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The large-scale grid connection of new energy wind power generation has

caused serious challenges to the power quality of the power system. The hybrid

energy storage system (HESS) is an effectivemeans to smooth the fluctuation of

wind power and improve the economy of the system. In order to determine the

optimal capacity configuration of the hybrid energy storage system, first, a

decomposition method which combines ensemble empirical mode

decomposition (EEMD) and empirical mode decomposition (EMD) is

proposed, and a series of intrinsic mode functions are obtained, the grey

correlation analysis method is used to analyze the similarity, and the

components with similar correlation values are reconstructed to obtain

high-frequency and low-frequency components; second, considering the

battery life loss of the hybrid energy storage system, with the goal of

minimizing the entire life cycle cost, the optimal configuration model of

hybrid energy storage capacity is established, and different energy storage

schemes are analyzed to obtain the energy storage configuration scheme with

the best economy; finally, based on the typical daily historical data of a wind

farm, the effectiveness and economy of the proposed method are verified.
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1 Introduction

In the renewable energy power generation system, wind power generation and

photovoltaic power generation have the advantages of economy, environmental

protection, and cleanliness and will become the main body of new energy power

generation in the future (Sun et al., 2019). Since wind power generation is

characterized by intermittency, volatility, and uncertainty, the safe and stable

operation of the power system will be greatly challenged by large-scale wind power

grid connection (Samiet al., 2018; Tabart et al., 2017). The configuration of energy storage

at the wind farm can smooth the output fluctuation of wind power, reduce the influence of
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wind power grid-connected system on the power system (Lou

et al., 2014), significantly improve the power quality of the

system, and greatly improve the economic benefits of wind

power (Han et al., 2017). With the improvement in the

economic benefits of the combined wind storage system and

the promotion of the economic value of the energy storage

system to smooth wind power fluctuations, it is necessary to

study the capacity optimization of energy storage at wind farms

(Gan et al., 2019).

Due to good complementarity, the hybrid energy storage

system can smooth the wind power fluctuation and better

guarantee the stability and economy of wind power grid-

connected system compared with the single energy storage

system (He et al., 2020). There are mainly two types of energy

storage media: one is energy-based energy storage and the other

is power-based energy storage, and the combination of the two

can achieve complementary advantages (Mamun et al., 2018).

Battery energy storage belongs to energy-based energy storage,

supercapacitor belongs to power-based energy storage, and

combining the two forms a hybrid energy storage type, which

is used to not only improve the output characteristics of the

energy storage system but also greatly reduce the output

frequency of the battery energy storage, prolong its service

life, and give full play to the advantage of hybrid energy

storage, thus making up for the inherent defect in a single

energy storage system. However, at the current technology

level, the cost of the energy storage system is still high in

capacity configuration. On the premise of meeting the

requirements of wind power fluctuation suppression, the

capacity of the hybrid energy storage system and the ratio of

internal energy storage components in the system are the key

issues to be solved when hybrid energy storage technology is

applied to practical projects.

The optimal allocation of hybrid energy storage system

capacity has been widely and deeply studied by scholars at

home and abroad. In Bitaraf et al. (2015), discrete Fourier

transform (DFT) and discrete wavelet transform (DWT) are

proposed to deal with wind power, but the processing effect is still

not ideal due to the non-stationarity of wind power. Guo et al.

(2020) use the wavelet packet principle to decompose the hybrid

energy storage system, so as to determine the number of

decomposition layers of the wavelet packet. The low-

frequency and high-frequency components obtained by

wavelet packet decomposition can be assigned to batteries and

supercapacitors as charge and discharge power commands. Since

the number of decomposed layers needs to be determined

independently, the results of energy storage optimization

configuration are greatly affected. In Yuan et al. (2015) and

Han et al. (2014), the empirical mode decomposition method is

proposed to decompose the wind active power, but directly using

the EMD method will cause problems such as large noise and

mode aliasing. Fu et al. (2019) and Guo et al. (2020) use the

ensemble empirical mode decomposition method to process the

active power of wind farms and design spatiotemporal filters to

obtain high-frequency power components and low-frequency

power components, respectively. However, due to the instability

of wind power signals, the difficulty of order selection of the

spatiotemporal filter and the noise of EEMD make the accuracy

of the decomposed high–low frequency power signal not high.

The EEMD method is effective for blasting signals,

intermittent signals, and other sudden situations, and EMD is

effective for eliminating the general signals mentioned previously

(Zheng et al., 2013). Through the study of various improved

empirical mode decomposition methods, almost all the improved

empirical mode decomposition methods have to add EMD

processing in the last step of their basic principle formula

derivation. Therefore, in order to reduce mode confusion, in

the first stage of this paper, EEMD is used to deal with the original

wind power which contains a large number of gap signals and

random signals; in order to ensure the completeness and

orthogonality of signals, mixed energy storage power is

processed by EMD in the second stage, which can allocate

high- and low-frequency power reasonably and further

improve the economy of the system.

The life loss of batteries and supercapacitors always exists in

engineering application because the service life of

supercapacitors is long and can operate stably in the planning

cycle. Generally, in the capacity configuration, the service life can

be set to a fixed value according to practical experience. Due to

the limited cycle life of the lithium battery, frequent charge and

discharge and high rate charge and discharge will sharply reduce

its service life, increase the number of replacements in the whole

life cycle, and affect the economy of the hybrid energy storage

system. Therefore, the impact of battery life loss is mainly

considered (Hemmati et al., 2017). In Han et al. (2018), a

hybrid energy storage system is constructed using the battery

and supercapacitor, and the battery discharge depth is calculated

using the rain-flow counting method to obtain the equivalent

cycle life of the battery so as to establish a hybrid energy storage

capacity configuration model. Li et al. (2018) show that whether

the battery life loss considered in the planning period will affect

the investment returns of energy storage when calculating the

economy, resulting in a misjudgment of the economy of the

integrated energy system. Guo et al. (2021) analyze the

relationship between the complementary characteristics of the

hybrid energy storage system and battery life loss and conclude

that the hybrid energy storage configuration result of the

comprehensive energy system in the park is affected by

battery life loss, and the complementary characteristics can

effectively delay battery decay.

The determination of boundary frequency is related to the

economy of system capacity allocation and also affects the effect

of the hybrid energy storage system on wind power fluctuation

suppression. Zhang et al. (2016) and Ge et al. (2017) propose to

use the instantaneous frequency–time curve to find the cutoff

frequency, but the more the components of power
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decomposition, the more complex the energy aliasing on the

curve, which brings difficulties to find the cutoff frequency. Guo

et al. (2020) put forward the method of selecting the filtering

order successively, aiming at minimizing the annual

comprehensive cost, and determining the optimal filtering

order by sorting, but the workload is too large. Therefore, it is

very important to select the dividing frequency point to reduce

the workload and calculate the accuracy.

Therefore, this paper comprehensively considers the problems

existing in the aforementioned literature studies and proposes a

wind farm hybrid energy storage system capacity optimal allocation

model based on the combined application of modal decomposition

method of EEMD and EMD and gray relational degree analysis.

First, the output power signal of the wind farm is decomposed by

EEMD to obtain the target grid-connected power and hybrid energy

storage power that meet the grid-connected requirements. Second,

hybrid energy storage power using the EMDmethod is decomposed

into different frequency bands of the subcomponent, and grey

correlation analysis method is used to determine these

subcomponent division frequency points, classifying a component

into high-frequency power signal and low-frequency power signal,

with the high-frequency signal as the reference power of the power-

based energy storage type and low-frequency signal as the reference

power of the energy-based energy storage type. A mathematical

model of HESS life cycle cost (LCC) is constructed. In order to

improve the economic and operational benefits and to smooth the

wind power fluctuation in real time, an optimal allocationmethod of

HESS power and capacity is proposed with the goal of minimizing

LCC. Finally, themodel andmethod proposed in this paper are used

to analyze the real data of a wind farm.

2 Raw wind power allocation based
on ensemble empirical mode
decomposition

2.1 Ensemble empirical mode
decomposition

Due to the nonlinear and non-stationarity characteristics of

wind power output signals, the traditional frequency-domain

method for decomposition wind power signals is prone to modal

aliasing, while the EEMD method can solve the modal aliasing

problem. The principle of EEMD is described in the literature.

The process of decomposition of the original wind power

signal by the EEMD method is as follows:

(1) The white Gaussian noise signal ω(t) is added to the original

power signal PW(t) to obtain a common signal, i.e.,

P(t) � PW(t) + ω(t), (1)

P(t) � rn(t) +∑n
i�1
ci(t), (2)

(2) Through EMD decomposition of the signal P(t), the intrinsic

mode function (IMF) component is

where rn(t) is the afterwave signal and ci(t) is the IMF

component of the natural mode function of the i (i = 1,2, . . . ,n)

layer, whose distribution order is from high to low frequency.

(3) The white Gaussian noise signal is added to the original

power signal PW(t) for the j time, and Step 1 and Step 2 are

repeated to calculate acquirability:

⎧⎪⎪⎨⎪⎪⎩
Pj(t) � PW(t) + ωj(t),
Pj(t) � rjn(t) +∑n

i�1
cji(t), (3)

where cji(t) is the ith IMF component (3) obtained by EMD after

white Gaussian noise is added for the jth time.

(4) When cji(t) is averaged, the power signal value of the ith IMF

component is

ci(t) � 1
N

∑N
j�1
cji(t), (4)

whereN is the overall average times of adding the Gaussian white

noise signal.

PW(t) � rn(t) +∑n
i�1
ci(t). (5)

(5) The reconstructed signal PW(t) obtained after EEMD is

2.2 Adaptive ensemble empirical mode
decomposition of wind power

According to the EEMD method, the wind power signal is

decomposed into a series of IMF components and a residual

component according to the frequency distribution order. The

spatiotemporal filter is designed to obtain the grid-connected

power which is smooth and meets the requirements of the

national grid connection standard. The structure diagram of

the wind storage power generation system is shown in

Figure 1.

The low-frequency part (grid-connected power) is given as

follows:

Pg(t) � rn(t) +∑n
i�k
ci(t). (6)

PHESS(t) � ∑k−1
i�1

ci(t), (7)

The high-frequency part (power of the hybrid energy storage

system) is given as follows:where Pg(t) is grid-connected power,
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PHESS(t) is hybrid energy storage power, and k is the filtering

order of the spatiotemporal filter.

At time t, the maximum power volatility of wind power

output in 1 min or 10 min can be calculated according to Eqs 8, 9.

δ1min .Pg �
max

Δt�1,2,/,59
Pg(t) − min

Δt�1,2,/,59
Pg(t)

Po
, (8)

δ10min .Pg �
max

Δt�1,2,/,599
Pg(t) − min

Δt�1,2,/,599
Pg(t)

Po
, (9)

where Po is the installed capacity of the wind farm, and the 1 min/

10 min volatility of the grid-connected power of wind power

should meet the national standards for wind power grid-

connected at any time. In this paper, the installed capacity of

the 50-MWwind farm is selected, and its volatility requirement is

given as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δ1min .Pg#

1
10
,

δ10min .Pg#
1
3
.

(10)

First, judge whether the original output power PW(t) of wind

power meets the standard of wind power grid-connected

volatility. If PW(t) meets the standard, it can be directly

connected to the grid. If the standard is not met, the EEMD

method is used to decompose PW(t), with n = k and the value of k

increasing in cycles, and Pg(t) is judged according to Eq. 10.

When the volatility exceeds the grid-connected standard for the

first time, the filtering order k = k + 1 can be determined as the

optimal value, and then the adaptive decomposition of wind

power is completed.

3 Active power distribution of hybrid
energy storage based on the
empirical mode decomposition
method

3.1 Active power decomposition of hybrid
energy storage by empirical mode
decomposition

Empirical mode decomposition (EMD) is an adaptive

time–frequency processing method for non-stationary and

nonlinear signals. The empirical mode decomposition method

in the case of no pre-determined basis function can use its time

scale characteristics of the signal processing, the essence of which

is to process signal into frequency from high to low in a series of

intrinsic mode functions, after EMD being a child of the modal

number far less than a child of the modal number

wavelet algorithm and has good practicability. The hybrid

energy storage power of HESS is decomposed by EMD to

obtain a series of natural mode functions of frequency

distribution. By choosing the dividing frequency, the

aforementioned decomposed signals are reconstructed into

high-frequency components and low-frequency components.

The high-frequency component is used as the reference power

of power-based energy storage, while the low-frequency

component is used as the reference power of energy-based

energy storage, i.e.,

PHESS(t) � Pw(t) − Pg(t), (11)
PHESS(t) � Pb(t) + Psc(t), (12)

FIGURE 1
Structure diagram of the wind storage power generation system.
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PHESS (t) � ∑n
i�1
Pi(t) + Pr(t), (13)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Psc (t) � Phigh (t) � ∑j

i�1
Pi(t),

Pb (t) � Plow (t) � ∑n
i�j+1

Pi(t) + Pr(t),
j ∈ {1, 2,/, n}, (14)

where PHESS(t) is the power of hybrid energy storage, Pb(t) is the

power of the lithium battery, and Psc(t) is the power of the

supercapacitor. Pi(t) is the IMF components of each order

processed by the EMD method, i = 1,2,/,n. Pr(t) is the

aftereffect component. Phigh(t) is the high-frequency

component, which is used as the reference power of

supercapacitor energy storage. Plow(t) represents the low-

frequency component which is used as the reference power of

lithium battery energy storage.

3.2 Active power reconstruction of the
hybrid energy storage system based on
grey correlation analysis

The grey relational analysis method has the advantage of

clearly showing the power signal of the hybrid energy storage

system with nonlinear and non-stationary characteristics, which

are not only simple to calculate but also widely applied in

engineering (Zheng et al., 2021). The EMD hybrid energy

storage system uses a list of each order power signal output

power components and the aftermath of the IMF. Grey

correlation analysis was used to determine the IMF

components, and aftermath similarity analysis was used to

determine the correlation values and similar correlation

degrees were segregated for reconstructing them into high-

frequency and low-frequency parts. The supercapacitor was

used to smooth the output of the high-frequency part, and the

smoothening of the output of the low-frequency part was carried

out by the lithium battery. The specific steps of grey correlation

analysis are as follows (Wang et al., 2017; Lin et al., 2021):

(1) Determine the comparison sequence

An analysis matrix consisting of IMF components and

aftereffect components after EMD is constructed.

P �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
p11 p12 / p1n

p21 p22 / p2n

..

. ..
. ..

.

pm1 pm2 / pmn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (15)

(2) Normalize the comparison sequence, also known as

dimensionless processing. In this paper, Eq. 16 is used to

normalize the IMF component and the afterwave component

of each order power signal, respectively, so that they can be

transformed into data at an interval of (0,1). Then, the

dimensionless processing formula is as follows:

pB
ij �

pij − pjmin

pjmax − pjmin
, i � 1, 2, . . . , m; j � 1, 2, . . . , n. (16)

The resulting dimensionless matrix is:

P′ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
p01
′ p02

′ / p0n
′

p11
′ p12

′ / p12
′

..

. ..
. ..

.

pm1
′ pm2

′ / pmn
′

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (17)

The first behavior is a reference sequence, whose formula is

(18). The reference sequence is composed of the maximum value

of each column of the comparison sequence. In this sequence, i

(1#i#m) elements are denoted as p0i,opt
′ � max {pij

′}(1#j#n),
and p0i,opt

′ is the maximum of n items.

P0′ � [p01
′ , p02

′ , . . . , p0n
′ ]. (18)

(3) Generate difference matrix

Through Eq.19, matrix Z=(zij)m×n can be obtained, and the

difference matrix is formed according to Eq. 20.

zij �
∣∣∣∣∣p0i ,opt

′ − pij
′
∣∣∣∣∣, (1#j#n), (19)

Z �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
z11 z12 / z1n
z21 z22 / z2n
..
. ..

. ..
.

zm1 zm2 / zmn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (20)

(4) Determine the target reference sequence and comparison

sequence, and the grey correlation coefficient formula of the

reference sequence and comparison sequence is

ξ ij �
minimin(zij) + ρmaxmax(zij)

(zij) + ρmaxmax(zij) , (21)

where ξij is the correlation coefficient and ρ is the grey

discrimination coefficient, usually 0.5; i = 1,2,3 . . . ,m; j = 2,3,

. . . ,n.

(5)3510915613918000 Substitute Eq. 21 into the correlation

degree formula Eq. 22 to obtain the correlation degree between

each comparison sequence and the reference sequence, i.e.,

ri � 1
n
∑m
j�1
ξ ij, (22)

where ri is the correlation degree.

(6) Divide those with similar correlation degrees into two groups

and reconstruct them into high-frequency part and low-

frequency part, respectively, as shown in Eq. 14.
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4 Optimal capacity configuration of
hybrid energy storage system
resource identification initiative

4.1 Rated power configuration

Assuming that the rated power of the energy-type energy

storage lithium battery is Prate, taking into consideration the

energy conversion efficiency of the converter and the charge and

discharge efficiency of the energy storage device, then

Prate � max{∣∣∣∣∣∣∣ max
t∈(t0 ,t0+T)

(Pb(t))

×
∣∣∣∣∣∣∣ηDC−DCηDC−ACηc,

∣∣∣∣∣∣∣ min
t∈(t0 ,t0+T)

(Pb(t))
∣∣∣∣∣∣∣

ηDC−DCηDC−ACηd

⎫⎪⎬⎪⎭, (23)

where t0 is the initial moment; ηDC-AC and ηDC-DC are the

conversion efficiencies of two converters, DC-AC and DC-DC,

respectively; and ηc and ηd are the charging efficiency and

discharge efficiency of the energy storage device, respectively.

The calculation method of the power-type energy storage

supercapacitor is similar to that of the energy-type energy

storage lithium battery.

4.2 Rated capacity configuration

Set the rated capacity of the energy-type lithium energy

storage battery as Erate and set the initial state of charge of the

energy-type energy storage lithium battery at time 0 as SOC0,

then the state of charge SOCk at time k is

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
SOCk � SOC0 +

∫kΔT

0
Pn(t)dt
Erate

,

SOC min ≤ SOCk ≤ SOCmax,

(24)

where ΔT is the output time interval of the energy-type energy

storage lithium battery and Pn(t) is the power of energy-type

energy storage after considering the conversion efficiency and

charge and discharge efficiency, and its formula is

Pn(t) �
⎧⎪⎪⎨⎪⎪⎩

Pb(t)ηDC−DCηDC−ACηc, Pn(t)> 0,

Pb(t)
ηDC−DCηDC−ACηd

, Pn(t)≤ 0,
(25)

where T is the research duration, and the rated capacity Erate of

the energy-type energy storage lithium battery can be calculated

as follows:

Erate ≥max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max
t∈T

∫kΔT
0

Pn(t)dt
SOC max − SOC0

,
−min

t∈T
∫kΔT
0

Pn(t)dt
SOC0 − SOC min

⎫⎪⎪⎪⎬⎪⎪⎪⎭. (26)

When SOC0 satisfies Eq. 27 and is equal to Eq. 26, the rated

capacity of the energy-type energy storage lithium battery is of

the minimum value. The calculation method of the power-type

energy storage supercapacitor is similar to that of the energy-type

energy storage lithium battery.

SOC0 �
max
t∈T

[∫kΔT
0

Pn(t)dt]SOC min −min
t∈T

[∫kΔT
0

Pn(t)dt]SOC max

max
t∈T

[∫kΔT
0

Pn(t)dt] −min
t∈T

[∫kΔT
0

Pn(t)dt] .

(27)

4.3 Battery life estimation model by the
rain-flow counting method

The life of the lithium battery is mainly related to the depth of

discharge (DOD) and the number of charges and discharges,

which affect the life of the battery. In this paper, the discharge

depth and cycle life of the lithium battery in each cycle are

calculated by the rain-flow cycle counting method. The

mathematical model between cycle life and discharge depth

can be expressed by formula (28) (Li et al., 2020; Han et al., 2018).

Nctf � −1302D5
OD + 4427D3

OD − 8925DOD + 10500, (28)

where DOD is the discharge depth of the lithium battery and Nctf

is the cycle life at the corresponding depth.

The rain-flow counting method can be used to obtain n cycles

of DOD during the battery working cycle according to the battery

SOC curve, denoted as DOD (1)、DOD (2)、. . .、DOD(n), where

Nm (DOD(i)) is denoted as the maximum number of

charge–discharge cycles corresponding to the ith discharge

depth, then the decay rate of battery life can be expressed as

γ � ∑n
i�1

1
Nm(DOD(i)) × 100%, (29)

where γ is the battery decay rate.

If the battery has gone through N working cycles, the

remaining battery life can be expressed as

R � 1 −∑N
j�1
γ(j), (30)

where R is the remaining battery life. When R = 0, the battery life

reaches its limit.

Tb � 1
365γλ

, (31)

where Tb is the service life of the energy storage lithium battery

(unit: year a) and λ is the annual utilization rate of the energy

storage lithium battery.
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4.4 Economic model of the hybrid energy
storage system

The theory meaning of whole life cycle cost CLCC is

produced in the whole life cycle period of the sum of all

direct or indirect costs, including the hybrid energy storage

system life cycle for T years, the discount rate for i, and hybrid

energy storage component replacement for n times. The target

is a hybrid energy storage system for the minimum whole life

cycle cost, and the full life cycle cost model is determined as

follows:

minCLCC � Cinv + Crep + Com + Cscr − Cres, (32)
Cinv � CpinvPrate + CeinvErate, (33)

Crep � ∑n
k�1

(CprepPrate + CerepErate)[ P

F, i
,( kT

n + 1
)], (34)

Com � CpomPrate(P/A, i, T) +∑T
t�1
CeomQess(t)( P

F, i, T
), (35)

Cscr � (CpscrPrate + CescrErate)(n + 1)( P

F, i, T
), (36)

Cres � σres(Cinv + Crep)( P

F, i, T
), (37)

where Cinv, Crep, Com, Cscr, and Cres are the initial investment cost,

regular replacement cost, operation and maintenance cost, waste

treatment cost, and recovery and utilization residual value of the

hybrid energy storage system, respectively; Cpinv, Ceinv, Cprep, Cerep,

Cpom, Ceom, Cpscr, and Cescr represent the unit initial investment

power coefficient, unit initial investment capacity coefficient, unit

periodic replacement power coefficient, unit periodic replacement

capacity coefficient, unit operations and maintenance power

coefficient, unit operations and maintenance capacity

coefficient, unit waste-processing power coefficient, and unit

waste-processing capacity coefficient, respectively; Prate and Erate
are rated power and rated capacity of the energy storage element,

respectively; (P/F,i,t)=(1 + i)−t; Qess(t) is the annual charge and

discharge amount; σres is the recovery salvage value rate, which is

3%–5%; n = ceil (T/Tx-1), x = b or x = sc; the function ceil(z) is the

smallest integer at least z; (P /A, i, T) � (1+i)T−1
i(1+i)T .

5 Algorithm flow

The detailed flow chart of the algorithm used in this paper is

shown in Figure 2. This process is mainly composed of three

stages: EEMD and filtering order selection stage, EMD and grey

relational degree analysis power reconstruction stage, and

optimization configuration result stage.

Step 1: Since the EEMD decomposition method has strong

adaptability for nonlinear or non-stationary signal processing,

the original wind power PW(t) is decomposed by EEMD.

Step 2: The wind power signal is decomposed by EEMD into a

finite number of IMF components with different frequency

broadband and a residual component. By determining the

order k of the spatiotemporal filter, the smooth grid-

connected power Pg(t) and the high-frequency partial power

PHESS(t) for hybrid energy storage suppression can be obtained.

FIGURE 2
Flow chart of hybrid energy storage capacity optimization
configuration algorithm.

FIGURE 3
Raw wind power and grid-connected power.
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Step 3: Determine whether the obtained power meets the

requirements of grid-connected by the maximum power

fluctuation of 1 min or 10 min. The grid-connected power

smoothing effect is closely related to the selection of the

k-value. When the k-value increases, the wind power

smoothing effect will be better, but the capacity of the hybrid

energy storage system will increase. On the contrary, the

standard for wind power grid connection will not be met.

Step 4: The decomposition of EEMD requires a large amount of

calculation, and the decomposition will have many false

components and other defects, while the reconstruction error

of EMD is small. Therefore, the decomposition of hybrid energy

storage power by EMD can achieve the purpose of reasonable

power distribution.

Step 5: hybrid energy storage power by the EMD, to get a

list of each order power signal components and the

aftermath of the IMF, degrees of the grey relation analysis

method were used to determine the IMF components

and aftermath similarity analysis was used to determine

the correlation values and similar correlation degrees

were segregated for reconstructing them into high-

frequency and low-frequency parts. The supercapacitor

was used to smooth the output of the high-frequency part,

and the low-frequency part was smoothed by the lithium

battery.

Step 6: Obtain the hybrid energy storage power configuration

and capacity configuration scheme, and calculate the system life

cycle operation cost.

FIGURE 4
Decomposition of raw wind power by EEMD.
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FIGURE 5
EMD decomposition hybrid energy storage power.

FIGURE 6
Grey correlation analysis of each component. FIGURE 7

Power instruction of hybrid energy storage after
reconstruction.
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6 Analysis of examples

In this paper, a wind farm with 50 MW installed

capacity is taken as an example (Ding et al., 2019). Its

typical daily wind power curve and grid-connected

power curve after adaptive EEMD are shown in Figure 3,

with a sampling interval of 1 min. The SOC upper and lower

limits are 0.1–0.9, and the charge and discharge efficiency

is 0.90.

6.1 Determining the order of the
spatiotemporal filter

The original wind power signal was decomposed by EEMD,

and nine layers of IMF components with different frequency

bands and one layer of aftereffect component were obtained,

respectively. IMF components are, respectively, expressed as

IMF1–IMF9, where IMF1 is the highest frequency part,

IMF9 is the lowest frequency part, and the afterwave part is

FIGURE 8
Power distribution diagram of the supercapacitor.

TABLE 1 Capacity configuration results of HESS.

Configuration method Configuration result Single
energy storage scheme

Hybrid energy storage scheme

Scheme 1 Scheme 2

Lithium battery Lithium battery Super capacitor

EMD Rated power/MW 19.10 13.83 9.93

Rated capacity/(MW·h) 1.03 0.72 0.40

Cost/¥ 4.30 × 108 3.81 × 108

EEMD Rated power/MW 7.37 4.98 3.30

Rated capacity/(MW·h) 0.41 0.29 0.13

Cost/¥ 2.58 × 108 2.09 × 108

Methods in this paper Rated power/MW 7.27 0.67 7.08

Rated capacity/(MW·h) 0.40 0.04 0.28

Cost/¥ 2.56 × 108 7.63 × 107
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represented by IMF10. The decomposition results are shown in

Figure 4. According to Eqs 8, 9, the maximum power volatility of

1 min or 10 min is calculated, and according to Eq. 10, the

filtering order of the space-time filter k = 4 is selected when

the volatility meets the requirements of grid connection.

It can be seen from Figure 3 that the wind-power grid-

connected curve after leveling can well track the original wind-

power curve. On the premise of meeting the grid-connected

requirements, the smoothing effect is good and the fluctuation

amplitude is small, which is reflected in the obvious change at

the peak.

Figure 4 shows that the original wind power is decomposed

by EEMD to obtain IMF components and aftereffect component,

among which IMF8 and IMF9 are omitted and not drawn. As can

be seen from the decomposed figure row, the high-frequency

IMF1–IMF4 components fluctuate rapidly, but the fluctuation

amplitude is small, and the variation range is −5 to 5 MW. The

variation of IMF5–IMF10 components in the low-frequency part

is relatively gentle, and the variation of the IMF10 component is

the most gentle, but the fluctuation amplitude gradually

increases. Therefore, the high-frequency part is suppressed by

the hybrid energy storage system, and the low-frequency part

enters the grid as the grid-connected power for load use.

6.2 Decomposition and reconstruction of
hybrid energy storage

After EMD, the hybrid energy storage power PHESS(t)

obtained by the method in this paper is decomposed into

seven IMF components and one aftereffect component from

high to low according to the frequency range, and the aftereffect

is represented by RS8, as shown in Figure 5.

The components decomposed by EMD are analyzed based on

the grey correlation degree. Figure 6 shows the similarity analysis

of each component of IMF and the residual component using the

grey correlation degree analysis method. The results show that

the components with similar correlation degrees in the

comparison sequence are IMF1, IMF2, and IMF3, and the

correlation degree is all greater than 0.4. In the other group,

IMF4, IMF5, IMF6, IMF7, and RS8 had similar correlation

degrees, and the correlation degrees were all less than 0.3.

Therefore, the high-frequency part is composed of IMF1 +

IMF2 + IMF3, and the low-frequency part is composed of the

sum of IMF4–RS8 components, and the reconstructed power is

allocated to the supercapacitor and lithium battery, respectively.

According to Figure 7, the supercapacitor bears the smooth

output of the high-frequency part, and the charging and

discharging times of the high-frequency part are frequent. The

lithium battery undertakes the smooth output of the low-

frequency part, and the low-frequency part charges and

discharges gently, which is conducive to prolonging the

service life of the lithium battery. The amount of power that

needs to be suppressed is exactly in line with the technical

characteristics of the two energy storage components.

Figure 8, for supercapacitor power distribution, with

histogram representing the supercapacitor in the power of a

typical day number distribution, blue curve representing power

distribution fitting, and fitting curves representing the

supercapacitor at 0 MW with normal symmetric distribution

on both sides, shows that the supercapacitor in the calm wind

power can complete charge and discharge of normal function.

6.3 Comparison and analysis of different
methods

Supercapacitors and lithium batteries have their own

characteristics and advantages and are widely used in

engineering. Therefore, combining the advantages and

complementary characteristics of the two types of energy

storage, this paper adopts two different configuration schemes

for comparative analysis. Scheme 1 uses the lithium battery as a

single energy storage scheme; Scheme 2 adopts a hybrid energy

storage scheme composed of lithium batteries and

supercapacitors. According to different decomposition

methods, the rated power and rated capacity under different

schemes are configured. Assuming that the full life cycle of

energy storage is 20 years, the investment cost of HESS under

the two configuration schemes can be calculated according to the

aforementioned methods. The specific calculation results are

shown in Table 1.

According to the analysis in Table 1, except that the rated

capacity of the supercapacitor determined by the EEMD method

in Scheme 2 is lower than that determined by the proposed

method, the rated power and rated capacity determined by the

FIGURE 9
Total cost growth curve considering fixed and cycle life.
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proposed method are significantly lower than those configured

by the EMDmethod and the EEMDmethod. In terms of the cost

of configuration results, the EMD method has the highest cost,

followed by the EEMD method. The economy of the proposed

method is far better than that of the other methods, and the

economy of the hybrid energy storage scheme is also far better

than that of the single energy storage scheme. Hybrid energy

storage system can utilize the advantages of two kinds of energy

storage to reasonably configure the energy storage capacity and

can reduce the system cost to the greatest extent under the

premise of meeting the requirements of grid connection. It can be

analyzed from Table 1 that the life cycle cost of the hybrid energy

storage system decreases by 10% compared with that of the single

energy storage system using the method in this paper.

6.4 Total cost analysis considering fixed
life and cycle life

The fixed life setting of the energy storage battery is usually

based on engineering experience. In this paper, the fixed life is

10.5 a. The cycle life calculated in this paper is 5.6 a. The growth

curves of the total cost of fixed life and total cost of cycle life in the

whole life cycle are shown in Figure 9. When the planning period

is 10 A, the total cost of fixed life is 76, 074, 800 ¥, while the total

cost of cycle life is 763, 30, 300 ¥, which decreases by 255,500 ¥

compared with the total cost of cycle life. Therefore, it is easy to

reduce the investment amount by using the fixed life model to

carry out the optimal allocation of hybrid energy storage. As the

type of calculation cost increases, the gap between the total cost

considering fixed life and the total cost considering cycle life

becomes larger. If the total cost is calculated on a fixed lifetime

basis, investors will be able to reduce the allocation of hybrid

energy storage, resulting in excessive charging and discharging of

existing energy storage equipment. Not only will the life of energy

storage devices be reduced, but also the replacement of energy

storage devices will be accelerated. Instead, the total cost of

hybrid energy storage tends to increase. Therefore, it is not

economical to calculate the total cost using the fixed-life model.

7 Conclusion

Aiming at the economic problem of capacity allocation in the

hybrid energy storage system and the impact of battery energy storage

life decay on system cost, this paper proposes a capacity optimal

allocation model for the wind farm hybrid energy storage system

based on the combined application of EEMD and EMD. Through the

analysis of the example, the following conclusions are drawn:

1) Based on the power decomposition method combined with

EEMD and EMD, the complementary characteristics between

supercapacitors and lithium batteries are realized. The

numerical example results show that the proposed method

has better configuration effect than the traditional method

using EEMD and EMD alone. The configuration capacity of

lithium batteries and supercapacitors is reduced, which

indirectly prolongs the service life of lithium batteries. The

economy of system operation has been improved.

2) The frequency distribution rate is determined based on the

grey correlation degree, so as to reconstruct the hybrid energy

storage power. The high-frequency component is smoothly

produced by the supercapacitor, and the low-frequency

component is smoothly produced by the lithium battery.

Through the calculation method of rated power and rated

capacity of the energy storage system, the optimal value is

determined, and a better effect of high- and low- frequency

power distribution is obtained.

3) By comparing the two energy storage configuration schemes,

it is further verified that the hybrid energy storage system

scheme has more advantages in technology and economy

than the single energy storage scheme, which is worthy of

promotion and application.

4) The cycle life model considering battery life loss has higher

battery capacity allocation than the fixed battery life model,

and its investment cost is also very high, which is easy to make

investors expect too high return on investment.
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