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With the share of electricity in total final energy consumption increasing quickly, the world is
becoming increasingly dependent on electricity, which makes it more and more important
to improve the forecasting accuracy of electricity consumption to ensure the normal
operation of economic activities. In this paper, a novel decomposition and combination
technique to forecast monthly electricity consumption is proposed. First, we use STL
decomposition to obtain the trend, season, and residual components of the time series.
Second, we use SARIMA, SVR, ANN, and LSTM to forecast trend, season, and residual
component, respectively. Third, we use time correlation principle to improve the
forecasting accuracy of season component. Fourth, we integrated the residual
component predicted by SARIMA, SVR, ANN, and LSTM into a new sequence to
improve the forecasting accuracy of residual component. In order to verify the
performance of the proposed forecast model, monthly electricity consumption data in
China is introduced as an example for empirical analysis. The results show that after STL
decomposition, time correlation modification, and residual modification, the forecasting
accuracy of each model has been gradually improved. We believe that the proposed
forecast model in this paper can also be used to solve other mid- and long-term forecasting
problems with obvious seasonal characteristics.

Keywords: monthly electricity consumption, STL, time correlation modification, ANN, LSTM

INTRODUCTION

Background
Resource depletion and global climate change are serious problems that human society is facing and
will face for a long time. To escape from this dilemma, the global energy mix needs two
transformations: clean energy substitution on the energy supply side and electric energy
substitution on the energy consumption side. This paper focuses on electricity consumption.
According to statistics, global electrification of the final consumption continues to follow an
increasing trend, and the share of electricity in total final energy consumption is close to 20% in 2020.

As the world becomes more and more dependent on electricity, planning for electricity
production is crucial. In addition, electricity is difficult to store, so it is usually used
immediately after it is generated. This further increases the need for power companies to plan
their electricity supply in a proactive manner. Reliable forecast of future electricity consumption
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level is the primary guiding principle of planning. In particular,
high forecasting accuracy of medium- and long-term electricity
consumption is the key to power system scheduling and
planning. In contrast, inaccurate forecast of electricity
consumption can backfire. Overestimation will waste scarce
energy resources, huge capital investment, and long
construction time. Underestimation will lead to more serious
negative consequences, such as power shortage. Clearly, if
effective early warning is given in advance based on high
forecasting accuracy of electricity consumption, some
measures can be adopted to avoid negative consequences.
However, electricity consumption is uncertain, complex, and
nonlinear, which depends on political conditions, economy (Lin
and Liu, 2016), human activities, population behavior (Hussain
et al., 2016), climate factors (Hernández, 2013), and other
external factors affecting the forecasting accuracy of
electricity consumption.

Literature Review and Motivation
At present, many techniques are used to forecast electricity
consumption, which can be roughly divided into three
categories: nonlinear intelligent model, statistical analysis
model, and gray forecasting model. Nonlinear models mainly
include the artificial neural network (Kandananond, 2011; Kaytez
et al., 2015; Liu et al., 2017; Ghadimi et al., 2018; Bedi and
Toshniwal, 2019; Hamzaçebi et al., 2019), support vector machine
(Pai and Hong, 2005; Kavaklioglu, 2011; Cao andWu, 2016), and
Markov chain (Zhao et al., 2014). In addition to the nonlinear
intelligent models mentioned above, statistical analysis models,
such as regression analysis method (Mohamed and Bodger,
2005; Wang et al., 2018) and autoregressive integrated moving
average (Yuan et al., 2016), have also been widely used in
electricity consumption forecasting. The gray forecasting
model proposed by Deng enjoys high popularity in many
forecasting applications because it can describe the
characteristics of uncertain systems even in the face of a
small amount of data. Therefore, some literature forecast
electricity consumption based on the gray model (Akay and
Atak, 2007; Bahrami et al., 2014; Zhao and Guo, 2016; Xu et al.,
2017; Ding et al., 2018; Wu et al., 2018).

These methods can generally provide good forecasts.
However, the statistical analysis models have the limitation
of linear (or near linear) assumption, the gray forecasting
models are usually only suitable for time series that
approximate exponential growth, and the nonlinear
intelligent models often suffer from overfitting or the
difficulty of parameter selection. To remedy these
shortcomings, some decomposition and combination
techniques have been proposed in recent years and achieve
better performance: the SARIMA model with residual
modification (Wang et al., 2012), wavelet transform
combined with machine learning and time series models
(Nguyen and Nabney, 2010), weighted hybrid model where
trend and seasonal components are predicted by combined
method, and SARIMA, respectively (Zhu, 2011), bagging
ARIMA and exponential smoothing methods (de Oliveira
and Cyrino Oliveira, 2018), convolutional neural networks

and fuzzy time series (Sadaei et al., 2019), and structural
combination of seasonal exponential smoothing forecasts
(Rendon-Sanchez and de Menezes, 2019).

For the above existing researches, there are still some issues
that need to be further studied. First, the statistical analysis
models assume linearity and have good forecasting accuracy
for periodic and regular sequences. The nonlinear intelligent
model can forecast nonlinear and irregular time series better,
but it has the problem of overfitting. How could the
advantages of the two methods be combined to improve
the forecasting accuracy? Second, except for the
fluctuations of monthly electricity consumption affected by
extreme weather changes, and sudden major economic and
health events, the monthly electricity consumption also shows
strong periodicity and regularity, so the comprehensive
utilization of these two characteristics is meaningful to
increase forecasting accuracy.

Contributions
To bridge the gap discussed above in the Literature review and
motivation section, this paper develops a novel decomposition
and combination forecasting technique. The primary research
contents of this paper include three parts. First is the research on
the monthly electricity consumption forecast based on STL
decomposition. Second is the research on a time correlation
modification based on annual periodicity and adjacent
similarity to improve the forecasting accuracy of the season
component. Third, considering the residual component has
nonlinear and irregular characteristics, the individual model
may only extract a certain feature of the sequence. Therefore,
we integrate the residual component predicted by four
models into a new sequence to improve the forecasting
accuracy of the residual component. The main contributions
of this paper are as follows:

1) A novel decomposition and combination forecasting model
utilizing STL decomposition, time correlation principle
(embodied as annual periodicity and adjacent similarity),
and hybrid forecasting principle is proposed.

2) The monthly electricity consumption data of China
are applied to evaluate the performance of the
proposed model.

The remainder of the paper is organized as follows. The
Electricity consumption month-ahead forecasting model section
introduces the proposed forecasting model. The Case study
section presents the simulation results and discussion, in
which the performance of the proposed forecasting model is
evaluated. Finally, conclusions are drawn in the Conclusion
section.

ELECTRICITY CONSUMPTION
MONTH-AHEAD FORECASTING MODEL

This section first briefly introduces individual models, including
the STL algorithm, SARIMA, SVR, ANN, and LSTMmodel. Then
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the operation process of the proposed decomposition and
combination method is described.

Seasonal–Trend Decomposition Using
Loess Decomposition
For seasonal time series, academics generally use STL
decomposition proposed by Cleveland et al. (1990) to obtain
trend, season, and residual components. STL is a decompose
model in the form of addition. In STL, loess is used to divide the
time series into trend component, seasonal component, and
residual component. Division is addition, that is, adding up
the parts to get the original series. Specifically, the steps of
STL decomposition are 1) detrending; 2) periodic subsequence
smoothing: establish a sequence for each seasonal component and
smooth it separately; 3) smoothing periodic substring low-pass
filtering: recombine substring to smooth; 4) detrending the
seasonal series; 5) detrending the original series using the
seasonal components calculated in the previous steps; and 6)
smoothing the de-seasonal sequence to obtain the trend
component.

Seasonal Autoregressive IntegratedMoving
Average
SARIMA is one of the most widely used linear models for time
series prediction. The general equation of this model is given by
Eq. 1.

ϕp(B)(1 − B)dΦP(Bs)(1 − Bs)Dyt � θq(B)ΘQ(Bs)at. (1)

Here yt is time series, at is white noise, and B is the lag
operator. D represents the seasonal differentiation order, and d
represents the regular differentiation order.

ϕp(B) � 1 − φ1B − φ2B
2 − . . . − φpB

p. (2)

θp(B) � 1 − θ1B − θ2B
2 − . . . − θqB

q. (3)

Eqs. 2, 3 represent the autoregressive and moving average
polynomial, respectively. They represent the dependence of
future values of time series on past values as well as errors.

ΦP(B) � 1 − μ1B
S − μ2B

2S − . . . − μPB
PS. (4)

ΘQ(B) � 1 − υ1B
S − ]2B2S − . . . − ]PBQS. (5)

Similarly, Eqs. 4, 5 represent the seasonal autoregressive and
seasonal moving average polynomials, respectively. Addition
of these polynomials to the ARIMA equation helps in
capturing the seasonal variation in time series.
Differentiation is necessary for converting the nonstationary
time series to a stationary one. S represents the order of
seasonality.

Support Vector Machine
SVM was first proposed by Vapnik (1963) based on the statistical
learning theory and principle of structural risk minimization,
which possess good performance even for small samples. The

basic idea of support vector regression is to map original data to
high-dimensional feature space and perform linear regression in
the space. It can be formulated into:

f(x) � wTφ(x) + b, (6)

where φ(x) is a nonlinear mapping function, f(x) is the
estimation value, and wT and b are weights. It can be
translated into an optimization problem:

Min
1
2
wTw + C∑T

t�1(ξt + ξpt ),

s.t
⎧⎪⎨
⎪⎩

wTφ(xt) + b − yt ≤ ε + ξt, (t � 1, 2, . . . , T)
yt − (wTφ(xt) + b)≤ ε + ξpt , (t � 1, 2, . . . , T)

ξt, ξ
p

t ≥ 0
, (7)

where C is the penalty parameter, and ξt and ξpt are the
nonnegative slack variables. Generally speaking, the
parameters of SVR have a great influence on the accuracy of
the regression estimation. Thereby, the grid search method is
employed to automatically choose the optimal parameters of SVR
in this paper.

Artificial Neural Network
ANN is an information processing method based on the
biological neural network. Neural networks can theoretically
simulate any complex nonlinear relationship through
nonlinear units (neurons) and have been widely used in the
field of forecast. The structure of artificial neural network consists
of input layer, hidden layer, and output layer. The most widely
used ANNmodel is the BP neural networkmodel based on the BP
algorithm. The neural network is determined by determining the
weight between each layer. Therefore, the neural network is
trained to set all the weights before being used for prediction.
The initial weights are set randomly, and the output data can be
obtained according to certain rules when the training process is
going forward. The weights are modified based on the difference
between the output data and the expected data during the fallback
process. The forward and backward process is repeated until the
difference between the output data and the required data is small
enough.

Long Short-Term Memory
Traditional artificial neural networks (ANN) attempt to establish
direct mapping between input historical data and output forecast
data to achieve prediction methods. However, due to the absence
of time correlation in data series, the neural network model
cannot capture the relationship between data and time, which
limits its application in time series prediction methods.
Therefore, recursive neural network (RNN) is proposed to
overcome this shortcoming. By adding cyclic connections on
neurons, RNN can establish sequence-to-sequence mappings
between input and output data. Therefore, the output of each
time step is affected by the input of the previous time step.
Therefore, RNN is used to realize the memory feature (Sutskever
et al., 2014; LeCun et al., 2015).

The structure of RNN is shown in Figure 1. Each node
represents a single time-step neuron. The connection weight
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of input neuron isW1, the self-connection weight of each neuron is
W2, and the connection weight of output neuron is W3. The input
data sequence enters the network in turn according to the time step,
and the weight coefficient is recycled.

The Proposed Forecast Framework
The proposed forecast framework utilizing STL decomposition,
time correlation modification (embodied as annual periodicity
and adjacent similarity) and residual modification is illustrated in
Figure 2.

In Figure 2, The proposed forecast framework consists of four
steps:

In the first step, we use the Seasonal–Trend decomposition
using Loess (STL decomposition) to obtain the trend, season, and
residual components of the time series.

In the second step, we use SARIMA, SVR, ANN, and LSTM
to forecast trend, season, and residual component,
respectively.

In the third step, we use the time correlation principle
to improve the forecasting accuracy of the season component.
The season component presents time correlation
characteristics, which embodies as annual periodicity
and adjacent similarity. Here the annual periodicity
means that data from the same month in the next year are

FIGURE 1 | The structure of recursive neural network (RNN) (Wang et al., 2020).

FIGURE 2 | The proposed forecast framework.
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similar. The adjacent similarity means that data are close to
each other in adjacent months. In the second step,
only adjacent similarity is used. We divide the season
component into 112 subsequences, each of which
represents a certain month. Then the exponential
smoothing method is used to forecast each subsequence.
The forecasting results are weighted with the season
component predicted by each model (SARIMA, SVR, ANN,
LSTM) to improve the forecasting accuracy of the season
component. The weight is calculated based on the last
forecasting error of the model.

In the fourth step, because the residual component has
nonlinear and irregular characteristics, the individual model
may only extract a certain feature of the sequence, so the
forecasting accuracy is low. In fact, it is rare that a single
forecasting model is always best in all cases. Each model has
its own unique strengths and weaknesses. When multiple
forecasting models are available, consider a combined
approach, which is a good way to take full advantage of
the strengths of each model. Therefore, we integrate the
residual component predicted by SARIMA, SVR, ANN,
and LSTM into a new sequence, and replace the residual
component predicted by the above four methods with the new

sequence to improve the forecasting accuracy of the residual
component.

CASE STUDY

Data Collection
We evaluate the performance of the proposed forecasting method
using the monthly electricity consumption data of China.
However, these figures cannot be used directly as Chinese
New Year always lasts for a few days in January or February.
Almost all companies and factories have stopped operating. As a
result, electricity consumption in January and February is
sometimes abnormal. To avoid this problem, we treat the
January and February averages as observations of a new
month 1 and 2 each year, i.e., each year has 11 monthly
values with a period length of 11. This study collects electricity
consumption data from the beginning of 1 and 2 2006 to the end
of August 2021 to keep relevant to the current situation of
electricity development. These original data are shown in
Figure 3.

Experimental Design
We select the data from1 and 2 2006 toDecember 2018 as the training
dataset (i.e., thefirst 143 data points) and the remaining data as the test
dataset (i.e., the last 29 data points). The training data set is further
divided into the optimization training data set and the verification data

FIGURE 3 | The monthly electricity consumption of China from 1 and 2 2006 to August 2021.

2In the later empirical research, we treat the January and February averages as
observations of a new month 1 and 2 each year.
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set. The optimization training data set contains the first 121 data
points, and the verification training data set contains the last 22
data points. Optimization training and validation data sets were
used to determine the hyperparameters of SVR, ANN, and
LSTM models, while test data sets are used to evaluate
forecasting performance.

Three error indices, mean absolute error (MAE), mean absolute
percentage error (MAPE), and correlation coefficient (COR), are
applied to evaluate the model performance according to forecast
results. The official functions of the three error indices are:

MAE � ∑n
i�1
∣∣∣∣yi − ŷi

∣∣∣∣
n

.

MAPE � 100%
n

∑n

i�1
∣∣∣∣yi − ŷi

∣∣∣∣
yi

∣∣∣∣.

COR � Cov(yi , ŷi)
σyσ ŷ

,

where y is the actual value, ŷ is the forecasted value, and i is the
index value of the data.

FIGURE 4 | The trend, seasonal, and residual for monthly electricity consumption data decomposed by Seasonal–Trend decomposition using Loess (STL).

TABLE 1 | Performance evaluations of different models with or without Seasonal–Trend decomposition using Loess (STL).

Horizons One-step ahead Two-step ahead Three-step ahead

Indices Mean
absolute
error
(MAE)
(TWh)

Mean
absolute

percentage
error

(MAPE)
(%)

Correlation
coefficient(COR)

MAE
(TWh)

MAPE
(%)

COR MAE
(TWh)

MAPE
(%)

COR

Without STL SARIMA 230 3.58 0.88 259 4.06 0.86 280 4.40 0.85
SVR 346 5.59 0.79 346 5.59 0.79 383 6.22 0.76
Artificial neural
network (ANN)

266 4.22 0.87 266 4.22 0.87 317 5.07 0.86

LSTM 336 5.36 0.78 336 5.36 0.78 406 6.35 0.71

With STL STL-SARIMA 126 1.98 0.96 121 1.93 0.96 131 2.10 0.96
STL-SVR 145 2.23 0.95 145 2.23 0.95 197 3.04 0.94
STL-ANN 150 2.34 0.95 150 2.34 0.95 189 2.99 0.94
STL-LSTM 169 2.78 0.96 173 2.83 0.96 211 3.41 0.93
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FIGURE 5 | Trend, season, random error ratio.

TABLE 2 | Performance evaluations of different models with time correlation modification and residual modification.

Horizons One-step ahead Two-step ahead Three-step ahead

Indices MAE
(TWh)

MAPE
(%)

COR MAE
(TWh)

MAPE
(%)

COR MAE
(TWh)

MAPE
(%)

COR

TCM STL-SARIMA-TCM 118 1.86 0.97 115 1.83 0.96 127 2.04 0.96
STL-SVR-TCM 131 2.05 0.97 131 2.05 0.97 182 2.84 0.96
STL-ANN-TCM 134 2.11 0.97 136 2.14 0.96 168 2.68 0.96
STL-LSTM-TCM 158 2.61 0.97 165 2.71 0.97 167 2.70 0.95

RM STL-SARIMA-
TCM-RM

113 1.82 0.97 113 1.80 0.97 123 1.98 0.96

STL-SVR-TCM-RM 135 2.14 0.97 136 2.15 0.97 187 2.92 0.96
STL-ANN-TCM-RM 129 2.06 0.97 132 2.10 0.96 156 2.48 0.96
STL-LSTM-TCM-RM 129 2.10 0.97 131 2.11 0.97 141 2.27 0.96

FIGURE 6 | Comparison between different models for 1-month ahead forecasting.
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FIGURE 7 | Comparison between different models for 2-month ahead forecasting.

FIGURE 8 | Comparison between different models for 3-month ahead forecasting.

FIGURE 9 | STL-SARIMA–time correlation modification (TCM)–residual modification (RM) for 1-month ahead forecasting.
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Results
Seasonal–Trend decomposition using Loess
Decomposition
Figure 4 shows the STL decomposition results of the monthly
electricity consumption. The trend component of the electricity
consumption of China is increasing year by year, and the growth
trend has accelerated since 2016. This is mainly because in 2016,
eight departments in China jointly issued The Guidelines on
Promoting the Substitution of Electric Energy, with a view to
increasing the proportion of electric energy in the final energy
consumption to 27%. Electric energy substitution is an important
way to achieve carbon peak and carbon neutrality by replacing

coal, oil, gas, and wood with electricity in energy consumption.
The season component vibrates more and more. Due to financial
crisis, extreme weather events, and epidemic, there are several
relatively large negative and positive shocks on the residual
component. If the original sequence is directly used, these
huge shocks will seriously threaten the forecasting accuracy of
the model.

Table 1 shows the performance evaluation results of four
models without STL decomposition and with STL
decomposition. The model comparisons demonstrate that STL
decomposition is effective in boosting the forecasting accuracy of
monthly electricity consumption. Compared with any single

FIGURE 10 | STL-SARIMA-TCM-RM for 2-month ahead forecasting.

FIGURE 11 | STL-SARIMA-TCM-RM for 3-month ahead forecasting.

TABLE 3 | Performance evaluation of STL-SARIMA-TCM-RM in 2019, 2020, and 2021.

Horizons One-step ahead Two-step ahead Three-step ahead

Indices MAE
(TWh)

MAPE
(%)

COR MAE
(TWh)

MAPE
(%)

COR MAE
(TWh)

MAPE
(%)

COR

2019 70 1.16 0.99 52 0.86 0.99 48 0.76 0.99
2020 166 2.77 0.97 193 3.19 0.97 220 3.66 0.96
2021 97 1.36 0.98 82 1.11 0.99 89 1.24 0.98
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model (SARIMA, SVR, ANN, LSTM), the models with STL
decomposition leads to reductions in all of the evaluation
indices (MAE, MAPE and COR).

According to Table 1, the divide-and-conquer strategy
improves the forecasting accuracy. Next, we analyze the
source of errors, that is, the percentage of trend, season,
and residual component forecasting errors to the total
errors. As shown in Figure 5, for any model, most of the
errors come from residual component forecast. SARIMA, in
particular, was the least effective. This is because the residual
component has nonlinear and irregular characteristics, and
SARIMA is not good at forecasting these kinds of sequences. In
addition, a single model may only extract a certain feature of
the sequence, so the forecasting accuracy is low. For trend
component, it can be seen that SARIMA has the highest
forecasting accuracy, while for machine learning algorithms,
such as SVR, ANN, and LSTM, the accuracy is not high.
Therefore, it can be concluded that the traditional statistical
method is better for simple sequence like trend component.
The forecasting errors of season component also account for a
large part.

Time Correlation Modification
As shown in Figure 5, the errors caused by season component
account for 18%–28%. In this section, we use the periodicity of
the seasonal series to improve the forecasting accuracy of the
season component. As we can see, the season component presents
time correlation characteristics, which embodies as annual
periodicity and adjacent similarity. We divide the season
component into 11 subsequences, each of which represents a
certain month. Then exponential smoothing method is used to
forecast each subsequence. The forecasting results are weighted
with the season component predicted by each model (SARIMA,
SVR, ANN, and LSTM) to improve the forecasting accuracy of
the season component. The weight is calculated based on the last
forecast error of the model. Rows 3–6 in Table 2 show that the
forecasting accuracy has been improved after time correlation
modification (TCM).

Residual Modification
Figure 5 shows that most of the errors come from a residual
component. This is because the residual component has
nonlinear and irregular characteristics; a single model may
only extract a certain feature of the sequence, so the
forecasting accuracy of a single model is low. Therefore, we
need to improve the forecasting accuracy of the residual
component. We integrate the residual component predicted
by SARIMA, SVR, ANN, and LSTM into a new sequence,
and replace the residual component predicted by the
above four methods with the new sequence to optimize
each model. Rows 7–10 in Table 2 show that the
forecasting accuracy has been improved after residual
modification (RM).

Comparison Between Different Models
Figures 6–8 show that after STL decomposition, time correlation
modification, and residual modification, the forecasting accuracy

of each model has been gradually improved. Among them, the
forecasting accuracy improved themost after STL decomposition.
This is mainly because there are many random disturbances in
the original sequence, and the model will be affected by these
disturbances if it is not decomposed.

DISCUSSION

According to Figures 6–8, STL–SARIMA–TCM–RM is the most
accurate forecasting model.3. As we can see, on the one hand,
compared with machine learning, SARIMA is better at forecasting
trend, season, and other sequences with clear patterns. That is why it
is so accurate. On the other hand, SARIMA is not good at forecasting
an irregular random term. Therefore, residual modification can
improve the forecasting accuracy of SARIMA most significantly.
Figures 9–11 show the STL–SARIMA–TCM–RM forecasting
performance in the data set, as well as a scatter plot of
forecasting results and actual values.

Considering that the test set includes COVID-19, we divide the
test set into 2019, 2020, and 2021. Table 3 shows that the 2019
forecast results are significantly better than that for 2020 and 2021.

CONCLUSION

This paper provides a novel decomposition and combination
method to forecast electricity consumption. This approach
first uses STL to decompose the sequence into trend, season,
and residual components. Then the three decomposed
subsequences are forecasted, and the season component
forecasting results are modified according to the annual
periodicity, and the forecasting results of the residual
component of each model are integrated. The results show
that STL-SARIMA-TCM-RM is the most accurate
forecasting model.

In addition to electricity forecasting, we believe that the
forecasting method proposed in this paper can also be used to
solve other mid- and long-term forecasting problems with
obvious seasonal characteristics, including tourist flow
forecasting, energy consumption forecasting, traffic flow
forecasting, and so on. Furthermore, this paper only focuses
on univariate time series analysis and does not consider other
factors affecting electricity consumption. If these factors can be
introduced into the proposed learning method, the predictive
performance may be better.
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