+1,2j+1)/4
Ei,j � (R2i,2j + R2i+1,2j + R2i,2j+1 + R2i+1,2j+1)/4

(7)

where Ti,j is the value of the original value of the temperature at voxel
(i, j). Ri,j is the reconstructed value of the temperature at voxel (i, j).
T is the average value of the temperature at voxel (i, j).

The normalized average absolute distance r more sensitively
reflects the situation that many points have small errors. The
normalized mean square distance q more sensitively reflects the
error generated by a few points. The worst-case distance e more
sensitively reflects the density difference between the
reconstructed value and the original value.

These traditional reconstruction algorithms have been
widely used in the reconstruction of flame temperature
distribution based on radiation imaging and have been
proved to have high reconstruction accuracy. The processes
of the temperature reconstruction in these above three
algorithms are similar to that of the direct solution
algorithm. And the specific principles and steps are also
commonly found in other references (Andersen et al., 1984;
Teng et al., 1989; Bombara et al., 2011). Thus, this paper will
not repeat them here.

Camera and Flame Settings
There is a four-peak 2D flame with a size of
Lx × Ly � 60 mm × 60 mm. The flame area is discretized into
Nx ×Ny � 40 × 40 grids. The temperature distribution is shown

FIGURE 7 | The Schematic diagram of the layout of the 8 linear camera
system.

TABLE 1 | The comparison of reconstruction performance of different algorithms.

Algorithm Time[s] r q e

SART 391.42 4.30 × 10–3 1.69 × 10–2 15.13
LSQR 17.04 1.46 × 10–4 6.89 × 10–4 0.20
NNLS 8,046.43 1.32 × 10–14 4.21 × 10–14 1.76 × 10–11

Direct Solution 2.31 2.72 × 10–9 3.00 × 10–8 6.71 × 10–5
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in Figure 5. Considering isotropic scattering, the extinction
coefficient of the flame is β � 0.02 mm−1, and the scattering
albedo is ω � 0.1. The temperature distribution function is
defined as follows.

T(x, y) � 1200 × exp[ − 0.05 × (x + 0.2Lx)2 − 0.075 × (y + 0.2Ly)2 − 1.375]
+ 1200 × exp[ − 0.075 × (x + 0.2Lx)2 − 0.05 × (y − 0.2Ly)2 − 0.925]
+ 1200 × exp[ − 0.075 × (x − 0.2Lx)2 − 0.05 × (y + Ly)2 − 0.925]
+ 1200 × exp[ − 0.05 × (x − 0.2Lx)2 − 0.075 × (y − Ly)2 − 1.375]
+ 300(K) (8)

where x and y respectively represent the horizontal and vertical
coordinates in the world coordinate system. Lx and Ly represent
the size of the flame in the x and y directions.

Eight linear CCD cameras are arranged on the circle 0.55 m
from the flame center. As shown in Figure 6, each camera focuses
on the plane passing through the flame center. A lens with a
magnification ratio of 1:3 is selected. The number of pixels of each
camera is 4,096, and the pixel size is 7.04 µmμm, which ensures
that the field of view of each camera covers all the flame domains.

Performance Comparison
According to the arrangement of the camera system and the
flame, the flame image of each camera, as shown in Figure 7,

is obtained through the calculation of the radiative transfer
equation and the reverse tracing of the light. The light that
does not pass through any flame voxel is removed to obtain
the number of effective rays is 28,304. Thus the scale of the
reconstruction coefficient matrix is 28,304 × 1,600, in which
the proportion of non-zero elements to the total elements is
2.46%, the rank of the coefficient matrix is 1,600, and the
condition number is 526.13. It can be seen that the
reconstruction equations are a typical large-scale sparse ill-
conditioned equation system. Since the traditional general
solution algorithms do not take into account the
characteristics of the reconstruction coefficient matrix,
they cannot give full play to their advantages.

The case was implemented using MATLAB code, and the
developed program was executed on an Intel(R) Core(TM)
i9-10940X CPU @ 3.30 GHz PC. The temperature
distribution of the above-mentioned four-peak flame is
reconstructed according to the measured flame image
using SART, LSQR, NNLS, and Direct Solution algorithm,
respectively. The calculation efficiency and accuracy results
are shown in Table 1. It can be seen from the table that the
reconstruction accuracy of the Direct Solution algorithm is
better than the SART and LSQR algorithms and slightly
worse than that of the NNLS algorithm in the three
reconstruction quality evaluation indicators. This is

FIGURE 8 | The temperature distribution under different grids (A) 10 × 10, (B) 20 × 20, (C) 40 × 40, and (D) 80 × 80.
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because the Direct Solution algorithm uses the LSQR
algorithm to calculate the small-scale equations, and the
NNLS algorithm performs non-negative constraints on the
calculation results based on the physical characteristics of the
flame so that the method can avoid some local optimal
solution that do not conform to the laws of physics.

In terms of reconstruction efficiency, the Direct Solution
algorithm is 169.4 times higher than the SART algorithm,
7.4 times higher than the LSQR algorithm, and 3483.3 times
higher than the NNLS algorithm, which has obvious advantages.
This is because the Direct Solution algorithm gradually
decomposes the equation system into multiple sub-equation
systems and solves them one by one. Each sub-equation
system has a few unknowns to solve, avoiding the direct
calculation of large-scale equations, which can greatly reduce
the calculating time.

Influence of the Grids Number
The size and temperature of the flame area are kept unchanged,
and the discrete grids of the flame area is set as 10 × 10, 20 × 20,
40 × 40, and 80 × 80, as shown in Figure 8. In this case, all the
camera and lens parameters are kept unchanged. The total
number of the detected light is 32,768. After ray tracing, the
rays that do not pass through any flame control body are
eliminated, and the number of effective rays under the four
grids is 28,304.

The flame temperature distribution is reconstructed using the
SART algorithm, LSQR algorithm, NNLS algorithm, and Direct
Solution algorithm proposed in this paper, and the overall error
distribution and calculation time change of the four algorithms
under different grids are obtained. The accuracy and efficiency of
these algorithms are shown in Figure 9 and Figure 10. It can be
seen from the figure that as the number of grids increases, the
scale of the equation system expands, and the error presents an
upward trend. The reconstruction accuracy of the Direct Solution
algorithm is less than that of the NNLS algorithm but better than
the SART and LSQR algorithms.

It can be seen from Figure 10 that as the number of grids
gradually increases, the calculation time of the four
algorithms increases. The calculation time of the Direct
Solution algorithm increases slowest, indicating that it is
least affected by the increase in the scale of the equations.
The direct solution algorithm takes less time than the other
three algorithms, indicating that when the number of grids
increases, the direct solution algorithm takes less time to
extract and solve the partial extraction of the overall equation
system. This reduces the overall time-consuming to solve all
the unknowns, greatly shortens the reconstruction time
compared to other algorithms. The above numerical results
show that the Direct Solution algorithm can quickly
reconstruct the flame temperature distribution under the
premise of ensuring accuracy. In occasions where real-time
reconstruction is required, this algorithm has greater
application prospects.

CONCLUSION

In this paper, a Direct Solution algorithm is proposed. It can
quickly reconstruct the flame temperature distribution.
According to the characteristics of the reconstruction
coefficient matrix, it first performs statistical classification
according to the minimum non-zero element criterion and the
full rank criterion of the sub-equation system. And then, it
solves the small-scale equations group by group according to
the method of “solving-substitution”, which greatly improves
the reconstruction efficiency of large-scale sparse equations.
The performance of the proposed method is compared with
that of the traditional tomographic reconstruction algorithms.
Under the condition of 40 × 40 grids, the normalized average
absolute distance criterion r, normalized mean square
distance criterion q, and worst-case distance criterion e of
the proposed algorithm are all smaller than that of SART and
LSQR algorithms. Compared with the SART, LSQR, and

FIGURE 9 | The influence of the grids number on the overall
reconstruction error.

FIGURE 10 | The influence of the number of grids on the reconstruction
time.
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NNLS algorithms, the reconstruction efficiency is increased
by 169.4, 7.4, and 3483.3 times, respectively. On this basis, the
influence of the grids number on the reconstruction algorithm
is analyzed. The results show that as the number of grids
increases, the reconstruction time of the Direct Solution
algorithm increases the slowest. The overall reconstruction
accuracy is higher than SART and LSQR methods, which can
meet the accuracy requirements on many occasions.
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