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Wind turbines are widely installed as the new source of cleaner energy production.
Dynamic and random stress imposed on the generator bearing of a wind turbine may
lead to overheating and failure. In this paper, a data-driven approach for condition
monitoring of generator bearings using temporal temperature data is presented. Four
algorithms, the support vector regression machine, neural network, extreme learning
machine, and the deep belief network are applied to model the bearing behavior.
Comparative analysis of the models has demonstrated that the deep belief network is
most accurate. It has been observed that the bearing failure is preceded by a change in the
prediction error of bearing temperature. An exponentially-weighted moving average
(EWMA) control chart is deployed to trend the error. Then a binary vector containing
the abnormal errors and the normal residuals are generated for classifying failures. LS-SVM
based classification models are developed to classify the fault bearings and the normal
ones. The proposed approach has been validated with the data collected from 11 wind
turbines.
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1 INTRODUCTION

Wind energy is the fastest growing form of renewable energy. Continuous operations in all
environmental conditions contribute to failures of wind turbine components, assemblies, and
systems. The generator of a wind turbine is one of the most failure-prone assemblies due to the
variable loads (Kusiak and Verma, 2012). Bearing failures account for more than 40% of the overall
wind turbine generator failures leading to unexpected energy losses (Tavner et al., 2012). Hence, a
solution for effective condition monitoring of generator bearings and early identification of failure
symptoms is needed.

Deteriorating performance of a generator bearing manifests itself on abnormal changes of the
vibration signal, torque, and bearing temperature (Yang et al., 2017; Feng et al., 2020). Vibration
analysis and data-driven approaches have been applied for condition monitoring of generator
bearings (Yang et al., 2018). The frequently used classical vibration analysis approaches include
Fourier transformation (Klein et al., 2001), wavelet transform (Yan et al., 2014), Hilbert-Huang
transform (Peng et al., 2005; Huang and Wu 2008), and empirical model decomposition (EMD)
(Huang et al., 2008). Other models have been developed. Teng et al. (2016) utilized a complex
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Gaussian wavelet to obtain the multi-scale enveloping
spectrogram for extracting weak features. Lei et al. (2013)
applied an ant colony algorithm to form adaptive stochastic
resonance method for failure detection. Peeters et al. (2018)
integrated automated spectrum editing procedure, band-pass
filtering and envelop analysis to detect bearing failures based
on the vibration signal. Vibration analysis approaches are
valuable in monitoring and diagnosis of generator bearing
failures. However, high frequency data from multiple
vibration sensors is needed to perform such analysis.
However, at present high frequency data is not available
from industrial turbines due to the excessive cost and data
sharing practices.

Most commercial wind turbines are equipped with the
supervisory control and data acquisition (SCADA) systems
collecting data that can be used to model behavior of
generator bearings. Kusiak and Verma. (2012) applied a
neural network to model bearing temperature for failure
prediction and identification. Guo. (2012) introduced
nonlinear state estimate technique (NSET) for temperature-
based failure detection. Yang et al. (2013) applied correlation
analysis and quantitative assessment based on the SCADA
data. The published literature indicates that the data-driven
methods provide robust bearing monitoring solutions for
wind turbines.

Deep learning is a recent addition to the modeling suite
with promising applications in multiple domains (Ouyang
et al., 2017; Sun et al., 2020a; Sun et al., 2020b; Shen et al.,
2021a; He et al., 2018; Li et al., 2018). The deep learning
algorithms are capable of extracting in-depth features and
patterns within the training dataset (Gritsenko et al., 2017;
Ouyang et al., 2019; Li et al., 2020; Shen et al., 2021b; Shen and
Raksincharoensak 2021). Within the wind energy sector, it
has been applied in the prediction tasks of wind speed (Hu
et al., 2016), wind power (Wang et al., 2017), and wind
direction (Wang et al., 2016a; Li et al., 2021a). Extensive
research has also been published using the deep-learning
approaches: Wang et al. (2016b) developed deep auto-
encoders to compress the time-series SCADA dataset and
the blade breakages are extracted from the deep-learned
features. Yang et al. (2018) applied stacked Restricted
Boltzmann Machines (RBMs) to capture the system-wide
patterns and then performed condition monitoring with
promising results. Bach-Andersen et al. (2018) selected 1-
dimensional convolutional neural networks (CNN) to extract
temporal features to classify failures of gearbox bearings.
Overall, deep-learning algorithms support development of
higher complexity models.

In this research, a deep-learning approach is explored to
monitor generator bearings. A deep belief network (DBN)
integrated with back-propagation (B-P) fine-tuning and layer-
wise training is developed to model normal generator bearing
temperature using SCADA data. Four data-driven models
predicting normal bearing temperature are constructed.
Their performance is assessed with the absolute percentage
error (APE), the mean absolute percentage error (MAPE) and
the root mean square error (RMSE). The analysis of industrial

SCADA data indicates that that bearing failure is preceded by
the error shift. The exponentially weighted moving average
(EWMA) control chart is applied to monitor the error shift. A
temporal binary vector is generated in real-time, and a final
failure classification model is developed. The benefits of the
proposed approach are demonstrated with computational
experiments.

2 RESEARCH METHODOLOGY

The use of deep-learning algorithms in prediction and
condition monitoring is growing (LeCun et al., 2015). Deep
learning originates from the research in neural networks.
Deep-learning algorithms avoid the local optima dilemma
and contains superior power in extracting globally robust
features from the dataset (Deng and Yu 2013; Qiu et al., 2017).

2.1 Deep Belief Network
In this research, a deep belief network (DBN) is applied to model
the generator bearing temperature. Proposed by Hinton et al.
(2006), the classical DBN algorithm multilayers of restricted
Boltzmann machines (RBMs) and a logistic regression layer
(Wang et al., 2016c).

The restricted Boltzmannmachine (RBM) is a commonly used
generative stochastic neural network (Hinton et al., 2006). It
includes a visible layer of binary-valued neurons and a hidden
layer of Boolean neurons (see Figure 1). The connection between
the hidden layer and the visible layer is bidirectional and
symmetrical. There are no inter-connections between neurons
in the same layer.

Training a single restricted Boltzmann machine (RBM)
involves the weight matrix between the two layers. The
configuration of weight matrix is based on the energy function
expressed in Eq. 1 (Wang et al., 2016c). The joint distribution of a
visible layer vector and the hidden layer vector is expressed in Eq.
2 (Hinton et al., 2006). The activation functions of neurons in the
visible and hidden layer are presented in Eqs 3, 4 (Hinton et al.,
2006

E(v, h) � −∑nv
i�1

aivi −∑nh
j�1

bjhj −∑nv
i�1

∑nh
j�1

hjwj,ivi, (1)

FIGURE 1 | The restricted Boltzmann machine.
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P(v, h) � e−E(v,h)∑
v
∑
h
e−E(v,h)

, (2)

P(vi � 1|h) � sig⎛⎝αi +∑nh
j�1

wj,ihj⎞⎠, (3)

P(hi � 1|v) � sig⎛⎝bj +∑nv
i�1

wj,ivi⎞⎠, (4)

where: vi is the number of neurons in the visible layer; hi is the
number of Boolean neurons within the hidden layer; wj,i is the
weight matrix between the visible layer and hidden layer; ai and bi
are the biases of the two layers; and sig() denotes the logistic
sigmoid function. Hence, the weight matrix and the layer biases
are obtained in a layer-wise unsupervised pre-training described
in the Section 2.2.

2.2 Layer-wise Pre-training
A deep belief network (DBN) includes multiple layers of
restricted Boltzmann machines (RBMs) (Ouyang et al., 2019).
Figure 2 shows the architecture of the proposed DBN. The first
RBM of the DBNmodel consisting of a visible and a hidden layer
(hidden layer 1) is pre-trained as an independent RBM. Then,
the weight matrix of the first RBM is computed. The output of
the first RBM becomes the input to the second RBM that
includes two layers. The first layer (hidden layer 1) is treated
as a visible layer of the second RBM while the second
layer (hidden layer 2) is treated as the hidden layer. The
weight matrix of the second RBM is computed. Hence, the
weight matrices between the remaining hidden layers are
obtained iteratively.

Training each restricted Boltzmann machine (RBM) is
accomplished with a stochastic gradient descent method
(Hinton et al., 2006). Based on vector Eq. 2 of the joint
distribution function between the visible and hidden layer, the
objective function of the stochastic gradient descend method is
expressed in Eq. 5 (Wang et al., 2016c).

L(a, b, w) � ∑ logP(v, h), (5)

where: a is the bias vector of the visible layer; b is the bias vector of
the hidden layer; and w is the weight matrix between the two
layers. The parameters of the objective function (a, b, w) are
updated based on the gradients of the function expressed in Eqs
6–8. The updating rules are formulated in Eqs 9–11 (Hinton
et al., 2006).

zlogP(v, h)
zwj,i

� 〈vihi〉P(h|v) − 〈vihi〉recon, (6)

zlogP(v, h)
zai

� 〈vi〉P(h|v) − 〈vi〉recon, (7)

zlogP(v, h)
zbj

� 〈hi〉P(h|v) − 〈hi〉recon (8)

wi+1 � wi + η(〈vihi〉P(h|v) − 〈vihi〉recon), (9)

bi+1 � bi + η(〈vi〉P(h|v) − 〈vi〉recon), (10)

ai+1 � ai + η(〈hi〉P(h|v) − 〈hi〉recon), (11)

where: η is the learning rate; 〈〉P(h|v)is the expectation of the
conditional distribution with respect to the original input data;
〈〉recon is the i-step reconstructed distribution obtained by the
alternating Gibbs sampling scheme. The expectation of the
reconstructed distribution is computed following the rules of
contrastive divergence (Hinton, 2002).

2.3 Data-Driven Algorithms
Performance of the deep belief network (DBN) is compared
with three algorithms, support vector regression machine
(SVR), neural network (NN), and extreme learning
machine (ELM).

The support vector regression machine (SVR) is considered in
this study includes a Gaussian kernel function (Drucker et al.,
1997). The values of the model parameters (c and γ) are selected
based on the 10-fold cross-validation. The neural network (NN)
contains two hidden layers. By testing on a small portion of the
training data, the sigmoid activation function is selected based on
the satisfactory performance. The extreme learning machine
(ELM) algorithm (Liang et al., 2006) is utilized to model the
normal bearing temperature. As a single-hidden layer feed-
forward network, the ELM learning model is expressed in Eqs
12, 13 (Liang et al., 2006).

fL(xj) � oj,∀j, (12)

∑L
i�1

βiG(ai, bi, xj) � tj, j � 1, 2, ..., N, (13)

where: xj represents the input parameters; oj represents the
predicted output values; fL() is the non-linear function
representing the ELM algorithm; ai is the weight vector
connecting the ith hidden node and the input nodes; bi is the
threshold of the ith hidden node; βi is the weight vector
connecting the ith hidden node and the output nodes; and tj is
the actual output value.

FIGURE 2 | Architecture of the deep belief network.
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2.4 Performance Evaluation Metrics
To assess prediction accuracy of the deep belief network, three
performance evaluation metrics are computed: the absolute
percentage error (APE) Eq. 14, the mean absolute percentage
error (MAPE) Eq. 15, and the root mean square error (RMSE)
Eq. 16.

APE �
∣∣∣∣∣∣∣∣oj − tj

tj

∣∣∣∣∣∣∣∣ p 100%, (14)

MAPE � 1
N

∑N
i�1

∣∣∣∣∣∣∣∣oj − tj
tj

∣∣∣∣∣∣∣∣, (15)

RMSE �

1
N
∑N
j�1

����oj − tj
����2√√
, (16)

where: oj is the j
th predicted generator bearing temperature; tj is

the jth actual generator bearing temperature; N denotes the
number of data points.

2.5 Exponentially Weighted Moving Average
Control Chart
The increasing value of the prediction bearing temperature error
of a data-driven model reflects deterioration of the generator
bearing conditions. In this research, an exponentially weighted
moving average (EWMA) (Jones et al., 2001) control chart is
applied to monitor the error. The weighted average of the past
bearing temperatures reduces the noise and allows detecting small
process shifts.

To compute the upper and lower confidence limits of the
EWMA control chart, the EWMAt is obtained from Eq. 17
(Wang et al., 2016b). The upper and lower confidence limits
can be computed from Eqs 18, 19 (Horng Shiau and Ya-Chen
2005).

EWMAt � λ pAPEt + (1 − λ) pEWMAt−1, (17)

UCL(t) � μAPE + L p σAPE


λ[1 − (1 − λ)2t]

(2 − λ)N

√
, (18)

LCL(t) � μAPE − L p σAPE


λ[1 − (1 − λ)2t]

(2 − λ)N

√
, (19)

where: µAPE is the mean of absolute percentage error (APE); σAPE
is the standard deviation of APE; N denotes number of samples.
According to Horng Shiau and Ya-Chen. (2005), the value of the
parameter L is commonly set to 3 and λ is usually set to 0.2.

2.6 Binary Vectors Generated by Control
Chart
The EWMA control charts used statistical thresholds to label the
prediction error (residuals) as normal and abnormal. The normal
residual usually denotes the bearing temperature is within the
normal range and the wind turbine is at healthy status. On the
other hand, the abnormal values often indicate abnormal bearing
temperature change and it can be the warning signal for bearing
failures. Hence, in this research, the normal and abnormal
residuals identified by the EWMA control charts are
transformed into binary vectors as described in Figure 3 as
follows.

According to Figure 3, the statistical thresholds classified the
residuals into normal and abnormal ones. Each data point can be
simply labeled as 0 (normal) and 1 (abnormal). Hence, the binary
vectors can be generated in real-time and be utilized as the
inputs for the final classification models introduced in the
Section 2.7.

2.7 Classification Models
Using the real-time vectors generated by the EWMA control
charts, the final failure classification models are constructed in
this research. Here, the dimension of the input vector is
determined as 20 which represents all normal/abnormal
prediction residuals of bearing temperatures. In total of four
state-of-art machine learning algorithms including support
vector machine (SVM), least-square support vector machine
(LS-SVM), extreme learning machine (ELM), and kernel-based
extreme learning machine (KELM) are selected to classify the
vectors representing generator bearing failures and vectors from
normal bearing behaviors.

The SVM is the state-of-art supervised learning algorithm
used for classification and function approximation (Cherkassky
and Ma, 2004). It is based on kernel functions and it avoids the
difficulty of using linear functions in the high dimensional
parameter space, and the optimization problem is transformed
into a dual convex quadratic programming problem.

The LS-SVM is developed based on statistical theory and
considered as the improved version of SVM (Zhu et al., 2018).
Compared with the vanilla SVM, the LS-SVM modifies the
inequality constraint in the SVM to the equality constraint.
Meanwhile, the training error square is used to replace the
slack variable in order to transform quadratic programming
problem into the linear equation problem for greatly
improving the speed and accuracy of model parameters. The

FIGURE 3 | Vectorization of residuals using EWMA control charts.
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LS-SVM has the unique superiority in dealing with the small-
sample learning problem.

The ELM is a feedforward neural network which contains the
input layer, the output layer and one single hidden layer.
Compared with other computationally expensive and time-
consuming neural networks, the ELM adopts Penn Moore
pseudo inverse to determine the weights and biases between
the hidden layer and output layer (Li et al., 2021b). This
method enables ELM to learn faster and attain higher
generalization capability compared with other neural networks.

The KELM uses the kernel method over the vanilla ELM and it
solves the problem of random initialization of ELM and has high
classification accuracy (Pandey et al., 2018; Ouyang 2021), good
generalization ability and high degree of robustness. The
Gaussian kernel function is the most frequently used kernel
function and thus is selected in this study.

3 COMPUTATIONAL ANALYSIS

The data used in this research has been collected from SCADA
systems of a large wind farm. The data 10 min resolution data
from 11 wind turbines is used to investigate failure of a generator
bearing. Two bearing failure instances have been reported during
the period covered by the dataset.

3.1 Dataset Description and Preprocessing
The ranges of the generator bearing temperature of the 11
turbines are provided in Table 1. The bearing failure incidents
are also included in Table 1. Based on the maintenance records,
Turbine B, H, I, and K have been affected by bearing failures and
are not considered for modeling normal bearing behavior
discussed in the Section 3.2. Rather they are selected to test
abnormal behavior of the bearing temperature.

3.2 Parameter Selection
To capture the normal behavior of a generator bearing, 33
parameters relevant to the bearing temperature have been
initially considered. Using domain expertise, the number of
parameters of interest was reduced to 12. Next, three
algorithms (i.e., the wrapper with genetic search (WGS)

(Kohavi and John, 1997), boosting-tree algorithm (BTA)
(Sbihi, 2007), and the relief algorithm (RA) (Liu et al., 2018)
were applied to select the most relevant parameters for predicting
the generator bearing temperature. The wrapper approach uses
supervised learning to perform 10-fold cross validation in
selecting relevant parameters. The boosting-tree algorithm
evaluates the importance of parameters by constructing a
sequence of decision trees and computing the prediction
residuals. The relief algorithm selects the parameter set by
detecting conditional dependence between the parameters. The
eight most important parameters selected by the three data-
mining algorithms are listed in Table 2.

3.3 Modeling Bearing Behavior
Data from three wind turbines (i.e., Turbine C, Turbine D,
Turbine E) have been merged to train the neural network,
support vector regression machine, the extreme-learning
machine presented in Section 2.2, and the proposed deep
belief network (DBN). Data collected from Turbine A, B, F
and G are used as validation dataset to validate prediction
performance of the proposed DBN algorithm. Data from
Turbine G, J, I and K are used as testing dataset respectively.
To design the DBN, the number of hidden neurons in each layer
is set at 10% of the training data (Mitchell, 1999). The data from
the remaining 2 healthy turbines (i.e., Turbine 9 and 11) are
designated as test datasets to evaluate performance of the four
algorithms.

Table 3 presents prediction results produced by the four
algorithms based for the test and validation datasets. The
mean absolute percentage error (MAPE) and the root mean
square errors (RMSE) produced by the DBN algorithm are the
smallest which confirms the accuracy of the DBN model. This
superior performance may be attributed to the layer-wise pre-
training.

Figure 4 illustrates prediction error from testing and
validation produced by the deep belief network (DBN). The
APEs of healthy wind turbines and turbines with bearing
failures demonstrate different behaviors. Hence, the
emerging bearing failure is indicated by the APE of the
DBN model.

3.4 Condition Monitoring
In this section, behavior of the prediction error associated with
the bearing failure is discussed. The APE was monitored for

TABLE 1 | Dataset description.

Turbine id. Bearing temperature Bearing failure Failure times

Min (°C) Max (°C)

A 14 68 No
B 11 87 Yes 8
C 0 63 No
D 3 68 No
E 13 71 No
F 13 69 No
G 0 73 No
H 6 90 Yes 2
I 9 86 Yes 5
J 14 71 No
K 7 85 Yes 7

TABLE 2 | Dataset description.

Parameter BTA WGS RFA

Generator phase-1 winding temperature 100 10 0.1
Generator phase-2 winding temperature 98 10 0.1
Generator air temperature 97 10 0.09
Generator rear temperature 96 9 0.09
Generator phase-3 winding temperature 96 9 0.1
Water cooler temperature 91 8 0.11
Phase compensation panel temperature 78 7 0.07
Nacelle temperature 78 6 0.05
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1 week prior to the bearing failure. The upper confidence
limit (UCL) and the lower confidence limit (LCL) of the
exponentially-weighted moving average (EWMA) control
chart are computed from Eqs 18, 19 of Section 2.4.
The monitored examples of healthy turbines and the
turbines with emerging bearing failures are illustrated in
Figures 5, 6.

Figure 5 illustrates the EWMA charts of healthy
turbines (Turbine G and J) while Figure 6 shows the wind
turbines (Turbine I and K) with problematic generator
bearings of the same wind farm. In Figure 5, all statistics
fall within the control limits which indicates normal bearing
behavior. Meanwhile, outliers in Figure 6 begin to emerge

1 week prior to the bearing failure and an early alarm is
issued. According to the results presented in Figure 6,
bearing failures are visible several days ahead of
the occurrence. The proposed approach provides
sufficient time to react and thus minimize power loss and
downtime.

The outcomes of the EWMAs are transformed into the real-
time binary vectors and then the bearing failure classification
models are developed to classify the actual failures. However,
in the temporal domain, the optimal size of the EWMA
vectors are uncertain. Hence, this research performed several
experiments by trying difference size of the EWMA vectors
(i.e., K � 10, 20, 30, 40). All algorithms introduced in the Section

TABLE 3 | Performance evaluation of four algorithms.

Algorithm Validation Testing

Turbine B, H Turbine A, F Turbine G, J Turbine I, K

MAPE (%) RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%) RMSE

SVR 1.27 0.93 0.96 0.56 4.95 4.27 4.46 3.98
NN 0.65 0.41 0.42 0.34 2.57 2.12 2.29 2.04
ELM 0.94 0.52 0.92 0.51 3.55 2.86 4.81 4.22
DBN 0.63 0.49 0.33 0.23 2.38 1.80 2.23 2.01

FIGURE 4 | The absolute percentage error produced by the deep belief network.
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2.7 are tested and the computational results are illustrated in
Figure 7 below. The AUC is selected as the measurement It is
obvious that all algorithms reached their peak classification

performance when K � 20 and thus it is selected as the
optimal setting for the dimension of the input EWMA vector
in our study.

FIGURE 5 | The EWMA control charts of two healthy turbines.

FIGURE 6 | The EWMA control charts of two turbines with bearing failures.

FIGURE 7 | The AUCs of all classification algorithms under different dimensions of EWMA vectors.
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As illustrated in Figure 8 below, the ROC curves for the four
state-of-art algorithms are obtained with respect to the testing
dataset. Among them, the LS-SVM achieves the highest area
under the ROC curve (AUC) as 0.88 which demonstrates its
superior performance in classifying bearing failures from the
binary vector mixed with normal and abnormal prediction
residuals. Meanwhile, the other performance metrics including
accuracy, sensitivity and specificity along with the 95%
confidence intervals are also provided in Table 4. The LS-
SVM still performs best among all algorithms tested according
to all evaluation metrics. Hence, using the vectors generated from
the DBN and EWMA control charts, the LS-SVM is capable of
classify the majority of the bearing failures in the temporal
domain.

4 DISCUSSION

The condition-monitoring framework proposed in this study has
provided promising results using field SCADA data. Overall, the
advantages of the proposed framework can be summarized into
the following three points: First, it uses deep belief network as the
backbone regressor. It has shown superior power in extracting
temporal abnormal features from the dataset. Second, the
framework is designed to be implemented on SCADA data
which is the standard data collection system for almost all
wind farms across the globe. Hence, it can be widely
implemented on practice. Third, the classification part can
save a lor of labor and time. Conventional control chart-based
identification of mechanical failures requires humans to detect

the statistical outliers. Instead, in this research, the machine-
learning classifiers enables the automation of this process. In sum,
it can be widely applied in wind farms for condition
monitoring tasks.

On the other hand, there are also few shortcomings at
current stage. For example, the sensor errors can be a
misleading factor that cause false classification of mechanical
failures. The reliability of the SCADA sensors is not considered in
this framework. This can be a future direction of our current
research.

5 CONCLUSION

In this research, a deep-learning based condition-monitoring
framework to identify bearing failures was presented in this
study. Historical data collected from healthy wind turbines
was utilized to develop a model predicting bearing
temperature with a deep belief network. Data from both
healthy wind turbines and turbines to the bearing failures are
served as the testing dataset. Comparative analysis demonstrated
that the deep belief network model was more accurate in
predicting generator bearing failures. An exponentially-
weighted moving-average control chart was applied to capture
shifts in prediction error. The control charts generated binary
vectors lead to identification of the emerging bearing failure in
real-time in the temporal domain.

Computational results reported in the paper validated
accuracy of the deep-learning framework in condition
monitoring of wind turbine generator bearings. In the future

FIGURE 8 | ROC curves of the bearing failure classification outcome.

TABLE 4 | Summary of bearing fault classification results.

Classifier Accuracy Sensitivity Specificity AUC

Mean 95% C.I. Mean 95% C.I. Mean 95% C.I. Mean 95% C.I.

SVM 0.74 (0.71–0.77) 0.64 (0.58–0.70) 0.87 (0.80–0.94) 0.76 (0.72–0.80)
LSSVM 0.83 (0.78–0.88) 0.77 (0.72–0.83) 0.94 (0.91–0.97) 0.88 (0.81–0.95)
ELM 0.71 (0.65–0.77) 0.64 (0.61–0.67) 0.79 (0.72–0.86) 0.69 (0.60–0.78)
KELM 0.76 (0.72–0.80) 0.71 (0.65–0.77) 0.82 (0.78–0.86) 0.75 (0.70–0.80)
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research, analysis of high frequency vibration data may be
coupled with the bearing temperature data for multi-scale
condition monitoring.
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